
 Open access Journal Article DOI:10.1007/S10601-017-9272-3

Mining Time-constrained Sequential Patterns with Constraint Programming
— Source link

John O. R. Aoga, John O. R. Aoga, Tias Guns, Tias Guns ...+1 more authors

Institutions: Université catholique de Louvain, National University of Benin, Vrije Universiteit Brussel,
Katholieke Universiteit Leuven

Published on: 07 Jun 2017 - Constraints - An International Journal (Springer US)

Topics: Constraint logic programming, Constraint programming, Binary constraint, Constraint satisfaction and
Constraint (information theory)

Related papers:

 Local Constraint-Based Mining and Set Constraint Programming for Pattern Discovery

 Scalable Constraint Programming approach for Mining Frequent Sequence with gap constraints

Principles and practice of constraint programming - CP 2001 : 7th International Conference, CP 2001, Paphos,
Cyprus, November 26-December 1, 2001 : proceedings

Principles and practice of constraint programming -- CP 96 : Second International Conference, CP 96, Cambridge,
MA, USA, August 19-22, 1996 : proceedings

 A Constraint Programming Approach for Enumerating Motifs in a Sequence

Share this paper:

View more about this paper here: https://typeset.io/papers/mining-time-constrained-sequential-patterns-with-constraint-
4j1xdbl9wy

https://typeset.io/
https://www.doi.org/10.1007/S10601-017-9272-3
https://typeset.io/papers/mining-time-constrained-sequential-patterns-with-constraint-4j1xdbl9wy
https://typeset.io/authors/john-o-r-aoga-4jsx1l2sfv
https://typeset.io/authors/john-o-r-aoga-4jsx1l2sfv
https://typeset.io/authors/tias-guns-57yxfhwcr8
https://typeset.io/authors/tias-guns-57yxfhwcr8
https://typeset.io/institutions/universite-catholique-de-louvain-2abwpwl8
https://typeset.io/institutions/national-university-of-benin-p7hdg9er
https://typeset.io/institutions/vrije-universiteit-brussel-wrkr663f
https://typeset.io/institutions/katholieke-universiteit-leuven-j400mi90
https://typeset.io/journals/constraints-an-international-journal-2q2ndcpc
https://typeset.io/topics/constraint-logic-programming-2suxrjhi
https://typeset.io/topics/constraint-programming-1frut55u
https://typeset.io/topics/binary-constraint-1xctb3l6
https://typeset.io/topics/constraint-satisfaction-2j4ncz4r
https://typeset.io/topics/constraint-information-theory-1kpvnf0j
https://typeset.io/papers/local-constraint-based-mining-and-set-constraint-programming-ot9ghg50ku
https://typeset.io/papers/scalable-constraint-programming-approach-for-mining-frequent-4k2yyc4ism
https://typeset.io/papers/principles-and-practice-of-constraint-programming-cp-2001-4qhlthtnhv
https://typeset.io/papers/principles-and-practice-of-constraint-programming-cp-96-20jncadvrl
https://typeset.io/papers/a-constraint-programming-approach-for-enumerating-motifs-in-1s87xw73cs
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/mining-time-constrained-sequential-patterns-with-constraint-4j1xdbl9wy
https://twitter.com/intent/tweet?text=Mining%20Time-constrained%20Sequential%20Patterns%20with%20Constraint%20Programming&url=https://typeset.io/papers/mining-time-constrained-sequential-patterns-with-constraint-4j1xdbl9wy
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/mining-time-constrained-sequential-patterns-with-constraint-4j1xdbl9wy
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/mining-time-constrained-sequential-patterns-with-constraint-4j1xdbl9wy
https://typeset.io/papers/mining-time-constrained-sequential-patterns-with-constraint-4j1xdbl9wy

Noname manuscript No.
(will be inserted by the editor)

Mining Time-constrained Sequential Patterns with

Constraint Programming

John O.R. Aoga · Tias Guns · Pierre
Schaus

Received: date / Accepted: date

Abstract Constraint Programming has proven to be an effective platform for cons-
traint based sequence mining. Previous work has focussed on standard frequent se-
quence mining, as well as frequent sequence mining with a maximum ’gap’ between
two matching events in a sequence. The main challenge in the latter is that this cons-
traint can not be imposed independently of the omnipresent frequency constraint.
Indeed, the gap constraint changes when a subsequence is included in a sequence. In
this work, we go beyond that and investigate the integration of timed events, the gap
constraint as well as the span constraint that constrains the time between the first
and last matching event. We show how the three are interrelated, and what the re-
quired changes to the frequency constraint are. Key in our approach is the concept of
an extension window defined by gap/span and we develop techniques to avoid scan-
ning the sequences needlessly, as well as using a backtracking-aware datastructure.
Experiments demonstrate that the proposed approach outperforms both specialized
and CP-based approaches in most cases and that the difference becomes increasingly
large for low frequency thresholds.

Keywords Data mining · Sequential pattern mining · Constraint programming ·
Global constraint · Gap constraint · Span constraint · Time constraint

J.O.R Aoga (B)
Institute of Information and Communication Technologies, Electronics and Applied Mathma-
tics (ICTEAM), UCLouvain, Belgium
Ecole Doctorale Science de l’Ingénieur (ED-SDI), Université d’Abomey-Calavi (UAC), Bénin
Orcid Id: 0000-0002-7213-146X
E-mail: john.aoga@{uclouvain.be,gmail.com}

T. Guns
Vrije Universiteit Brussel (VUB), Brussels, Belgium
Katholieke Universiteit Leuven, Belgium
E-mail: tias.guns@{vub.ac.be,cs.kuleuven.be}

P. Schaus
Institute of Information and Communication Technologies, Electronics and Applied Mathma-
tics (ICTEAM), UCLouvain, Belgium
E-mail: pierre.schaus@uclouvain.be

2 John O.R. Aoga et al.

1 Introduction

Sequential pattern mining (SPM) is an important research domain within data min-
ing and widely used in applications such as the web log mining, disease diagnoses
mining, event sequence mining, etc [1]. The problem of SPM is to find frequent
sequence patterns (also called sequential patterns) in a database of sequences, i.e.
ordered list of events that together occur in the data more than a given number of
times. This task is a great challenge since the search space is extremely large; O(mn)
solutions are available for patterns with length at most n and for sequences with an
average number of m events.

In practice, finding all sequential patterns is typically not enough, as often an
overwhelming number of patterns is returned. Hence, there is a need to guide the
search towards patterns of interest to the practitioner. This calls for techniques
which can incorporate preferences or restrictions on the length and content of the
patterns (constraints). In many applications, the time elapsed between events is also
important to take into account.

Assume for instance a database containing sequences of web pages visited by
users on a given web-site. One could be interested in access patterns within a single
browsing session, for example with no more than 20 minutes time between two pages.
Also in biological sequence mining the position and distance of the symbols in the
sequence matter. A constraint on the maximum time between any two consecutive
symbols in the pattern is called a gap constraint, while a constraint on the time
from the first to the last event is called a span constraint. In this work, we assume
all sequences have explicit timestamps and the goal is to support gap and span
constraints as well as constraints on the frequency as well as constraints on the
syntax of the patterns.

Related work The problem of sequential pattern mining, first introduced by Agrawal
et al. [2], is widely studied [2, 13, 14, 28, 34, 36, 37, 38, 39] with many applications as
well [16, 17]. These works can be caregorized into 1) apriori-based (horizontal/ver-
tical formatting)[5, 34, 38] and 2) projection-based[28] methods. In general, users
only need a small subset of the found patterns. Hence, a number of works have fo-
cused on the addition of user-defined constraints such as inclusion/exclusion items,
pattern length (minimum/maximum), super-pattern, aggregate function (sum, aver-
age, maximum, minimum, standard deviation, ...), regular expression and span/gap.
They are widely discussed in [29].

GSP [34] was the first approach including gap and span constraints. This method
is not very efficient since it requires to generate all candidate patterns and to scan the
dataset several times. Some approaches added the constraints in a post-processing
step [27]. In the cSPADE algorithm [38], the constraints are directly integrated
into the frequent pattern search process. It efficiently takes into account constraints
such as length and width restrictions on the pattern, item constraints, minimum
and maximum gaps between events, as well as a maximum span. Unlike cSPADE,
GenPrefixSpan [3] is an extension of the depth-first PrefixSpan [28] algorithm to allow
gap constraints. Time constraints on the sequences (instead of events) have also been
investigated in [9]. Special classes of SPM problem or constraints was also tackled:
the closed/maximal SPM [10, 21, 22, 35, 36] the multi-dimensional SPM [31], the
episodes events [23], etc. However, all the above-mentioned approaches lack flexibility
at the algorithmic level, since adding a new constraint often involves changing the

Mining Time-constrained Sequential Patterns with Constraint Programming 3

whole algorithm and may hinder scalability. We are for instance not aware of a tool
that can efficiently take regular expression constraints into account together with
time constraints.

As an alternative, the use of constraint programming has been investigated [4,
8, 12, 18, 19, 20, 24, 25]. Kemmar et al. [20] have subsequently shown that this
approach can be made more scalable by grouping all low-level constraints involving
the frequency computation into one global constraint. Moreover, they investigated
the top-k sequential pattern mining problem [18]. More recently, we have shown that
combining this approach with algorithmic techniques from both the CP community
and the data mining community can result in a global constraint that outperforms
generic as well as specialized methods [4].

While the above CP methods can handle constraints on the pattern syntax, gap
and span constraints are only supported by the much less efficient approach of [25].
The reason is that the timing information is hidden in the global frequency constraint.
Hence, Kemmar et al. [19] extended their global constraint for the gap constraint
specifically.

Contribution In this work, we wish to improve on [19] and [4] by modifying the
global frequency constraint to capture the most common time-related constraints:
explicitly timed events, minimum/maximum gap, and minimum/maximum span. To
maintain scalability, we must ensure that we do not needlessly scan the sequences in
the database during the search. Our contributions can be summarized as follows: 1)
we adapt the backtracking-aware datastructure introduced in [4] to store all possible
occurrences of the pattern in a sequence, including the first matching symbol to
support span constraints; 2) we avoid scanning a sequence for a symbol beyond the
(precomputed) last occurrence of that symbol in the sequence; 3) we introduce the
concept of extension window of an embedding and avoid to scan overlapping windows
multiple times; 4) we avoid scanning for the start of an extension window, which is
specific to the minimum gap constraint, by precomputing these in advance; and
finally 5) we experimentally show that using this global constraint we outperform
other sequence mining algorithms in all but a few cases. Furthermore, this time-aware
global constraint can be combined with other constraints string constraints [15] such
as regular expression [30], grammar [32], item inclusion/exclusion or pattern length
constraints.

2 Preliminaries

In this section, we revisit the preliminary concepts for both Sequential Pattern Min-
ing (SPM) and Constraint Programming (CP). Most of these concepts can be found
for SPM in [1, 40] and in [33] for CP.

2.1 Sequential Pattern Mining Background

Assume I = {1, . . . , L} is an alphabet, that is, a list of possible symbols. Table 1a
represents a sequence database (SDB) with timestamps. The database is a set of
tuples (sid, s) where sid is the sequence identifier and s = 〈(s1, t1)(s2, t2) . . . (sn, tn)〉
is a sequence; an ordered list of symbols/events (sk) occurred at time tk, where

4 John O.R. Aoga et al.

a) Sequence database (SDB) b) nextP osGap c) lastP osMap

sid sequence 1 2 3 4 5 6 7 A B C D E

sid1 〈(A, 2)(B, 5)(D, 6)(C, 10)(B, 11)〉 2 4 4 6 6 1 5 4 3 0
sid2 〈(B, 1)(A, 2)(A, 9)(D, 12)(C, 15)(A, 18)(B, 24)〉 3 3 4 5 6 7 8 6 7 5 4 0
sid3 〈(A, 2)(B, 4)(D, 6)(D, 8)(B, 10)(E, 12)(C, 14)〉 3 4 5 6 7 8 8 1 5 7 4 6
sid4 〈(A, 1)(C, 2)(C, 3)(B, 4)〉 4 5 5 5 1 4 3 0 0

Table 1: a) A sequence database SDB, b) a structure for the next position of
minimum gap time N(precomputed) and c) the last position map.

t1 ≤ t2 ≤ . . . ≤ tn. We use ss
i , respectively st

i, to represent just the list of symbols,
respectively timestamps, of sequence i. In the rest of the paper, we assume sequence
databases have timestamps, and when the exact timing is not important we will
write 〈ABC〉 to mean 〈(A, 1)(B, 2)(C, 3)〉.

Example 1 s = 〈(A, 2)(B, 4)(D, 6)(D, 8)(B, 10)(E, 12)(C, 14)〉 is a sequence, ss =
{A, B, D, D, B, E, C}, st = {2, 4, 6, 8, 10, 12, 14} and its length size(s) = 7.

A sequence can be a subsequence of another sequence. For example α = 〈ADC〉
is a subsequence of s. More formally, the subsequence relation is:

Definition 1 Subsequence relation (�). α = 〈α1α2 . . . αk〉 is a subsequence of
s = 〈(s1, t1)(s2, t2) . . . (sn, tn)〉 denoted by α � s iff (i) k ≤ n and (ii) there exists
a list of integers (e1, . . . , ek), an embedding, with 1 ≤ e1 . . . ≤ ek ≤ n such that
ss[ei] = αi.

Example 2 α = 〈ADC〉 is a subsequence s with embedding (1, 3, 7). Another valid
embedding would be (1, 4, 7). Note that for this standard subsequence relation, tim-
ing is not important.

The coverage of a pattern in a sequence database is the set of sequences in SDB
for which our pattern is a subsequence: CoverSDB(α) = {(sid, s) ∈ SDB | α � s}.
We denote by frequency of a sequence the size of its cover (|CoverSDB(α)|) and by
support the relative frequency (SupportSDB(α) = |CoverSDB(α)|/size(SDB)).

Example 3 Subsequence α = 〈ADC〉 is a subsequence of sequence 1, 2 and 3 in
Table 1a, hence CoverSDB(〈ADC〉) = {sid1, sid2, sid3}, its frequency is 3 and
SupportSDB(〈ADC〉) = 75%.

The problem of SPM, first introduced by Agrawal et al. [2], is as follows:

Definition 2 SPM problem. Find all subsequences (α) in SDB such that SupportSDB(α) ≥
θ where θ is the given support threshold. Each such subsequence α is called a frequent
sequence pattern or simply sequential pattern.

In the remaining of the paper, we will use sequential pattern to mean frequent
sequence pattern and sequence pattern if the frequency of the pattern does not matter.

There exist multiple algorithms for the SPM problem. The PrefixSpan algo-
rithm [28] is among the most famous ones and relies on the idea of the prefix-projected
database. Our approach will build on this concept.

Definition 3 Prefix, prefix-projected database. Let α = 〈α1 . . . αk〉 be a pat-
tern. If a sequence β = 〈β1 . . . βn〉 is a super-sequence of α: α � β, then the prefix of
β w.r.t. α is the smallest prefix of β that is still a super-sequence of α: 〈β1 . . . βj〉 s.t.

Mining Time-constrained Sequential Patterns with Constraint Programming 5

α � 〈β1 . . . βj〉 and ∄j′ < j : α � 〈β1 . . . βj′ 〉. The sequence 〈βj+1 . . . βn〉 = suffixα(β)
is called the suffix and it represents the prefix-projection obtained by projecting the
prefix away. A prefix-projected database of a pattern α, denoted by SDB|α, is the
set of prefix-projections of all sequences in SDB that are super-sequences of α:
SDB|α = {(sidi, suffixα(sidi)) | α � SDB[sidi]}.

Example 4 Consider our running example in Table 1a, where we omit timing in-
formation. Assume α = 〈A〉, then SDB|α = {(sid1, 〈BDCB〉), (sid2, 〈ADCAB〉),
(sid3, 〈BDDBEC〉), (sid4, 〈CCB〉)} (Find more example in Table 2a).

The prefix-projected frequency of the symbol a ∈ I (freqs(a, SDB|α)) is the num-
ber of sequences in SDB|α where this symbol appears in the suffix: freqs(a, SDB|α) =
|{(sid, s) ∈ SDB|α | a ∈ suffixα(s)}|. We use freqs(a) instead of freqs(a, SDB|α)
when no ambiguity is possible about the database. Thus, the prefix-projected fre-
quencies of SDB|〈A〉 are: freqs(A) = 1, freqs(B) = 4, freqs(C) = 4, freqs(D) = 3,
freqs(E) = 1.

Performing a depth-first search, the PrefixSpan algorithm starts with an empty
prefix and extends a pattern with one symbol at each step. Then, it computes the pro-
jected database and prefix-projected frequencies and extends it again (using only the
prefix-projected frequent items). This process continues until all frequent patterns are
found. This method is efficient because it avoids extending patterns with infrequent
symbols. Also, instead of storing all suffixes explicitly, it maintains just one pointer
to the suffix starting position for each sequence. This is called the pseudo-projected
database pSDB|α = {(sidi, j + 1) ∈ SDB} such that 〈βj+1 . . . βn〉 = suffixα(sidi).

Example 5 Extending prefix 〈A〉 with 〈D〉 over SDB|〈A〉 gives SDB|〈AD〉 = {(sid1,
〈CB〉), (sid2, 〈CAB〉), (sid3, 〈DBEC〉)} and can be represented as the pseudo-projected
database: pSDB|〈A〉 = {(sid1, 4), (sid2, 5), (sid3, 4)}.

We now recall the subsequence relation under a gap[M,N] constraints, with M the
minimum and N the maximum gap between two subsequent events, and under a
span[W,Y] constraints with W the minimum and Y the maximum span between the
first and last event. This requires changing the subsequence definition in Definition 1.

Definition 4 Subsequence relation under gap (�gap[M,N]

). A sequence α =
〈α1α2 . . . αk〉 is a subsequence of s = 〈(s1, t1)(s2, t2) . . . (sn, tn)〉 under gap[M,N] cons-

traint (α �gap[M,N]

s) iff (i) k ≤ n; (ii) there exists a list of integers (e1, . . . , ek), an
embedding, with 1 ≤ e1 . . . ≤ ek ≤ n such that ss[ei] = αi; and (iii) the time
between two consecutive events tei−1 and tei

must be between M and N for all

i ∈ [2, k], M ≤ tei
− tei−1 ≤ N . An embedding (e1, . . . , ek) for α �gap[M,N]

s is called

a gap[M,N]-embedding.

We can similarly define �span[W,Y]

where condition (iii) becomes: the time between
the first event te1 and the last tek

must be between W and Y i.e. W ≤ tek
− te1 ≤ Y .

We can similarly define the gap + span subsequence relation which contains both
conditions.

Example 6 Given sid1 with st
1 = {2, 5, 6, 10, 11} and sid2 with st

2 = {1, 2, 9, 12,

15, 18, 24} in Table 1a. Then, 〈ADB〉 �gap[3,7]

SDB[sid1] with embedding
(e1, e2, e3) = (1, 3, 5) because {3 ≤ (st

1[e2]−st
1[e1] = 4) ≤ 7 and 3 ≤ (st

1[e3]−st
1[e2] =

6 John O.R. Aoga et al.

5) ≤ 7}. Note the difference between the positions ei of the embedding and its time

st
1[ei]. As another example, 〈ADB〉 �gap[3,7]

SDB[sid2] because 3 ≤ (st
2[e3]−st

2[e2] =
12) � 7. Similarly, this embedding and hence the sequence respects a span[8,10]

constraint in sid1: 8 ≤ st
1[e3] − st

1[e1] = 9 ≤ 10.

The definition of CoverSDB(α), SupportSDB(α) and the SPM problem can be
easily adapted to use the gap/span subsequence relation instead of the original rela-
tion �.

Example 7 Assume α = 〈ADC〉, θ = 3 and gap[3,7], Covergap[3,7]

SDB (α) = {sid1, sid2,

sid3} and hence Supportgap[3,7]

SDB (α) = 3. Thus, α is a gap-constrained sequential
pattern for the given threshold.

In general, the search space to find the sequential patterns is huge. Hence, to
reduce this space several algorithms rely on the anti-monotonicity property.

Property 1 (Anti-monotonicity). Assume C is a constraint. C is anti-monotone if
a sequence s satisfies C all its subsequences also satisfy C and reversely if a sequence
s doesn’t satisfy C all its super-sequences also doesn’t.

The minimum gap(M) and the maximum span(Y) are anti-monotone constraints
but the maximum gap (N) constraint violates this property.

Example 8 Assuming our running example, 〈ADC〉 is frequent under gap[3,7] with

θ = 3 but 〈AC〉 is not frequent (Supportgap[3,7]

SDB (〈AC〉) = 2 < 3).

Fortunately, the maximum gap constraint is prefix anti-monotone i.e. every prefix
of p satisfies the maximum gap constraint if p satisfies it [29]. We use this property
to filter infrequent patterns. The minimum span(W) doesn’t satisfy those properties,
hence we will apply it in post-processing.

3 CP-based model for SPM problem

A constraint satisfaction problem [33] is defined as a triplet (V, D, C) where V is a
set of decision variables with their domains D (possible values of V). C is a set of
constraints, each constraint is defined over V and restricts the possible values that
these variables can take. Solving the problem of SPM using constraint programming
(CP) consists of defining the model (V, D, C).

We present CP model of sequential pattern mining introduced in [25] and the
GapSeq [19] and PPIC (Prefix Projection Incremental Counting) [4] global cons-
traints.

Definition 5 Variables and Domains for SPM [25]. Let l be the length of the
longest sequence in SDB (l = max({size(s) | s ∈ SDB})); P = [P1, P2, . . . , Pl] is an
array of variables, representing a pattern, where each Pi represents the ith symbol
in the pattern. The domain Di of Pi is the set of symbols I plus the empty symbol
ǫ:Di(Pi) = {ǫ} ∪ I.

Example 9 For instance for the dataset in Table 1a, l = 7, P = [P1, . . . , P7] and for
all i ∈ [1, l], Di = {ǫ, A, B, C, D, E}. 〈A, D, C〉 corresponds to P = [A, D, C, ǫ, ǫ, ǫ, ǫ].

Mining Time-constrained Sequential Patterns with Constraint Programming 7

Definition 6 Filtering rules. Assume ∀i ≤ l, p = 〈p1, . . . , pi〉 is the assigned
values of variables {P1, . . . , Pi}, a CP model over P represents the SPM problem
given a threshold θ, gap[M,N] and span[W,Y] iff the following conditions are satisfied
by every valid assignment to P :

1. P1 6= ǫ (to avoid an empty pattern);
2. ∀i ∈ {2, . . . , l − 1} : Pi = ǫ ⇒ Pi+1 = ǫ (to allow pattern with length < l);
3. Frequency constraint: SupportSDB(p) ≥ θ;

4. Frequency under gap[M,N] constraint: Supportgap[M,N]

SDB (p) ≥ θ;

5. Frequency under span[W,Y] constraint: Supportspan[W,Y]

SDB (p) ≥ θ.

PPIC [4] global constraint. PPIC(P, SDB, θ) is a global constraint for the
SPM problem without gap/span, built on prefix-projection principle, which encodes
conditions 1,2,3 in a single propagator. It improved on the state-of-the-art with
four elements: (a) a backtracking-aware datastructure inspired by trail-based CP
technique, (b) efficient support counting by precomputing the last positions of each
symbol, (c) not scanning sequences whose prefix can not contain the symbol (pre-
computed) and (d) removing the infrequent symbols of the projected database only
from the next domain Di+1.

GapSeq [19] global constraint. GapSeq(P, SDB, θ, M, N) is a global cons-
traint for SPM problem under gap[M,N] which encodes conditions 1,2,4 in a single
propagator with the limitation that gap constraints are expressed in terms of po-
sition distances i.e. the gap are measured according to the number of events hence
time doesn’t matter.

4 Embedding database and extension windows

In this section, we introduce the notions of embedding database and extension win-
dows which reconsider the concept of projected database to incorporate time cons-
traints.

In fact, when having a gap constraint and using prefix-projection (see Definition
3), the assumption that a pattern can be extended with the symbol appearing after
the smallest matching prefix does not hold anymore. That is, given a sequence, if
the first embedding of the prefix cannot be extended because the gap is too small or
large, there could exist another embedding that can be extended.

Example 10 Assume the pattern α = 〈ADC〉 and gap[3,7]. There are two embeddings
of α in sid3: (1, 3, 7) and (1, 4, 7). The first embedding is not a gap[3,7]-embedding
since 3 ≤ (t7 − t3 = 8) � 7) while the second one is.

Hence, it is not sufficient to store just the (suffix of the) smallest embedding as
is done in the pseudo-projected database. Instead, we can store all embeddings. One
can draw the parallel of this notion with the notion the pseudo-projected database
pSDB|α but instead of only storing the first embedding, we store all available em-
beddings:

Definition 7 Embedding database (embSDB|α). Assume a sequence s = 〈(s1, t1)
(s2, t2) . . . (sn, tn)〉 and a subsequence α = 〈α1α2 . . . αk〉 with k ≤ n. The set of all
embeddings of α in s is embα(s) = {(e1, . . . , ek)|1 ≤ e1 ≤ ek ≤ n such that ss[ei] =
αi}. The embedding database of α is now defined as embSDB|α = { (sid, embα(s)) |
(sid, s) ∈ SDB}.

8 John O.R. Aoga et al.

a) Without time constraints: Projected Database (since time is not matter we omit it)

sid pSDB|〈A〉 SDB|〈A〉’s of pSDB|〈A〉 pSDB|〈AD〉 SDB|〈AD〉’s of pSDB|〈AD〉

sid1 1 〈BDCB〉 3 〈CB〉
sid2 2 〈ADCAB〉 4 〈CAB〉
sid3 1 〈BDDBEC〉 2 〈DDBEC〉
sid4 1 〈CCB〉

b) Considering time constraints: Embedding database and extension windows

sid embSDB|
[3,7]

〈A〉
ewgap[3,7]

e (s)’s of embSDB|
[3,7]

〈A〉
embSDB|

[3,7]

〈AD〉
ewgap[3,7]

e (s)’s of embSDB|
[3,7]

〈AD〉

sid1 (1) 〈(B, 5)(D, 6)〉 (1,3) 〈(C, 10)(B, 11)〉
sid2 (2),(3),(6) 〈(A, 9)〉,〈(D, 12)(C, 15)〉,〈(B, 24)〉 (3,4) 〈(C, 15)(A, 18)〉
sid3 (1) 〈(D, 6)(D, 8)〉 (1,3),(1,4) 〈(B, 10)(E, 12)〉,〈(E, 12)(C, 14)〉
sid4 (1) 〈(B, 4)〉

Table 2: Embedding database and extension windows for patterns 〈A〉 and 〈AD〉: a)
without time constraints b) with time constraints (gap[3,7]). Note that embeddings
are positions in s, not timings and these positions start from 0.

The embedding database under gap[M,N] of a sequence s is the set of transactions
identifiers together with all embeddings of s that satisfy the gap[M,N] constraint;

denoted as embSDB|
[M,N]
α . Similarly for the embedding database under span[W,Y]

and the combination of gap and span.
GapSeq[19] stores for each embedding the position after the last embedding,

called right pattern extensions, but this is not sufficient to support a span cons-
traint. Our method will store the start and stop position of each embedding, which
is sufficient for span, gap and the combination of the two.

Given a span and/or gap constraint, an embedding can only be extended with
events whose timing satisfies the span/gap constraints. We call this subsequence of
events the extension window of an embedding:

Definition 8 Extension Window (ew). Assume a given sequence s = 〈(s1, t1)
(s2, t2) . . . (sn, tn)〉, a subsequence α = 〈α1α2 . . . αk〉 and a gap[M,N] constraint. Let
e = (e1, e2, . . . , ek) be any valid gap[M,N]-embedding of α in s. The extension window

of this embedding, denoted ewgap[M,N]

e (s), is the subsequence 〈(su, tu)(su+1, tu+1) . . .
(sv−1, tv−1)(sv, tv)〉 such that (tek

+ M ≤ tu) ∧ (tv ≤ tek
+ N) ∧ (∄t′

u ∈ st, tek
+ M ≤

t′
u < tu) ∧ (∄t′

v ∈ st, tv < t′
v ≤ tek

+ N}. The start and the end position of this
extension window are respectively u and v.

Example 11 Assume gap[3,7] and α = 〈A〉. For sid3 in Table 1a, there is one gap[3,7]-
embedding: (1) with extension window 〈(D, 6)(D, 8)〉; hence, if 〈A〉 is extended
with any symbol other than D it will no longer be covered. For α = 〈A, D〉 there
are now two possible embeddings: (1, 3) and (1, 4). Their extension windows are:
〈(B, 10)(E, 12)〉,〈(E, 12)(C, 14)〉. Table 2b shows the embeddings and extension win-
dows for these two patterns for all sequences in the SDB of Table 1a. A comparison
can be done with the same versions without time restrictions presented in Table 2a.

5 Trail-based datastructures

Trailing as a mechanism to restore the state. CP-Solvers implementing the depth-
first search backtracking algorithms need an efficient state restoration system [33].

Mining Time-constrained Sequential Patterns with Constraint Programming 9

This system is based on the trail and time-stamping mechanism1. Trailing consists
of recording the changes in a node to be able to restore it later on backtrack. The
main advantage of trailing is that it makes it possible to focus on the design of the
filtering only without worrying about the state restoration. In each node, during the
fix-point computation, a state can change several times. The trail keeps a time time-
stamp associated with a memory location to avoid storing a same memory on the
trail more than once per search node. CP-Solvers typically expose some “reversible”
objects externally whose use this mechanism. The reversible integer, denoted by
rint, is an example of “reversible” objects for the primitive type int. Our trail-based
datastructure (see Section 5) also uses this mechanism.

Trailing the embedding database. We introduce a trailed based datastructure to ef-
ficiently store and restore the embedding database. The key idea is to store the
embedding database in ’backtracking aware’ vectors.

This idea was introduced in PPIC [4] allowing to drastically speeding up the
search for frequent sequential patterns without time constraints. See an illustration
of this datastructure based on the projected database examples of the Table 2a in
the Fig. 1a. Two reversible integers store respectively the start position in the vector
(φ) and the number of entries (ϕ) in the embedding database. When branching, data
is appended at the φ+ϕ position and φ and ϕ are updated. When backtracking, only
the start position and number of elements need to be restored/trailed; the vector can
stay unchanged in memory, with the parts after φ + ϕ overwritten later. In [4], only
the sequence ids (sids vector) and the start position of the suffixes (embs vector)
must be stored. This is not sufficient to store time constraints information.

Trail-based embedding database We use reversible vectors to store the start and the
end positions of all the possible time-constrained embeddings for every sequence.
The vectors: sids, embsize and embs respectively represent the sequence ids, the
number of embeddings and the start/end positions of the embeddings. These start
and end positions are sufficient to verify the span and gap constraints during pattern
extension.

Example 12 Figure 1b depicts an example of this datastructure: for pattern 〈A〉, the

data of embSDB|
[3,7]
〈A〉 is stored between indices φ = 1 and φ+ϕ−1 = 4. This pattern

〈A〉 is then further extended by the symbol D and embSDB|
[3,7]
〈AD〉 is stacked next

to it, between indices φ = 5 and φ + ϕ − 1 = 7. This pattern 〈AD〉 is then further

extended by the symbol C and embSDB|
[3,7]
〈ADC〉 is stacked between indices φ = 8

and φ + ϕ − 1 = 10. The gap[3,7]-embedding of 〈ADC〉 in sid2 is (3, 4, 5) but we only
store the start (3) and end (5) as (3, 5) we can compute the valid extension window
based on gap and span constraint.

6 PPICt global constraint under time constraints

This section presents PPICt (Prefix Projection Incremental Counting with time re-
strictions), our filtering algorithm for finding sequential patterns under gap and span

1 Except some CP-Solvers such as Gecode, Oz/Mozart and Figaro.

10 John O.R. Aoga et al.

a) Trailed based datastructure for SPM problem without time constraint - in PPIC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

sids 1 2 3 4 1 2 3 1 2 3

embs
1 2 1 1 3 4 2 4 5 7

〈A〉

(φ = 1, ϕ = 4)

〈AD〉

(φ = 5, ϕ = 3)

〈ADC〉

(φ = 8, ϕ = 3)

b) Trailed based datastructure for SPM problem with gap/span constraints - in PPICt

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

sids 1 2 3 4 1 2 3 1 2 3

embsize
1 3 1 1 1 1 2 1 1 1

embs

(1,1) (2,2) (1,1) (1,1) (1,3) (3,4) (1,3) (1,4) (3,5) (1,7)

. (3,3) (1,4)

. (6,6)

〈A〉

(φ = 1, ϕ = 4)

〈AD〉

(φ = 5, ϕ = 3)

〈ADC〉

(φ = 8, ϕ = 3)

Fig. 1: Trailed-based datastructure to store and restore the embeddings database:
a) without time constraints b) with gap[3,7] constraints

constraints. This algorithm support sequences with timestamps (as presented in Ta-
ble 1a). Constraints such as regular expression, item inclusion/exclusion, pattern
length and (theoretically) all other anti-monotonic constraints can be added to the
model.

limitations The PPICt constraint does not support datasets with time-stamped se-
quences of itemset i.e. when a set of events without linear order occur at the same
time. It also does not support multivariate time-series data [6] common in biological
applications.

6.1 PPICt propagator

The PPICt(P, SDB, θ, M, N, W, Y) global constraint is given in Listing 1. It enforces
the minimum frequency θ and the gap[M,N] and span[W,Y] constraints (1 to 5 from
Definition 6) in a single propagator. The filtering procedure is triggered whenever a
pattern is extended by a new symbol (Pi+1). If that symbol is ǫ then by Condition
2 all Pj , j > i should also be ǫ. Then the non-prefix anti-monotone minimum span
constraint must be checked in post-processing. If the pattern is still frequent then
this is a new solution.

Mining Time-constrained Sequential Patterns with Constraint Programming 11

If Pi+1 was assigned a non-ǫ value, then the procedure ProjectsAndGetFreqs
counts for each symbol what the size of the projected database would be if the
new pattern is extended with that symbol. The computed result, denoted freqs in
the pseudo-code, is used to prune the domain of the next pattern variable Pi+1

by removing infrequent symbols; this is valid because the constraints filtered in
ProjectsAndGetFreqs are prefix anti-monotone.

The main difference with PPIC [4] is that all embeddings must be stored instead
of just the prefix (see Section 4). Embeddings can only be extended by symbols
appearing in its extension windows. The projected frequency counting should only
count symbols appearing in an extension window. Indeed, a symbol not appearing in
an extension window of any embedding of the sequence would not be a valid support
for extending the current pattern as it wouldn’t satisfy the time constraints.

Listing 1: PPICt(P, SDB, θ, M, N, W, Y)

1 // pre: variables 〈P1, . . . , Pi〉 are bound, SDB is given

2 // Pi is the new instantiated variable since previous call.

3 if (Pi == ǫ)
4 foreach (j ∈ {i + 1, . . . , L})
5 Remove all embeddings that do not satisfy minimum span W and fail

should the pattern no longer be frequent

6 Pj .assign(ǫ) // Condition.2

7 else

8 freqs = ProjectAndGetFreqs(i, SDB, Pi, M, N, W, Y)
9 foreach (a ∈ D(Pi+1)) if (a 6= 0 and freqs[a] < θ) Pi+1.remove(a)

This leads to the following key ingredients of the ProjectsAndGetFreqs function:
1) as presented in Section 5, we adapt the backtracking-aware datastructure intro-
duced in [4] to store all possible occurrences of the pattern in a sequence, including
the starting symbol to support span constraints; 2) we avoid scanning a sequence
for a symbol beyond the (precomputed) last occurrence of that symbol in the se-
quence; 3) we introduce the concept of extension window of an embedding and avoid
to scan overlapping windows multiple times; 4) we avoid searching for the position
of the start of an extension window, which depends on the minimum gap time, by
precomputing these position in advance. These ingredients are detailed next.

6.1.1 Ingredient 1. Avoid scanning all sequences

We reuse the lastPosMap precomputed structure of PPIC to avoid scanning a
sequence if the last position of that sequence is before the start of the extension
window. For a symbol a, the lastPosMap[a] is the last position of this symbol in
the sequence: lastPosMap[a] = max{p ≤ size(s) : s[p] = a}.

Example 13 Assuming the lastPosMap precomputed structure provided in Table 1c
and the symbol A, lastPosMap[A] is {1, 6, 1, 1}. Hence, when searching for A, we
must stop at the first position for the sequences sid1, sid3 and sid4 but for the
sequence sid2 we stop at the position 6.

However, we cannot use the same structure for support counting (which also need
to search symbols over sequences) as PPIC did, since this assumes that all symbols

12 John O.R. Aoga et al.

up to the end of the sequence must be counted, while we should only count symbols
in the extension windows. This can have a big impact if the sequences contain many
duplicates symbols as shown in [4]. In our case, it does not matter since extension
windows are often smaller.

6.1.2 Ingredient 2. Avoid scanning more than once the events occurring in
overlapping extension windows

The extension windows of a sequence can possibly overlap. For instance in Table 2b
with α = 〈AD〉, in sid3, 〈(E, 12)〉 is present in both extension windows. Then when
computing the freqs vector, some positions could be revisited several times. This
source of inefficiency can be avoided by keeping track of the current largest position
visited so far in any extension window. This position is denoted pos in Listings 2
and 3. When the next extension window for the current sequence is considered by
updateSupport in Listing 3, all symbols before pos have already been counted, so
only positions after pos should be visited and afterwards pos is updated.

6.1.3 Ingredient 3. Avoid scanning the sequences for minimum gap constraint

Given the current pattern α = 〈α1α2 . . . αk〉, a sequence s and a valid gap[M,N]span[W,Y]-

embedding e = (e1, e2, . . . , ek), all the symbols in the extension window ewgap
[M,N]

span
[W,Y]

e (s)
must be visited for updating the frequency counters. While it is easy to compute the
start time of the extension window using the minimum gap M : tek

+ M ; finding
the first position u in the sequence such that tu ≥ tek

+ M requires scanning the
sequence starting from ek. To avoid this, we propose to precompute, for the given
minimum gap, the position of the beginning of the extension window from any pos-
sible position. This can be done with one linear scan over each sequence; and the
precomputed positions are stored in a structure called nextPosGap.

Definition 9 Building the nextPosGap structure. Assume s = 〈(s1, t1)(s2, t2)
. . . (sn, tn)〉 is a sequence. Given k ∈ [1, n] a position in s and M a minimum gap, the
nextPosGap[s][k] is the position of the smallest time satisfying the minimum gap:
nextPosGap[s][k] = i such that (i > k) ∧ (ti ≥ tk + M) ∧ (∄i′ < i : ti′ ≥ tk + M).

Example 14 Assume s = 〈(A, 2)(B, 5), (D, 6), (C, 10)(B, 11)〉, k = 2 and M = 3
nextPosGap[s][k] = 4 because t4 = 10 is the smallest time such that t4 ≥ 5 + 3 = 8.
Table 1b shows the nextPosGap of SDB (the values nextPosGap[s][k] > size(s) + 1
means the minimum gap is not available for that position) .

6.1.4 Putting it all together

The core of the algorithm is in the ProjectAndGetFreqs procedure (presented in
Listing 2) that gathers all the ingredients. We distinguish two cases. If l == 1 it
means that the pattern was previously empty and is now composed of one unique
symbol. If (l > 1) the pattern is composed of at least two symbols which means that
the gap/span must be considered.

In the first case (l == 1), all sequences of SDB are considered. For every sequence,
all the positions having the symbol a are stored as an embedding. As the embedding
is a singleton, there is not need to consider the gap/span constraints at this point.

Mining Time-constrained Sequential Patterns with Constraint Programming 13

Listing 2: ProjectAndGetFreqs(l, SDB, a, M, N, W, Y)

1 // Internal state: φ,ϕ,sids,embsize,embs
2 φ′ = φ + ϕ; ϕ′ = 0; freqs[b] = 0 ∀b ∈ {0, . . . , L}
3 if l == 1: // first assigned symbol, scan for symbol

4 for sid = 1 to SDB.size: // for every sequence in SDB

5 seq = SDB[sid]; nEmb = 0; pos = 0; visitedI[b] = false ∀b ∈ {0, . . . , L}
6 for i = 0 to lastPosMap[sid][a]: // find each symbol a
7 if seq[i] == a: // new match

8 embs[φ′ + ϕ′][nEmb] = (i, i); nEmb = nEmb + 1
9 pos = updateSupport(i, i, sid, pos, visitedI)

10 if (pos ≥ seq.size) break // window ends with sequence

11 if (nEmb > 0)// store sequence meta-data

12 sids[φ′ + ϕ′] = sid; embsize[φ′ + ϕ′] = nEmb; ϕ′ = ϕ′ + 1
13 else: // non-empty prefix

14 for c = φ to φ + ϕ − 1: //for all sequence in projected database

15 sid = sids[c]; seq = SDB[sid]; nEmb = 0; pos = 0
16 visitedI[b] = false ∀b ∈ {0, . . . , H}
17 for k = 1 to embsize[c]: // for each prefix embedding

18 (b, e) = embs[c][k] // begin and end position of embedding

19 maxT = min(seqt[sid][b] + Y, seqt[sid][e] + N) // max time window

20 i = nextP osGap[sid][e] // precomputed position of minT

21 while (i < lastPosMap[sid][a] and seqt[sid][i] ≤ maxT):
22 if seq[i] == a: // new embedding

23 embs[φ′ + ϕ′][nEmb] = (b, i); nEmb = nEmb + 1
24 pos = updateSupport(b, i, sid, pos, visitedI)
25 if (pos ≥ seq.size) break // window ends with sequence

26 i = i + 1
27 if (nEmb > 0) // store sequence meta-data

28 sids[φ′ + ϕ′] = sid; embsize[φ′ + ϕ′] = nEmb; ϕ′ = ϕ′ + 1
29 φ = φ′; ϕ = ϕ′

30 return freqs

Listing 3: updateSupport(b, e, sid, pos, visitedI)

1 s =SDB[sid]; k = max(nextP osGap[sid][e], pos)
2 maxT = min(st[sid][e] + N, st[sid][b] + Y)
3 while (k < s.size and st[sid][k] ≤ maxT)

4 if (!visitedI[s[k]]) freqs[s[k]] = freqs[s[k]] + 1; visitedI[s[k]]= true
5 k = k + 1
6 return k

The call to updateSupport (Listing 3) will update the freqs vector by visiting
each symbol present in the extension window of the current embedding (position
of symbol a). Variable pos is used to avoid incrementing the frequency of a symbol
twice in the same sequence.

In the second case (l > 1), the main loop at line 14 iterates over the previous
(parent) projected database stored between φ and φ + ϕ − 1 and builds the new
one starting at index φ + ϕ. For each embedding of a sequence, s (line 17), the
maximum of the time window is computed. We search all positions only in extension
window ensuring to have time greater than minimum gap time and lower than the
maximum gap and span times computed based on the first and the last element
of the embedding (line 19). The updateSupport is also called to update the freqs
vector for every extended embedding created.

14 John O.R. Aoga et al.

Finally, lines 12 and 28 update sids and embsize in order to ensure the consistency
of the datastructure. Then, line 29 updates the reversible integers φ and ϕ to reflect
the newly computed projected database.

6.1.5 Additional constraints

The advantage of CP based sequence mining is its capacity to accept additional
constraints. The global constraint approach PPICt is less flexible than the decom-
position approach of [25] as it does not expose the embedding variable. Nevertheless
many useful string constraints [15] can be added on the sequence pattern variables:
P = [P1, P2 . . . , Pl].

Pattern length constraints. One can impose a minimum and a maximum
over the length of the pattern. These constraints are easy to handle considering all
patterns are terminated by the empty symbol (ǫ). Hence, the minimum pattern
length (Lmin) is defined as ∀i ∈ [1, Lmin] and Lmin < l, Pi 6= ǫ. The Max-
imum pattern length (Lmax) is obtained by limiting the length of P to Lmax:
P = [P1, P2 . . . , PLmax] with Lmax < l.

Symbol inclusion/exclusion. The number of occurrences of symbols in the se-
quence pattern can be modeled with Among [7] and global cardinality [?] constraints
largely available in CP solvers.

Regular expression. The Regular constraint [30] can be used to enforce that P
satisfies a given regular expression. Most of CP-based approaches [4, 19, 20] support
regular expression constraints.

6.2 Time and space complexity

Let us denote by m = size(SDB) the number of sequences, l the length of the longest
sequence, L = |I| the size of item alphabet, d the maximum depth of the tree search.
In the worst case, the time complexity of our propagator is in O(m × l2 + L) and the
space complexity is in O(m × d × l).

Proof (i) Space complexity. Our datatructure needs O(l) memory entries to store
the embeddings for one sequence. One projected database requires thus O(m × l).
Down a branch of the search tree the space complexity is O(m × d × l). (ii) Time
complexity. PPICt needs O(l + (m × l2 + L)) = O(m × l2 + L) time to be com-
plete since the lines 4-6 of the Listing 1 cost O(l), the ProjectAndGetFreqs method
O(m × l2) and the line 9 O(L) . The complexity of the loops 6 and 21 including
the updateSupport in Listing 2 is O(l) since we avoid scanning overlap. Hence, the
complexity of ProjectAndGetFreqs method is O(m × l + m × l × l) = O(m × l2). �

7 Experiments

This section reports the experiments we made to evaluate our approach in compar-
ison with other CP-based and specialized methods. More specially, we answer the
following questions: Q1. What is the performance of the state-of-the-art for sequential
pattern mining without time constraint? Q2. What is the difference in performance
of PPICt for sequential patterns mining with time restrictions? Q3. What is the

Mining Time-constrained Sequential Patterns with Constraint Programming 15

SDB size(SDB) L avg(size(s)) avg(size(I/s)) max(size(s)) description

BIBLE 36369 13905 21.64 17.85 100 text
FIFA 20450 2990 36.24 34.74 100 web click stream
Kosarak 69999 21144 7.98 7.98 796 web click stream
Leviathan 5834 9025 33.81 26.34 100 text
Msnbc 31,790 17 web click stream
PubMed 17237 19931 29.56 24.82 198 bio-medical text
protein 103120 25 482.25 19.93 600 protein sequences

Table 3: Seven real-life datasets features. (avg stands for average)

effect of a standalone constraint in the mining process? Q4. What is the impact of
the computation of the additional embeddings in PPICt?

Before answer these questions, we present in Table 3 the features of the seven
real-life datasets that we use but also the experimental protocol and the alternative
sequential pattern miners used for the comparisons. Notice data and the framework
are available and open source2.

7.1 Experimental protocol

PPICt is implemented in the Scala language in the CP-Solver OscaR [26]. All exper-
iments are run in the JVM with maximum memory set to 8GB. All the experiments
are conducted using a 2.7GHz Intel Core i5 64 bit processor and 8GB of RAM with
Linux 3.19.0-32-generic from Mint 17.3. We set the execution time limit to 3600 sec-
onds (1 hour). We also restrict the output of all software to only the mining statistics
and do not print the patterns found. The minimum support θ is denoted by Minsup.

7.2 Alternative sequential patterns miners

We make comparisons with GapSeq3 [19], a constraint programming approach that
outperforms other CP-based methods supporting gap constraints; cSPADE4 [38] a
highly scalable specialized sequence miner that supports gap and span constraints. Its
search is not based on pattern extension as GapSeq and PPICt are, but on repeated
(temporal) joins of embeddings. We also provide a comparison to PPIC 5 [4] without
gap constraints, PPIC has shown to outperform both specialized and generic miners
for standard frequent sequence mining. Table 4 shows the supported constraints for
these miners.

7.3 Performances results

7.3.1 Q1: GapSeq vs PPIC vs cSPADE for SPM without time restriction

As shown in [4] and illustrated in Fig. 2, PPIC clearly outperforms both CP-based
and specialized approaches for many datasets (with several different features) except

2 http://sites.uclouvain.be/cp4dm/spm/ppict/
3 https://sites.google.com/site/cp4spm/

4 http://www.cs.rpi.edu/~zaki/www-new/pmwiki.php/Software

5 http://sites.uclouvain.be/cp4dm/spm/

http://sites.uclouvain.be/cp4dm/spm/ppict/
https://sites.google.com/site/cp4spm/
http://www.cs.rpi.edu/~zaki/www-new/pmwiki.php/Software
http://sites.uclouvain.be/cp4dm/spm/

16 John O.R. Aoga et al.

Methods Frequency Gap Span Regular Among Length other constraints1

PPICt x x x x x x x
GapSeq x x∗ x x x
cSPADE x x x∗∗ x

Table 4: Sequential patterns miners with supported constraints. 1It is other anti-
monotone constraints (not implmented but could be). ∗GapSeq doesn’t consider time
but position of events, ∗∗cSPADE doesn’t support minimum span constraint.

for the densest dataset Kosarak-70k where it is competitive with cSPADE. For very
sparse dataset like protein PPIC is at least one hundred times faster.

0.30 0.28 0.26 0.24 0.22 0.200.30 0.28 0.26 0.24 0.22 0.20

 1

 4

 7

10

Minsup (%)

T
im

e
 (

s
,

lo
g

s
c
a

le
)

Kosarak−70k

GapSeq
cSPADE
PPIC

99.990 99.980 99.970 99.96099.990 99.980 99.970 99.960

 10

 340

 670
1000

Minsup (%)

T
im

e
 (

s
,

lo
g

s
c
a

le
)

Protein

GapSeq
cSPADE
PPIC

Fig. 2: CPU times for PPIC (without time constraints) with several minsup (missing
points indicate a timeout) [4]

7.3.2 Q2: Time performance for PPICt under gap and span constraints

We first compare PPICt with GapSeq and PPIC for gap constraints. Then, we
combine gap and span constraints.

Figure 3 shows the CPU time for the sequence mining task under minimum and
maximum gap for several θ (Minsup) values over six datasets. PPICt clearly out-
performs both CP-based and specialized methods. Except for the Kosarak dataset,
PPICt is always faster, and increasingly so for low frequency thresholds. Upon in-
specting the output of the Kosarak dataset we see that several frequent patterns
have the same size and cover the same set of sequences. The temporal join approach
used by cSPADE is very fast in this case. This was also the case for PPIC in the
non-time constrained case.

We also combine the gap and span constraints, which is not supported by GapSeq.
The results are presented in Fig. 4. Our approach outperforms cSPADE by a wide

Mining Time-constrained Sequential Patterns with Constraint Programming 17

1.0 0.8 0.6 0.4 0.2

 10

 40

 70

100

Minsup (%)

T
im

e
 (

s
,
lo

g
s
c
a
le

)

BIBLE + Gap[10,30]

cSPADE
GapSeq
PPICt

9 8 7 6 5

3

4

5

6

7

8

9

Minsup (%)

T
im

e
 (

s
,
lo

g
s
c
a
le

)

FIFA + Gap[10,30]

cSPADE
GapSeq
PPICt

0.30 0.28 0.26 0.24 0.22 0.20

 1

 4

 7

10

Minsup (%)

T
im

e
 (

s
,
lo

g
s
c
a
le

)

Kosarak−70k + Gap[10,30]

cSPADE
GapSeq
PPICt

5 4 3 2 1

 1

 4

 7

10

Minsup (%)

T
im

e
 (

s
,
lo

g
s
c
a
le

)

LEVIATHAN + Gap[10,30]

cSPADE
GapSeq
PPICt

99.990 99.985 99.980 99.975 99.970 99.965 99.960

 10

 40

 70

100

Minsup (%)

T
im

e
 (

s
,
lo

g
s
c
a
le

)

Protein + Gap[10,30]

cSPADE
GapSeq
PPICt

10 8 6 4 2

 3.4

Minsup (%)

T
im

e
 (

s
,
lo

g
s
c
a
le

)

MSNBC + Gap[10,30]

cSPADE
GapSeq
PPICt

Fig. 3: CPU times when considering minimum and maximum gap constraints for
several minsup (missing points indicate a timeout)

margin in this case. These results show that PPICt is still efficient when combining
time constraints.

18 John O.R. Aoga et al.

1.0 0.8 0.6 0.4 0.2

 10

 340

 670
1000

Minsup (%)

T
im

e
 (

s
,

lo
g

s
c
a

le
)

BIBLE + Gap[3,10] + Span[0,30]

cSPADE
PPICt

14 12 10 8 6

 1

 34

 67
100

Minsup (%)

T
im

e
 (

s
,

lo
g

s
c
a

le
)

FIFA + Gap[3,10] + Span[0,30]

cSPADE
PPICt

99.990 99.980 99.970 99.960

 10

 40

 70
100

Minsup (%)

T
im

e
 (

s
,

lo
g

s
c
a

le
)

Protein + Gap[3,10] + Span[0,30]

cSPADE
PPICt

2.0 1.5 1.0 0.5

 10

 40

 70
100

Minsup (%)

T
im

e
 (

s
,

lo
g

s
c
a

le
)

PubMed + Gap[3,10] + Span[0,30]

cSPADE
PPICt

Fig. 4: CPU times when considering both gap and span constraints for several
minsup (missing points indicate a timeout).

7.3.3 Q3: Effect of maximum gap constraint

We now look at the sensitivity of the methods to the threshold of the maximum gap
constraint. We fix the frequency threshold to a low value that makes mining without
further constraints challenging and increase the maximum gap constraint from 1 to
9. As can be seen in Fig. 5, the runtime of cSPADE increases much more quickly
with increasing maximum gap. For GapSeq it depends on the dataset, but PPICt’s
performance is more stable and increases more moderately compared to the other
methods.

7.3.4 Q4: Experiments over databases without time restrictions

To answer Q4., we use PPICt to find only the sequential patterns without any
time considerations. That is PPICt where minimum gap/span is 0 and maximum
gap/span is the infinity, denoted by PPICt[0,Inf]. Hence, we compare PPIC with
PPICt[0,Inf]. The results are reported in Fig. 6. We can notice that PPIC is always
faster. This is possible since such PPIC improvements could not be used under time
restrictions. Moreover, to preserve the structure of datasets the reduction of datasets
by preprocessing is forbidden.

Mining Time-constrained Sequential Patterns with Constraint Programming 19

2 4 6 8

 0

 200

 400

 600

 800

1000

1200

1400

Maximum gap (N)

T
im

e
 (

s
)

BIBLE + minsup=0.1%

cSPADE
GapSeq
PPICt

2 4 6 8

 0

 200

 400

 600

 800

1000

1200

1400

Maximum gap (N)

T
im

e
 (

s
)

FIFA + minsup=2%

cSPADE
GapSeq
PPICt

2 4 6 8

 0

20

40

60

Maximum gap (N)

T
im

e
 (

s
)

LEVIATHAN + minsup=0.8%

cSPADE
GapSeq
PPICt

2 4 6 8

 0

100

200

300

400

Maximum gap (N)

T
im

e
 (

s
)

PubMed + minsup=0.5%

cSPADE
GapSeq
PPICt

Fig. 5: CPU times for several maximum gap with fixed minsup over Bible, Fifa,
Leviathan and PubMed datasets (missing points indicate a timeout).

Gap +Pattern Length +Among +Regular

nSols time(s) nSols time(s) nSols time(s) nSols time(s)

BIBLE6 32307 46.181 1542 45.622 171 43.390 8 0.191
PubMed7 13086 22.632 1304 21.600 235 19.889 3 0.091

Table 5: Combination of pattern length, item inclusion/exclusion, regular expression
constraints with gap constraint.

7.4 Handling additional Constraints

To demonstrate the ability to accommodate additional constraints we experiment
the combination of PPICt with some other sequence pattern constraints. The result
is shown in Table 5. We can observe that the addition of the constraints reduces the
number of solutions and the computation time while a generate-and-filter approach
using a dedicated algorithm would not benefit from a stronger filtering.

6 θ = 0.1%+Gap[10, 30]+(Lmin = Lmax = 5)+the number A equal 1+E is
forbidden+Regular(A+(B{2, }|C ∗|D+)B ∗C ∗D∗) where (A = 11829, B = 2, C = 8212, D = 6556,
E = 5590)

20 John O.R. Aoga et al.

1.0 0.8 0.6 0.4 0.2

 0

100

200

300

400

Minsup (%)

T
im

e
 (

s
)

BIBLE

PPICt[0,Inf]
PPIC

14 12 10 8 6

 0

100

200

300

400

500

600

700

Minsup (%)

T
im

e
 (

s
)

FIFA

PPICt[0,Inf]
PPIC

0.30 0.28 0.26 0.24 0.22 0.20

2

4

6

8

Minsup (%)

T
im

e
 (

s
)

Kosarak−70k

PPICt[0,Inf]
PPIC

5 4 3 2 1

 5

10

15

Minsup (%)

T
im

e
 (

s
)

LEVIATHAN

PPICt[0,Inf]
PPIC

Fig. 6: Comparing PPICt without time restriction (PPICt[0,Inf]) with PPIC

8 Conclusion

We introduced PPICt, a global constraint to solve sequential pattern mining problem
under time constraints. It integrates gap and span constraints for database with or
without timestamps. Our approach often outperforms cSPADE, the state-of-the-art
specialized method and always outperforms GapSeq, the state-of-the-art CP based
approach allowing to handle time constraints. This was made possible thanks to the
backtracking-aware datastructure to store embeddings of pattern based on trailing
techniques. Also, algorithmic ingredients help to improve more: the precomputed
next position of minimum gap, the avoidance of scanning all dataset and the avoid-
ance of the overlapping between extension windows when computing the frequencies
of symbols. Moreover, we report experimental results over several real-life datasets
which demonstrate that our proposal is mostly competitive with or outperforms
both specialized and CP-based methods. Additional constraints such as regular ex-
pression, item inclusion/exclusion, pattern length constraints are also available to
increase the flexibility of users and practitioners.

7 θ = 0.3%+Gap[10, 30]+(Lmin = Lmax = 4)+the number A and B equal 1+Regular(B + A ∗
C ∗ A∗) where (A = 3335, B = 12155, C = 16599)

Mining Time-constrained Sequential Patterns with Constraint Programming 21

Acknowledgments

The first author is supported by the FRIA-FNRS (Fonds pour la Formation à la
Recherche dans l’Industrie et dans l’Agriculture, Belgium).

References

1. Aggarwal, C.C., Han, J.: Frequent pattern mining. Springer (2014)
2. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Data Engineering, 1995. Pro-

ceedings of the Eleventh International Conference on, pp. 3–14. IEEE (1995)
3. Antunes, C., Oliveira, A.L.: Generalization of Pattern-Growth Methods for Sequential

Pattern Mining with Gap Constraints, pp. 239–251. Springer (2003)
4. Aoga, J.O., Guns, T., Schaus, P.: An efficient algorithm for mining frequent sequence with

constraint programming. LNAI,Part II, ECML PKDD 9853 (2016)
5. Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential pattern mining using a bitmap

representation. In: ACM SIGKDD, pp. 429–435 (2002)
6. Batal, I., Fradkin, D., Harrison, J., Moerchen, F., Hauskrecht, M.: Mining recent temporal

patterns for event detection in multivariate time series data. In: Proceedings of the 18th
ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
280–288. ACM (2012)

7. Beldiceanu, N., Contejean, E.: Introducing global constraints in chip. Mathematical and
computer Modelling 20(12), 97–123 (1994)

8. Coquery, E., Jabbour, S., Saïs, L., Salhi, Y.: A SAT-based approach for discovering
frequent, closed and maximal patterns in a sequence. In: L.D. Raedt, C. Bessière,
D. Dubois, P. Doherty, P. Frasconi, F. Heintz, P.J.F. Lucas (eds.) ECAI, Frontiers in

Artificial Intelligence and Applications, vol. 242, pp. 258–263. IOS Press (2012). URL
http://www.booksonline.iospress.nl/Content/View.aspx?piid=31572

9. Desai, N.A.K., Ganatra, A.: Efficient constraint-based sequential pattern mining (spm)
algorithm to understand customers buying behaviour from time stamp-based sequence
dataset. Cogent Engineering 2(1), 1072,292 (2015)

10. Fournier-Viger, P., Wu, C.W., Tseng, V.S.: Mining maximal sequential patterns with-
out candidate maintenance. In: Advanced Data Mining and Applications, pp. 169–180.
Springer (2013)

11. Golden, K., Pang, W.: Constraint Reasoning over Strings, pp. 377–391. Springer Berlin
Heidelberg, Berlin, Heidelberg (2003). DOI 10.1007/978-3-540-45193-8_26. URL http:

//dx.doi.org/10.1007/978-3-540-45193-8_26

12. Guns, T., Nijssen, S., De Raedt, L.: k-pattern set mining under constraints. Knowledge
and Data Engineering, IEEE Transactions on 25(2), 402–418 (2013)

13. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: ACM
Sigmod Record, vol. 29, pp. 1–12. ACM (2000)

14. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate generation:
A frequent-pattern tree approach. Data mining and knowledge discovery 8(1), 53–87
(2004)

15. He, J., Flener, P., Pearson, J., Zhang, W.M.: Solving string constraints: The case for cons-
traint programming. In: International Conference on Principles and Practice of Constraint
Programming, pp. 381–397. Springer (2013)

16. Henriques, R., Antunes, C., Madeira, S.C.: Methods for the Efficient Discovery of Large
Item-Indexable Sequential Patterns, pp. 100–116. Springer International Publishing,
Cham (2014). DOI 10.1007/978-3-319-08407-7_7. URL http://dx.doi.org/10.1007/

978-3-319-08407-7_7

17. Henriques, R., Madeira, S.C.: Bicspam: flexible biclustering using sequential patterns.
BMC Bioinformatics 15(1), 130 (2014). DOI 10.1186/1471-2105-15-130. URL http:

//dx.doi.org/10.1186/1471-2105-15-130

18. Kemmar, A., Lebbah, Y., Loudni, S., Boizumault, P., Charnois, T.: Prefix-projection
global constraint and top-k approach for sequential pattern mining. Constraints 22(2),
265–306 (2017). DOI 10.1007/s10601-016-9252-z. URL http://dx.doi.org/10.1007/

s10601-016-9252-z

19. Kemmar, A., Loudni, S., Lebbah, Y., Boizumault, P., Charnois, T.: A global constraint
for mining sequential patterns with gap constraint. CPAIOR16 (2015)

http://www.booksonline.iospress.nl/Content/View.aspx?piid=31572
http://dx.doi.org/10.1007/978-3-540-45193-8_26
http://dx.doi.org/10.1007/978-3-540-45193-8_26
http://dx.doi.org/10.1007/978-3-319-08407-7_7
http://dx.doi.org/10.1007/978-3-319-08407-7_7
http://dx.doi.org/10.1186/1471-2105-15-130
http://dx.doi.org/10.1186/1471-2105-15-130
http://dx.doi.org/10.1007/s10601-016-9252-z
http://dx.doi.org/10.1007/s10601-016-9252-z

22 John O.R. Aoga et al.

20. Kemmar, A., Loudni, S., Lebbah, Y., Boizumault, P., Charnois, T.: Prefix-projection global
constraint for sequential pattern mining. In: Principles and Practice of Constraint Pro-
gramming. Springer (2015)

21. Li, C., Wang, J.: Efficiently mining closed subsequences with gap constraints. In: SDM,
pp. 313–322. SIAM (2008)

22. Lu, S., Li, C.: Aprioriaadjust: An efficient algorithm for discovering maximal sequential
patterns (2004)

23. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event se-
quences. Data mining and knowledge discovery 1(3), 259–289 (1997)

24. Metivier, J., Boizumault, P., Crémilleux, B., Khiari, M., Loudni, S.: A constraint-based
language for declarative pattern discovery. In: Data Mining Workshops (ICDMW), 2011
IEEE 11th International Conference on, pp. 1112–1119. IEEE (2011)

25. Negrevergne, B., Guns, T.: Constraint-based sequence mining using constraint program-
ming. In: CPAIOR15. Springer (2015)

26. OscaR Team: OscaR: Scala in OR (2012). Available from
https://bitbucket.org/oscarlib/oscar

27. Parthasarathy, S., Zaki, M.J., Ogihara, M., Dwarkadas, S.: Incremental and interactive
sequence mining. In: Proceedings of the eighth international conference on Information
and knowledge management, pp. 251–258. ACM (1999)

28. Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.C.: Prefixspan:
Mining sequential patterns efficiently by prefix-projected pattern growth. In: icccn, p.
0215. IEEE (2001)

29. Pei, J., Han, J., Wang, W.: Constraint-based sequential pattern mining: the pattern-growth
methods. Journal of Intelligent Information Systems 28(2), 133–160 (2007). DOI 10.1007/
s10844-006-0006-z. URL http://dx.doi.org/10.1007/s10844-006-0006-z

30. Pesant, G.: A regular language membership constraint for finite sequences of variables.
In: International conference on principles and practice of constraint programming, pp.
482–495. Springer (2004)

31. Pinto, H., Han, J., Pei, J., Wang, K., Chen, Q., Dayal, U.: Multi-dimensional sequential
pattern mining. In: Proceedings of the tenth international conference on Information and
knowledge management, pp. 81–88. ACM (2001)

32. Quimper, C.G., Walsh, T.: Global grammar constraints. In: International Conference on
Principles and Practice of Constraint Programming, pp. 751–755. Springer (2006)

33. Rossi, F., Van Beek, P., Walsh, T.: Handbook of CP. Elsevier (2006)
34. Srikant, R., Agrawal, R.: Mining sequential patterns: Generalizations and performance

improvements. Springer (1996)
35. Wang, J., Han, J., Li, C.: Frequent closed sequence mining without candidate maintenance.

Knowledge and Data Engineering, IEEE Transactions on 19(8), 1042–1056 (2007)
36. Yan, X., Han, J., Afshar, R.: Clospan: Mining closed sequential patterns in large datasets.

In: In SDM, pp. 166–177. SIAM (2003)
37. Zaki, M.J.: Efficient enumeration of frequent sequences. In: Proceedings of the seventh

international conference on Information and knowledge management, pp. 68–75. ACM
(1998)

38. Zaki, M.J.: Sequence mining in categorical domains: incorporating constraints. In: Pro-
ceedings of the ninth international conference on Information and knowledge management,
pp. 422–429. ACM (2000)

39. Zaki, M.J.: Spade: An efficient algorithm for mining frequent sequences. Machine learning
42(1-2), 31–60 (2001)

40. Zhao, Q., Bhowmick, S.S.: Sequential pattern mining: A survey. ITechnical Report CAIS
Nayang Technological University Singapore pp. 1–26 (2003)

http://dx.doi.org/10.1007/s10844-006-0006-z

