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Mining Version Histories for Detecting
Code Smells

Fabio Palomba, Student Member, IEEE, Gabriele Bavota,Member, IEEE Computer Society,

Massimiliano Di Penta, Rocco Oliveto,Member, IEEE Computer Society,

Denys Poshyvanyk,Member, IEEE Computer Society, and Andrea De Lucia, Senior Member, IEEE

Abstract—Code smells are symptoms of poor design and implementation choices that may hinder code comprehension, and possibly

increase change- and fault-proneness. While most of the detection techniques just rely on structural information, many code smells are

intrinsically characterized by how code elements change over time. In this paper, we propose Historical Information for Smell deTection

(HIST), an approach exploiting change history information to detect instances of five different code smells, namely Divergent Change,

Shotgun Surgery, Parallel Inheritance, Blob, and Feature Envy. We evaluate HIST in two empirical studies. The first, conducted on

20 open source projects, aimed at assessing the accuracy of HIST in detecting instances of the code smells mentioned above. The

results indicate that the precision of HIST ranges between 72 and 86 percent, and its recall ranges between 58 and 100 percent. Also,

results of the first study indicate that HIST is able to identify code smells that cannot be identified by competitive approaches solely

based on code analysis of a single system’s snapshot. Then, we conducted a second study aimed at investigating to what extent the

code smells detected by HIST (and by competitive code analysis techniques) reflect developers’ perception of poor design and

implementation choices. We involved 12 developers of four open source projects that recognized more than 75 percent of the code

smell instances identified by HIST as actual design/implementation problems.

Index Terms—Code smells, mining software repositories, empirical studies

Ç

1 INTRODUCTION

CODE smells have been defined by Fowler [14] as symp-
toms of poor design and implementation choices. In

some cases, such symptoms may originate from activities
performed by developers while in a hurry, e.g., implement-
ing urgent patches or simply making suboptimal choices. In
other cases, smells come from some recurring, poor design
solutions, also known as anti-patterns [10]. For example a
Blob is a large and complex class that centralizes the behav-
ior of a portion of a system and only uses other classes as
data holders. Blob classes can rapidly grow out of control,
making it harder and harder for developers to understand
them, to fix bugs, and to add new features.

Previous studies have found that smells hinder compre-
hension [1], and possibly increase change- and fault-prone-
ness [23], [24]. In summary, smells need to be carefully
detected andmonitored and,whenever necessary, refactoring
actions should be planned and performed to dealwith them.

There exist a number of approaches for detecting smells
in source code to alert developers of their presence [30],
[33], [48]. These approaches rely on structural information
extracted from source code, for example, by means of con-
straints defined on some source code metrics. For instance,
according to some existing approaches, such as DECOR
[33], LongMethod or LargeClass smells are based on the size
of the source code component in terms of LOC, whereas
other smells like ComplexClass are based on the McCabe
cyclomatic complexity [32]. Other smells, such as Blob,
might use more complex rules.

Although existing approaches exhibit good detection
accuracy, they still might not be adequate for detecting
many of the smells described by Fowler [14]. In particu-
lar, there are some smells that, rather than being charac-
terized by source code metrics or other information
extracted from source code snapshots, are intrinsically
characterized by how source code changes over time. For exam-
ple, a Parallel Inheritance means that two or more class
hierarchies evolve by adding code to both classes at the
same time. Also, there are smells that are traditionally
detected using structural information, where historical
information can aid in capturing complementary, addi-
tionally useful properties. For example, a Feature Envy
may manifest itself when a method of a class tends to
change more frequently with methods of other classes
rather than with those of the same class.

Based on such considerations, we propose an approach,
named Historical Information for Smell deTection (HIST),
to detect smells based on change history information mined
from versioning systems, and, specifically, by analyzing co-
changes occurring between source code artifacts. HIST is
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aimed at detecting five smells from Fowler [14] and Brown
[9] catalogues.1 Three of them—Divergent Change, Shotgun
Surgery, and Parallel Inheritance—are symptoms that can be
intrinsically observed from the project’s history even if a
single project snapshot detection approach has been pro-
posed for the detection of Divergent Change and Shotgun Sur-
gery [42]. For the remaining two—Blob and Feature Envy—
there exist several single project snapshot detection
approaches [33], [48]. However, as explained for the Feature
Envy, those smells can also be characterized and possibly
detected using source code change history.

In the past, historical information has been used in the
context of smell analysis for the purpose of assessing to
what extent smells remained in the system for a substantial
amount of time [29], [44]. Also, Gı̂rba et al. [17] exploited
formal concept analysis (FCA) for detecting co-change pat-
terns, that can be used to detect some smells. However, to
the best of our knowledge, the use of historical information
for smell detection remains a premiere of this paper.

We have evaluated HIST in two empirical studies. The
first, conducted on 20 Java projects, aimed at evaluating
HIST detection accuracy in terms of precision and recall
against a manually-produced oracle. Furthermore, wher-
ever possible, we compared HIST with results produced by
approaches that detect smells by analyzing a single project
snapshot, such as JDeodorant [13], [48] (for the Feature Envy
smell) and our re-implementations of the DECOR’s [33]
detection rules (for the Blob smell) and of the approach by
Rao and Raddy [42] (for Divergent Change and Shotgun Sur-
gery). The results of our study indicate that HIST’s precision
is between 72 and 86 percent, and its recall is between 58
and 100 percent. When comparing HIST to alternative
approaches, we observe that HIST tends to provide better
detection accuracy, especially in terms of recall, since it is
able to identify smells that other approaches omit. Also, for
some smells, we observe a strong complementarity of the
approaches based on a single snapshot (SS) analysis with
respect to HIST, suggesting that even better performances
can be achieved by combining these two complementary
sources of information.

Despite the good results achieved in the previous study,
it is important to point out that a smell detection technique
is actually useful only if it identifies code design problems
that are recognized as such by software developers. For this
reason we conducted a second study—involving 12 devel-
opers of four open source systems—and aimed at investi-
gating to what extent the smells detected by HIST (and by
the competitive single snapshot techniques) reflect devel-
opers’ perception of poor design and implementation
choices. Results of this second study highlight that over 75
percent of the smell instances identified by HIST are consid-
ered as design/implementation problems by developers,
that generally suggest refactoring actions to remove them.

Summarizing, the contributions of this paper are:

1) HIST, a novel approach to identify smells in source
code by relying on change history information.

2) A study on 20 systems aimed at assessing the detec-
tion accuracy of HIST and of state-of-the-art smell

detection techniques (based on the analysis of a sin-
gle snapshot) against a manually-produced oracle.

3) A study with 12 developers of four open source sys-
tems aimed at understanding to what extent the
smells identified by HIST and by state-of-the-art
techniques actually represent design/implementa-
tion problems from a developer’s point of view.

4) A comprehensive replication package [40], including
(i) the manually built oracles for the 20 systems, and
(ii) the raw data of all our experimentations.

Paper structure. Section 2 presents the proposed approach
HIST. Section 3 describes the design and the results of the
first case study aimed at evaluating the HIST detection accu-
racy. The design and the results of the second study are pre-
sented in Section 4, while Section 5 discusses the threats
that could affect the validity of our empirical evaluation.
Section 7 summarizes our observations and outlines direc-
tions for future work, after a discussion on the related litera-
ture (Section 6).

2 HIST OVERVIEW

The key idea behind HIST is to identify classes affected by
smells via change history information derived from version
control systems. Fig. 1 overviews the main steps behind the
proposed approach. Firstly, HIST extracts information
needed to detect smells from the versioning system through
a component called Change history extractor. This informa-
tion—together with a specific detection algorithm for a par-
ticular smell—is then provided as an input to the Code smell
detector for computing the list of code components (i.e.,
methods/classes) affected by the smells characterized in the
specific detection algorithm.

The Code smell detector uses different detection heuristics
for identifying target smells. In this paper, we have instanti-
ated HIST for detecting the five smells summarized in
Table 1:

� Divergent change. This smell occurs when a class is
changed in different ways for different reasons. The
example reported by Fowler in his book on refactor-
ing [14] helps understanding this smell: If you look at
a class and say, “Well, I will have to change these three
methods every time I get a new database; I have to change
these four methods every time there is a new financial
instrument”, you likely have a situation in which two
classes are better than one [14]. Thus, this type of smell

Fig. 1. HIST: The proposed code smell detection process.

1. Definitions of these five smells are provided in Section 2.
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clearly triggers Extract Class refactoring opportuni-
ties.2 Indeed, the goal of Extract Class refactoring
is to split a class implementing different responsibili-
ties into separated classes, each one grouping
together methods and attributes related to a specific
responsibility. The aim is to (i) obtain smaller classes
that are easier to comprehend and thus to maintain
and (ii) better isolate the change.

� Shotgun surgery. A class is affected by this smell
when a change to this class (i.e., to one of its fields/
methods) triggers many little changes to several
other classes [14]. The presence of a Shotgun Surgery
smell can be removed through a Move Method/Field
refactoring. In other words, the method/field caus-
ing the smell is moved towards the class in which its
changes trigger more modifications.

� Parallel inheritance. This smell occurs when “every
time you make a subclass of one class, you also have to
make a subclass of another” [14]. This could be symp-
tom of design problems in the class hierarchy that
can be solved by redistributing responsibilities
among the classes through different refactoring
operations, e.g., Extract Subclass.

� Blob. A class implementing several responsibilities,
having a large number of attributes, operations,
and dependencies with data classes [9]. The obvi-
ous way to remove this smell is to use Extract Class
refactoring.

� Feature envy. As defined by Fowler [14], this smell
occurs when “a method is more interested in another
class than the one it is actually in”. For instance,
there can be a method that frequently invokes
accessor methods of another class to use its data.
This smell can be removed via Move Method refac-
toring operations.

Our choice of instantiating the proposed approach on
these smells is not random, but driven by the need to have a
benchmark including smells that can be naturally identified
using change history information and smells that do not
necessarily require this type of information. The first three
smells, namelyDivergent Change, Shotgun Surgery, and Paral-
lel Inheritance, are by definition historical smells, that is, their
definition inherently suggests that they can be detected
using revision history. Instead, the last two smells (Blob and
Feature Envy) can be detected relying solely on structural

information, and several approaches based on static source
code analysis of a single system’s snapshot have been pro-
posed for detecting those smells [33], [48].

The following sections detail how HIST extracts change
history information from versioning systems and then uses
it for detecting the above smells.

2.1 Change History Extraction

The first operation performed by the Change history extractor
is to mine the versioning system log, reporting the entire
change history of the system under analysis. This can be
done for a range of versioning systems, such as SVN, CVS, or
git. However, the logs extracted through this operation
report code changes at file level of granularity. Such a granu-
larity level is not sufficient to detect most of the smells
defined in the literature. In fact, many of them describe
method-level behavior (see, for instance, Feature Envy or
Divergent Change).3 In order to extract fine-grained changes,
the Change history extractor includes a code analyzer compo-
nent that is developed in the context of the MARKOS
European project.4 We use this component to capture
changes at method level granularity. In particular, for each
pair of subsequent source code snapshots extracted from the
versioning system, the code analyzer (i) checks out the two
snapshots in two separate folders and (ii) compares the
source code of these two snapshots, producing the set of
changes performed between them. The set of changes
includes: (i) added/removed/moved/renamed classes,
(ii) added/removed class attributes, (iii) added/removed/
moved/renamed methods, (iv) changes applied to all the
method signatures (i.e., visibility change, return type change,
parameter added, parameter removed, parameter type
change, method rename), and (v) changes applied to all the
method bodies.

The code analyzer parses source code by relying on the
srcML toolkit [12]. To distinguish cases where a method/
class was removed and a new one added from cases when a
method/class was moved (and possibly its source code
changed), the MARKOS code analyzer uses heuristics that
map methods/classes with different names if their source
code is similar based on a metric fingerprint similar to the
one used in metric-based clone detection [31]. For example,
each method is associated with a 12 digits fingerprint

TABLE 1
Code Smells Detected by HIST

Code Smell Brief Description

Divergent Change A class is changed in different ways for different reasons
Shotgun Surgery A change to the affected class (i.e., to one of its fields/methods) triggers many little changes to

several other classes
Parallel Inheritance Every time you make a subclass of one class, you also have to make a subclass of another
Blob A class implementing several responsibilities, having a large number of attributes, operations,

and dependencies with data classes
Feature Envy A method is more interested in another class than the one it is actually in

2. Further details about refactoring operations existing in the litera-
ture can be found in the refactoring catalog available at http://
refactoring.com/catalog/.

3. Note that some versioning systems allow to obtain line diffs of the
changes performed in a commit. However, the mapping between the
changed lines and the impacted code components (e.g., which methods
are impacted by the change) is not provided.

4. www.markosproject.euverified on September 2014.
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containing the following information: LOCs, number of
statements, number of if statements, number of while state-
ments, number of case statements, number of return state-
ments, number of specifiers, number of parameters, number
of thrown exceptions, number of declared local variables,
number of method (NOM) invocations, and number of used
class attributes (i.e., instance variables). The accuracy of
such heuristics has been evaluated at two different levels of
granularity:

� Method level, by manually checking 100 methods
reported as moved by the MARKOS code analyzer.
Results showed that 89 of them were actually moved
methods.

� Class level, by manually checking 100 classes
reported as moved by the MARKOS code analyzer.
Results showed that 98 of them were actually moved
classes.

Typical cases of false positives were those in which a
method/class was removed from a class/package and a
very similar one—in terms of fingerprint—was added to
another class/package.

2.2 Code Smells Detection

The set of fine-grained changes computed by the Change his-
tory extractor is provided as an input to the Code Smell detec-
tor, that identifies the list of code components (if any)
affected by specific smells. While the exploited underlying
information is the same for all target smells (i.e., the change
history information), HIST uses custom detection heuristics
for each smell. Note that, since HIST relies on the analysis
of change history information, it is possible that a class/
method that behaved as affected by a smell in the past does
not exist in the current version of the system, e.g., because it
has been refactored by the developers. Thus, once HIST
identifies a component that is affected by a smell, HIST
checks the presence of this component in the current version
of the system under analysis before presenting the results to
the user. If the component does not exist anymore, HIST
removes it from the list of components affected by smells.

In the following we describe the heuristics we devised
for detecting the different kinds of smells described above,
while the process for calibrating the heuristic parameters is
described in Section 3.1.4.

2.2.1 Divergent Change Detection

Given the definition of this smell provided by Fowler [14],
our conjecture is that classes affected by Divergent Change
present different sets of methods each one containing methods
changing together but independently from methods in the other
sets. The Code Smell detector mines association rules [3] for
detecting subsets of methods in the same class that often
change together. Association rule discovery is an unsu-
pervised learning technique used for local pattern detec-
tion highlighting attribute value conditions that occur
together in a given dataset [3]. In HIST, the dataset is
composed of a sequence of change sets—e.g., methods—
that have been committed (changed) together in a version
control repository [55]. An association rule, Mleft )
Mright, between two disjoint method sets implies that, if a

change occurs in each mi 2 Mleft, then another change
should happen in each mj 2 Mright within the same
change set. The strength of an association rule is deter-
mined by its support and confidence [3]:

Support ¼
jMleft [Mrightj

T
;

Confidence ¼
jMleft [Mrightj

jMleftj
;

where T is the total number of change sets extracted from
the repository. In this paper, we perform association rule
mining using a well-known algorithm, namely Apriori [3].
Note that, minimum Support and Confidence to consider an
association rule as valid can be set in the Apriori algorithm.
Once HIST detects these change rules between methods of
the same class, it identifies classes affected by Divergent
Change as those containing at least two sets of methods with
the following characteristics:

1) The cardinality of the set is at least g;
2) All methods in the set change together, as detected

by the association rules; and
3) Each method in the set does not change with meth-

ods in other sets as detected by the association rules.

2.2.2 Shotgun Surgery Detection

In order to define a detection strategy for this smell, we
exploited the following conjecture: a class affected by Shotgun
Surgery contains at least one method changing together with sev-
eral other methods contained in other classes. Also in this case,
the Code Smell detector uses association rules for detecting
methods—in this case methods from different classes—
often changing together. Hence, a class is identified as
affected by a Shotgun Surgery smell if it contains at least one
method that changes with methods present in more than d

different classes.

2.2.3 Parallel Inheritance Detection

Two classes are affected by Parallel Inheritance smell if
“every time you make a subclass of one class, you also have to
make a subclass of the other” [14]. Thus, the Code Smell detec-
tor identifies pairs of classes for which the addition of a
subclass for one class implies the addition of a subclass
for the other class using generated association rules.
These pairs of classes are candidates to be affected by the
Parallel Inheritance smell.

2.2.4 Blob Detection

A Blob is a class that centralizes most of the system’s
behavior and has dependencies towards data classes [9].
Thus, our conjecture is that despite the kind of change devel-
opers have to perform in a software system, if a Blob class is
present, it is very likely that something will need to be changed
in it. Given this conjecture, Blobs are identified as classes
modified (in any way) in more than a percent of commits
involving at least another class. This last condition is
used to better reflect the nature of Blob classes that are
expected to change despite the type of change being
applied, i.e., the set of modified classes.
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2.2.5 Feature Envy Detection

Our goal here is to identify methods placed in the wrong
class or, in other words, methods having an envied class
which they should be moved into. Thus, our conjecture is
that a method affected by feature envy changes more often with
the envied class than with the class it is actually in. Given this
conjecture, HIST identifies methods affected by this smell as
those involved in commits with methods of another class of
the system b percent more than in commits with methods of
their class.

3 EVALUATING THE ACCURACY OF HIST

The goal of the study is to evaluate HIST, with the purpose of
analyzing its effectiveness in detecting smells in software
systems. The quality focus is on the detection accuracy and
completeness as compared to the approaches based on the
analysis of a single project snapshot, while the perspective is
of researchers, who want to evaluate the effectiveness of his-
torical information in identifying smells for building better
recommenders for developers.

3.1 Study Design

This section provides details about the design and planning
of the study aimed at assessing HIST’s effectiveness and
comparing it with alternative approaches.

3.1.1 Context Selection

The context of the study consists of 20 software projects.
Table 2 reports the characteristics of the analyzed systems,
namely the software history that we investigated, and the
size range (in terms of KLOC and # of classes). Among the
analyzed projects we have:

� Nine projects belonging to the Apache ecosystem5:
ANT, TOMCAT, COMMONS LANG, CASSANDRA, COMMONS

CODEC, DERBY, JAMES MIME4J, COMMONS IO, and COM-

MONS LOGGING.
� Five projects belonging to the Android APIs6:

FRAMEWORK-OPT-TELEPHONY, FRAMEWORKS-BASE, FRAME-

WORKS-SUPPORT, SDK, and TOOL-BASE. Each of these
projects is responsible for implementing parts
of the Android APIs. For example, framework-opt-
telephony provides APIs for developers of
Android apps allowing them to access services
such as texting.

� Six open source projects from elsewhere: JEDIT,7

ECLIPSE CORE,8 GOOGLE GUAVA,9 AARDVARK,10 AND

ENGINE,11 and MONGO DB.12

Note that our choice of the subject systems is not random,
but guided by specific requirements of our underlying
infrastructure. Specifically, the selected systems:

1) are written in Java, since the MARKOS code analyzer
is currently able to parse just systems written in this
programming language;

2) have their entire development histories tracked in a
versioning system;

3) have different development history lengths (we start
with a minimum of three months for TOOL-BASE up to
13 years for APACHE ANT); and

4) have different sizes (we go from a minimum of 25
KLOCs for COMMONS CODEC up to 1,043 KLOCs for
FRAMEWORK-BASE).

TABLE 2
Characteristics of the Software Systems Used in the Study

Project Period #Classes KLOC

Apache Ant Jan. 2000-Jan. 2013 44-1,224 8-220
Apache Tomcat Mar. 2006-Jan. 2013 828-1,548 254-350
jEdit Sep. 2001-July 2010 279-544 85-175
Android API (framework-opt-telephony) Aug. 2011-Jan. 2013 218-225 73-78
Android API (frameworks-base) Oct. 2008-Jan. 2013 1,698-3,710 534-1,043
Android API (frameworks-support) Feb. 2011-Nov. 2012 199-256 58-61
Android API (sdk) Oct. 2008-Jan. 2013 132-315 14-82
Android API (tool-base) Nov. 2012-Jan. 2013 471-714 80-134
Apache Commons Lang Jul. 2002-Oct. 2013 30-242 14-165
Apache Cassandra Mar. 2009-Oct. 2013 313-1,008 115-935
Apache Commons Codec Apr. 2004-Jul. 2013 23-107 4-25
Apache Derby Aug. 2008-Oct. 2013 1,298-2,847 159-179
Eclipse Core Jun. 2001-Sep. 2013 824-1,232 120-174
Apache James Mime4j Jun. 2005-Sep. 2013 106-269 91-532
Google Guava Sep. 2009-Oct. 2013 65-457 4-35
Aardvark Nov. 2010-Jan. 2013 16-157 13-25
And Engine Mar. 2010-Jun. 2013 215-613 14-24
Apache Commons IO Jan. 2002-Oct. 2013 13-200 3-56
Apache Commons Logging Aug. 2001-Oct. 2013 5-65 1-54
Mongo DB Jan. 2009-Oct. 2013 13-27 10-25

5. http://www.apache.org/verified on September 2014.

6. https://android.googlesource.com/verified on September
2014.

7. http://www.jedit.org/verified on September 2014.
8. http://www.eclipse.org/eclipse/platform-core/verified on Sep-

tember 2014.
9. https://code.google.com/p/guava-libraries/verified on Septem-

ber 2014.
10. http://karmatics.com/aardvark/verified on September 2014.
11. http://www.andengine.org/verified on September 2014.
12. http://www.mongodb.org/verified on September 2014.
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3.1.2 Research Questions

Our study aims at addressing the following two research
questions:

� RQ1. How does HIST perform in detecting code smells?
This research question aims at quantifying the accu-
racy of HIST in detecting instances of the five smells
described in Section 2, namely Divergent Change,
Shotgun Surgery, Parallel Inheritance, Blob, and Feature
Envy.

� RQ2. How does HIST compare to the smell detection tech-
niques based on the analysis of a single project snapshot?
This research question aims at comparing the accu-
racy of HIST in detecting the five smells above with
the accuracy achieved by applying a more conven-
tional approach based on the analysis of a single
project snapshot. The results of this comparison will
provide insights into the usefulness of historical
information while detecting smells.

3.1.3 Study Procedure, Data Analysis and Metrics

In order to answer RQ1 we simulated the use of HIST in a
realistic usage scenario. In particular, we split the history of
the 20 subject systems into two equal parts, and ran our tool
on all snapshots of the first part. For instance, given the his-
tory of APACHEANT going from January 2000 to January 2013,
we selected a system snapshot s from June 2006. Then, HIST
analyzed all snapshots from January 2000 to June 2006 in
order to detect smell instances on the selected snapshot s.
This was done aiming at simulating a developer performing
smell detection on an evolving software system. On the one
hand, considering some early snapshot in the project history,
there could have been the risk of performing smell detection
on a software system still exhibiting some ongoing, unstable
design decisions. On the other hand, by considering snap-
shots occurring later in the project history (e.g., the last avail-
able release) there could have been the risk of simulating
some unrealistic scenario, i.e., in which developers put effort

in improving the design of a software systemwhen its devel-
opment is almost absent. Table 3 reports the list of selected
snapshots, togetherwith their characteristics.

To evaluate the detection accuracy of HIST, we need an
oracle reporting the instances of smells in the considered
systems’ snapshots. Unfortunately, there are no annotated
sets of such smells available in literature. Thus, we had to
manually build our own oracle. A Master’s student from
the University of Salerno manually identified instances of
the five considered smells in each of the systems’ snapshots.
Starting from the definition of the five smells reported in lit-
erature (see Table 1), the student manually analyzed the
source code of each snapshot, looking for instances of those
smells. Clearly, for smells having an intrinsic historical
nature, he analyzed the changes performed by developers
on different code components. This process took four weeks
of work. Then, a second Master’s student (still from the Uni-
versity of Salerno) validated the produced oracle, to verify
that all affected code components identified by the first stu-
dent were correct. Only six of the smells identified by the
first student were classified as false positives by the second
student. After a discussion performed between the two stu-
dents, two of these six smells were classified as false posi-
tives (and thus removed from the oracle). Note that, while
this does not ensure that the defined oracle is complete (i.e.,
it includes all affected components in the systems), it
increases our degree of confidence on the correctness of the
identified smell instances. To avoid any bias in the experi-
ment, students were not aware of the experimental goals
and of specific algorithms used by HIST for identifying
smells. The number of code smell instances in our oracle is
shown in Table 4 for each of the 20 subject systems. As we
can see Parallel Inheritance, Blob, and Feature Envy code
smells are quite diffused, presenting more than 50 instances
each. A high number (24) of Divergent Change instances is
also present in our oracle, while the Shotgun Surgery smell
seems to be poorly diffused across open source projects,
with just six instances identified.

TABLE 3
Snapshots Considered for the Smell Detection

Project git snapshot Date Classes KLOC

Apache Ant da641025 Jun. 2006 846 173
Apache Tomcat 398ca7ee Jun. 2010 1,284 336
jEdit feb608el Aug. 2005 316 101
Android API (framework-opt-telephony) b3a03455 Feb. 2012 223 75
Android API (frameworks-base) b4ff35df Nov. 2011 2,766 770
Android API (frameworks-support) 0f6f72e1 Jun. 2012 246 59
Android API (sdk) 6feca9ac Nov. 2011 268 54
Android API (tool-base) cfebaa9b Dec. 2012 532 119
Apache Commons Lang 4af8bf41 Jul. 2009 233 76
Apache Cassandra 4f9e551 Sep. 2011 826 117
Apache Commons Codec c6c8ae7a Jul. 2007 103 23
Apache Derby 562a9252 Jun. 2006 1,746 166
Eclipse Core 0eb04df7 Dec. 2004 1,190 162
Apache James Mime4j f4ad2176 Mar. 2009 250 280
Google Guava e8959ed0 Aug. 2012 153 16
Aardvark ff98d508 Jun. 2012 103 25
And Engine f25236e4 Oct. 2011 596 20
Apache Commons IO c8cb451c Oct. 2010 108 27
Apache Commons Logging d821ed3e May 2005 61 23
Mongo DB b67c0c43 Oct. 2011 22 25
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Once we defined the oracle and obtained the set of smells
detected by HIST on each of the systems’ snapshots, we
evaluated its detection accuracy by using two widely-
adopted Information Retrieval (IR) metrics, namely recall
and precision [5]:

recall ¼
jcorrect \ detectedj

jcorrectj
%;

precision ¼
jcorrect \ detectedj

jdetectedj
%;

where correct and detected represent the set of true positive
smells (those manually identified) and the set of smells
detected by HIST, respectively. As an aggregate indicator of
precision and recall, we report the F-measure, defined as
the harmonic mean of precision and recall:

F -measure ¼ 2 �
precision � recall

precisionþ recall
%:

Turning to RQ2, we executed smell detection techniques
based on the analysis of a single snapshot on the same sys-
tems’ snapshots previously selected when answering RQ1.
To the best of our knowledge, there is not a single approach
detecting all the smells that we considered in our study. For
this reason, depending on the specific smell being detected,
we considered different competitive techniques to compare
our approach against. As for the Blob, we compared HIST
with DECOR, the detection technique proposed by Moha
et al. [33]. Specifically, we implemented the detection rules
used by DECOR for the detection of Blob. Such rules are
available online.13 For the Feature Envy we considered JDeo-
dorant as a competitive technique [48], which is a publicly

available Eclipse plug-in.14 The approach implemented in
JDeodorant analyzes all methods for a given system, and
forms a set of candidate target classes where a method
should be moved into. This set is obtained by examining the
entities (i.e., attributes and methods) that a method accesses
from the other classes.

As for Divergent Change and Shotgun Surgery, we com-
pared HIST against our implementation of the approach
proposed by Rao and Raddy [42] that is purely based on
structural information. This technique starts by building an
n� nmatrix (where n is the number of classes in the system
under analysis), named Design Change Propagation Proba-
bility (DCPP). A generic entry Aij in DCPP represents the
probability that a change in the class i triggers a change to
the class j. Such a probability is given by the cdegree [43],
i.e., an indicator of the number of dependencies that class i
has with a class j (note that cdegree is not symmetric, i.e.,
Aij 6¼ Aji). Once the DCPP matrix is built, a Divergent
Change instance is detected if a column in the matrix (i.e., a
class) has several (more than �) non-zero values (i.e., the
class has dependencies with several classes). The conjecture
is that if a class depends on several other classes, it is likely
that it implements different responsibilities divergently
changing during time. Regarding the detection of the Shot-
gun Surgery, instances of such a smell are identified when a
row in the matrix (i.e., a class) contains several (more than
h) non-zero values (i.e., several classes have dependencies
with the class). The conjecture is that changes to this class
will trigger changes in classes depending on it. From now
on we will refer to this technique as DCPP.

Concerning the Parallel Inheritance smell, we are not
aware of publicly available techniques in the literature to
detect it. Thus, in order to have a meaningful baseline for

TABLE 4
Code Smell Instances in the Manually Defined Oracle

Project Divergent
Change

Shotgun
Surgery

Parallel
Inheritance

Blob Feature
Envy

Apache Ant 0 0 7 8 8
Apache Tomcat 5 1 9 5 3
jEdit 4 1 3 5 10
Android API (framework-opt-telephony) 0 0 0 13 0
Android API (frameworks-base) 3 1 3 18 17
Android API (frameworks-support) 1 1 0 5 0
Android API (sdk) 1 0 9 10 3
Android API (tool-base) 0 0 0 0 0
Apache Commons Lang 1 0 6 3 1
Apache Cassandra 3 0 3 2 28
Apache Commons Codec 0 0 0 1 0
Apache Derby 0 0 0 9 0
Eclipse Core 1 1 8 4 3
Apache James Mime4j 1 0 0 0 9
Google Guava 0 0 0 1 2
Aardvark 0 1 0 1 0
And Engine 0 0 0 0 1
Apache Commons IO 1 0 1 2 1
Apache Commons Logging 2 0 2 2 0
Mongo DB 1 0 0 3 0

Overall 24 6 51 92 86

13. http://www.ptidej.net/research/designsmells/grammar/Blob.
txt 14. http://www.jdeodorant.com/verified on September 2014.
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HIST, we implemented a detection algorithm based on the
analysis of a single project snapshot. Note that this analysis
was not intended to provide evidence that HIST is the best
method for detecting Parallel Inheritance instances. Instead,
the goal was to conduct an investigation into the
actual effectiveness of historical information while detecting
smells as compared to information extracted from a single
project snapshot.

We detect classes affected by Parallel Inheritance as pairs
of classes having (i) both a superclass and/or a subclass
(i.e., both belonging to a class hierarchy), and (ii) the same
prefix in the class name. This detection algorithm (from
now on coined as PICA) directly comes from the Fowler’s
definition of Parallel Inheritance: “You can recognize this smell
because the prefixes of the class names in one hierarchy are the
same as the prefixes in another hierarchy” [14].

To compare the performances ofHIST against the compet-
itive techniques described above, we used recall, precision,
and F-measure. Moreover, to analyze the complementarity
of static code information and historical information when
performing smell detection, we computed the following
overlapmetrics:

correctHIST\SS ¼
jcorrectHIST \ correctSS j

jcorrectHIST [ correctSS j
%;

correctHISTnSS ¼
jcorrectHIST n correctSS j

jcorrectHIST [ correctSS j
%;

correctSSnHIST ¼
jcorrectSS n correctHIST j

jcorrectHIST [ correctSS j
%;

where correctHIST and correctSS represent the sets of correct
smells detected by HIST and the competitive technique,
respectively. correctHIST\SS measures the overlap between
the set of true smells detected by both techniques, and
correctHISTnSS (correctSSnHIST ) measures the true smells

detected by HIST (SS) only and missed by SS (HIST). The
latter metric provides an indication on how a smell detec-
tion strategy contributes to enriching the set of correct
smells identified by another method.

3.1.4 Calibrating HIST and the Competitive

Approaches

While for JDeodorant and DECOR parameter tuning has
already been empirically investigated by their respective
authors, we needed to calibrate parameters for HIST and

DCPP as well. Indeed, in the work presenting the DCPP
approach no best values for its parameters were recom-
mended [42]. We performed this calibration on a software
system which was not used in our experimentation, i.e.,
APACHE XERCES.15 Also on this system, we asked two Mas-
ter’s students to manually identify instances of the five con-
sidered smells in order to build an oracle. The procedure
adopted by the students was exactly the same described
before and used to build the study oracle. Then, we evalu-
ated the F-measure value obtained by the detection
approaches using different settings.

Results of the calibration are reported in Fig. 2 for the
HIST parameters a, b, g, and d, and in Fig. 3 for the DCPP �

and the DCPP h parameters. As for the confidence and sup-
port, the calibration was not different from what was done
in other work using association rule discovery [10], [19],
[53], [55]. In particular, we tried all combinations of confi-
dence and support obtained by varying the confidence
between 0.60 and 0.90 by steps of 0.05, and the support
between 0.004 and 0.04 by steps of 0.004, and searching for
the one ensuring the best F-measure value on XERCES. Table 5
summarizes the calibration process, reporting the values for
each parameter that we experimented with and the values
that achieved the best results (that is the one that we used in
answering the research questions).

3.1.5 Replication Package

The raw data and working data sets used in our study are
publicly available in a replication package [40] where we
provide: (i) links to the Git repositories from which we
extracted historical information; (ii) complete information
on the change history in all the subject systems; (iii) the ora-
cle used for each system; and (iv) the list of smells identified
by HIST and by the competitive approaches.

3.2 Analysis of the Results

This section reports the results aimed at answering the two
research questions formulated in Section 3.1.2. Note that to
avoid redundancies, we report the results for both research
questions together, discussing each smell separately.

Tables 6, 7, 8, 9, and 10 report the results—in terms of
recall, precision, and F-measure—achieved by HIST and
approaches based on the analysis of a single snapshot on
the 20 subject systems. In addition, each table also reports
(i) the number of smell instances present in each system

Fig. 2. Parameters calibration for HIST (Blob) a (a), HIST (Feature Envy) b (b), HIST (Divergent Change) g (c), and HIST (Shotgun Surgery) d (d).

15. http://xerces.apache.org/verified on September 2014.
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(column “#Smell Instances”), (ii) the number of smell
instances identified by each approach (column
“Identified”), (iii) the number of true positive instances
identified by each approach (column “TP”), and (iv) the
number of false positive instances identified by each
approach (column “FP”). Note that each table shows the
results for one of the five smells considered in our study
and in particular: Table 6 for Divergent Change, Table 7 for
Shotgun Surgery, Table 8 for Parallel Inheritance, Table 9 for
Blob, and Table 10 for Feature Envy.

As explained in Section 3.1.3 for Divergent Change and
Shotgun Surgerywe compared HIST against DCCP approach
proposed by Rao and Raddy [42], while for Parallel Inheri-
tance we used an alternative approach that we developed
(PICA). Finally, for Blob and Feature Envy we used DECOR
rules [33] and the JDeodorant tool [13], respectively.

When no instances of a particular smell were present in
the oracle (i.e., zero in the column “#Smell Instances”), it
was not possible to compute the recall (that is, division by
zero), while the precision would be zero if at least one false
positive is detected (independently of the number of false
positives). In these cases a “-” is indicated in the corre-
sponding project row. Similarly, when an approach did not
retrieve any instances of a particular smell, it was not possi-
ble to compute precision, while recall would be zero if at
least one false positive is retrieved. In this case a “N/A” is
included in the project row. However, to have an accurate
estimation of the performances of the experimented techni-
ques, we also report in each table the results achieved by
considering all systems as a single dataset (rows “Overall”).
In such a dataset, it never happens that recall or precision
cannot be computed for the reasons described above. Thus,
all true positives and all false positives identified by each
technique are taken into account in the computation of the
overall recall, precision, and F-measure.

Finally, Table 11 reports the overlap and differences
between HIST and the techniques based on code analysis of
a single snapshot: column “HIST \ SS Tech.” reports the
number (#) and percentage (%) of smells correctly identified
by both HIST and the competitive technique; column
“HISTnSS Tech.” reports the number and percentage of
smells correctly identified by HIST but not by the competi-
tive technique; column “SS Tech.nHIST” reports the number
and percentage of smells correctly identified by the compet-
itive technique but not by HIST. In the following, we discuss
the results for each kind of smell.

3.2.1 Divergent Change

We identified 24 instances of Divergent Change in the 20 sys-
tems (see Table 6). The results clearly indicate that the use
of historical information allows to outperform DCCP (i.e.,
the approach based on the analysis of a single snapshot).
Specifically, the F-measure achieved by HIST on the overall
dataset is 82 percent (83 percent of recall and 80 percent of
precision) against 10 percent (13 percent of recall and
11 percent of precision) achieved by DCCP. This is an
expected result, since the Divergent Change is by definition a
“historical smell” (see Section 2), and thus we expected dif-
ficulties in capturing this kind of smell by just relying on
the analysis of a single system’s snapshot.

One of the Divergent Change instances captured by HIST
is depicted in Fig. 4 and related to the ViewPager class
from the ANDROID FRAMEWORKS-SUPPORT project. ViewPager
allows users of Android apps to flip left and right through
pages of data. In this class, HIST identified three sets of
methods divergently changing during the project’s history
(see Section 2.2.1 for details on how these sets were identi-
fied). The three sets are highlighted in Fig. 4 by using differ-
ent shades of gray. Starting from the top of the Fig. 4, the
first set groups together methods somewhat related to the
management of the items to be displayed in the View (e.g.,
menu, buttons, etc.). The middle set gathers methods allow-
ing to manage the View layout (i.e., setting margins, page
offsets, etc.), while the set at the bottom of Fig. 6 is mainly
related to the View configuration (e.g., init the page viewer,
define the change listeners, etc.). Thus, the three identified
sets of methods, not only change independently one from
the other, but also seem to represent quite independent
responsibilities implemented in the ViewPager class. Of
course, no speculations can be made on the need for refac-
toring of this class, since developers having high experience
on the system are needed to evaluate both pros and cons.

Fig. 3. Parameters’ calibration for DCPP-divergent change � (a), and
DCPP-Shotgun Surgery h (b).

TABLE 5
Calibration of the Parameters Required by the Different Detection Techniques Used in the Study

Technique Parameter Experimented Values Best Value

HIST (Assoc. Rules) Support From 0.004 to 0.04 by steps of 0.004 0.008
HIST (Assoc. Rules) Confidence From 0.60 to 0.90 by steps of 0.05 0.70
HIST (Blob) a From 1 to 25 percent by steps of 1 percent 8%
HIST (Feature Envy) b From 5 to 100 percent by steps of 5 percent 80%
HIST (Divergent Change) g From 1 to 10 by steps of 1 3
HIST (Shotgun Surgery) d From 1 to 10 by steps of 1 3
DCPP (Divergent Change) � From 1 to 10 by steps of 1 3
DCPP (Shotgun Surgery) h From 1 to 10 by steps of 1 4
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Our second study presented in Section 4 aims at answering
exactly this question.

Going back to the quantitative results, DCCP was able to
detect only three correct occurrences ofDivergent Change and

one of them was also captured by HIST. The instances
missed by HIST (and identified by DCCP) affect the RE class
of JEDIT and the CassandraServer class of APACHE CASSAN-

DRA. Both of these classes do not have enough change history

TABLE 6
Divergent Change—HIST Accuracy as Compared to the Single Snapshot Technique

Project #Smell HIST Single Snapshot technique

Instances Identified TP FP Prec. Recall F-measure Identified TP FP Prec. Recall F-measure

Apache Ant 0 0 0 0 - - - 1 0 1 - - -
Apache Tomcat 5 6 3 3 50% 60% 55% 0 0 0 N/A N/A N/A
jEdit 4 3 3 0 100% 75% 86% 1 1 0 100% 25% 40%
Android API
(framework-opt-telephony)

0 0 0 0 - - - 0 0 0 - - -

Android API
(frameworks-base)

3 3 3 0 100% 100% 100% 0 0 0 N/A N/A N/A

Android API
(frameworks-support)

1 1 1 0 100% 100% 100% 2 0 2 0% 0% 0%

Android API (sdk) 1 1 1 0 100% 100% 100% 0 0 0 N/A N/A N/A
Android API (tool-base) 0 1 0 1 - - - 0 0 0 - - -
Apache Commons Lang 1 1 1 0 100% 100% 100% 0 0 0 N/A N/A N/A
Apache Cassandra 3 2 2 0 100% 67% 80% 7 1 6 14% 34% 20%
Apache Commons Codec 0 0 0 0 - - - 0 0 0 - - -
Apache Derby 0 0 0 0 - - - 0 0 0 - - -
Eclipse Core 1 1 1 0 100% 100% 100% 0 0 0 N/A N/A N/A
Apache James Mime4j 1 1 1 0 100% 100% 100% 1 1 0 100% 100% 100%
Google Guava 0 0 0 0 - - - 0 0 0 - - -
Aardvark 0 1 0 1 - - - 0 0 0 - - -
And Engine 0 0 0 0 - - - 14 0 14 - - -
Apache Commons IO 1 1 1 0 100% 100% 100% 3 0 3 0% 0% 0%
Apache Commons Logging 2 2 2 0 100% 100% 100% 0 0 0 N/A N/A N/A
Mongo DB 1 1 1 0 100% 100% 100% 0 0 0 N/A N/A N/A

Overall 24 25 20 5 80% 83% 82% 29 3 26 10% 13% 11%

TABLE 7
Shotgun Surgery—HIST Accuracy Compared to the Single Snapshot Techniques

Project #Smell HIST Single snapshot echnique

Instances Identified TP FP Prec. Recall F-measure Identified TP FP Prec. Recall F-measure

Apache Ant 0 0 0 0 - - - 4 0 4 - - -
Apache Tomcat 1 1 1 0 100% 100% 100% 13 0 13 0% 0% 0%
jEdit 1 1 1 0 100% 100% 100% 3 0 3 0% 0% 0%
Android API
(framework-opt-telephony)

0 1 0 1 - - - 3 0 3 - - -

Android API
(frameworks-base)

1 1 1 0 100% 100% 100% 1 0 1 0% 0% 0%

Android API
(frameworks-support)

1 1 1 0 100% 100% 100% 2 0 2 0% 0% 0%

Android API (sdk) 0 0 0 0 - - - 0 0 0 - - -
Android API (tool-base) 0 0 0 0 - - - 0 0 0 - - -
Apache Commons Lang 0 0 0 0 - - - 0 0 0 - - -
Apache Cassandra 0 0 0 0 - - - 0 0 0 - - -
Apache Commons Codec 0 0 0 0 - - - 0 0 0 - - -
Apache Derby 0 0 0 0 - - - 0 0 0 - - -
Eclipse Core 1 1 1 0 100% 100% 100% 0 0 0 N/A N/A N/A
Apache James Mime4j 0 0 0 0 - - - 0 0 0 - - -
Google Guava 0 0 0 0 - - - 0 0 0 - - -
Aardvark 1 1 1 0 100% 100% 100% 0 0 0 N/A N/A N/A
And Engine 0 0 0 0 - - - 0 0 0 - - -
Apache Commons IO 0 0 0 0 - - - 0 0 0 - - -
Apache Commons Logging 0 0 0 0 - - - 0 0 0 - - -
Mongo DB 0 0 0 0 - - - 0 0 0 - - -

Overall 6 7 6 1 86% 100% 92% 26 0 26 0% 0% 0%
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data about divergent changes to be captured by HIST. This
clearly highlights the main limitation of HIST that requires
sufficient amount of historical information to infer useful
association rules. Given these observations, the overlap

between the smells detected by HIST and DCCP results
reported in Table 11 is quite expected: among the sets of
smells correctly detected by two techniques, there is just a 4
percent overlap, HIST is the only one retrieving 87 percent of

TABLE 8
Parallel Inheritance—HIST Accuracy as Compared to the Single Snapshot Techniques

Project #Smell HIST Single snapshot technique

Instances Identified TP FP Prec. Recall F-measure Identified TP FP Prec. Recall F-measure

Apache Ant 7 8 5 3 63% 71% 67% 52 4 48 8% 57% 14%
Apache Tomcat 9 10 6 4 60% 67% 63% 61 4 57 7% 44% 12%
jEdit 3 0 0 0 N/A N/A N/A 15 3 12 20% 100% 33%
Android API
(framework-opt-telephony)

0 0 0 0 - - - 9 0 9 - - -

Android API
(frameworks-base)

3 1 0 1 0% 0% 0% 111 0 111 0% 0% 0%

Android API
(frameworks-support)

0 0 0 0 - - - 9 0 9 - - -

Android API (sdk) 9 12 8 4 67% 89% 76% 59 3 56 5% 33% 12%
Android API (tool-base) 0 0 0 0 - - - 0 0 0 - - -
Apache Commons Lang 6 6 6 0 100% 100% 100% 6 6 0 100% 100% 100%
Apache Cassandra 3 1 1 0 100% 34% 50% 35 1 34 3% 34% 5%
Apache Commons Codec 0 0 0 0 - - - 3 0 3 - - -
Apache Derby 0 0 0 0 - - - 53 0 53 - - -
Eclipse Core 8 8 7 1 88% 88% 88% 31 2 29 6% 25% 10%
Apache James Mime4j 0 0 0 0 - - - 10 0 10 - - -
Google Guava 0 0 0 0 - - - 0 0 0 - - -
Aardvark 0 0 0 0 - - - 0 0 0 - - -
And Engine 0 0 0 0 - - - 60 0 60 - - -
Apache Commons IO 1 1 1 0 100% 100% 100% 8 1 7 13% 100% 22%
Apache Commons Logging 2 1 1 0 100% 50% 67% 3 1 2 34% 50% 40%
Mongo DB 0 0 0 0 - - - 0 0 0 - - -

Overall 51 48 35 13 73% 69% 71% 525 25 500 5% 49% 9%

TABLE 9
Blob—HIST Accuracy as Compared to DECOR

Project #Smell HIST DECOR

Instances Identified TP FP Prec. Recall F-measure Identified TP FP Prec. Recall F-measure

Apache Ant 8 10 6 4 60% 75% 67% 10 3 7 30% 38% 33%
Apache Tomcat 5 1 1 0 100% 20% 33% 6 4 2 67% 80% 73%
jEdit 5 3 2 1 67% 40% 50% 5 3 2 60% 60% 60%
Android API
(framework-opt-telephony)

13 10 10 0 100% 77% 87% 10 7 3 70% 54% 61%

Android API
(frameworks-base)

18 13 9 4 70% 50% 58% 14 9 5 65% 50% 57%

Android API
(frameworks-support)

5 7 5 2 71% 100% 83% 8 3 5 38% 60% 49%

Android API (sdk) 10 7 6 1 86% 60% 71% 7 2 5 29% 20% 24%
Android API (tool-base) 0 0 0 0 - - - 0 0 0 - - -
Apache Commons Lang 3 2 2 0 100% 67% 80% 0 0 0 N/A N/A N/A
Apache Cassandra 2 0 0 0 N/A N/A N/A 0 0 0 N/A N/A N/A
Apache Commons Codec 1 2 1 1 50% 100% 67% 0 0 0 N/A N/A N/A
Apache Derby 9 0 0 0 N/A N/A N/A 7 4 3 57% 44% 50%
Eclipse Core 4 3 2 1 67% 50% 57% 4 2 2 50% 50% 50%
Apache James Mime4j 0 3 0 3 - - - 0 0 0 - - -
Google Guava 1 1 1 0 100% 100% 100% 0 0 0 N/A N/A N/A
Aardvark 1 1 1 0 100% 100% 100% 1 1 0 100% 100% 100%
And Engine 0 0 0 0 - - - 0 0 0 - - -
Apache Commons IO 2 3 2 1 67% 100% 80% 0 0 0 N/A N/A N/A
Apache Commons Logging 2 3 2 1 67% 100% 80% 2 2 0 100% 100% 100%
Mongo DB 3 5 3 2 60% 100% 75% 0 0 0 N/A N/A N/A

Overall 92 74 53 21 72% 58% 64% 74 40 34 54% 43% 48%
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the smells, while DCCP is the one detecting only two smells
described above and missed by HIST (9 percent). Thus, the
complementarity betweenHIST andDCCP is rather low.

3.2.2 Shotgun Surgery

Shotgun Surgery is the smell with the lowest number of
instances in the subject systems, i.e., with only six systems
affected for a total of six instances (one per system). HIST
was able to detect all the instances of this smell (100 percent
recall) with 86 percent precision outperforming DCCP (i.e.,
the competitive approach). Specifically, DCCP was not able
to detect any of the six instances of this smell present in the
subject systems. Thus, no meaningful observations can be
made in terms of overlap metrics. This result highlights the
fact that it is quite difficult to identify characteristics of such
a smell by solely analysing a single system’s snapshot, as
the smell is intrinsically defined in terms of a change trig-
gering many other changes [14].

It is also worthwhile to discuss an example of Shotgun
Surgery we identified in APACHE TOMCAT and represented by
the method isAsync implemented in the class AsyncSta-
teMachine. HIST identified association rules between this

TABLE 10
Feature Envy—HIST Accuracy as Compared to JDeodorant

Project #Smell HIST JDeodorant

Instances Identified TP FP Prec. Recall F-measure Identified TP FP Prec. Recall F-measure

Apache Ant 8 9 6 3 67% 75% 71% 13 2 11 15% 25% 19%
Apache Tomcat 3 1 1 0 100% 33% 50% 3 2 1 67% 67% 67%
jEdit 10 10 8 2 100% 100% 100% 3 3 0 100% 27% 43%
Android API
(framework-opt-telephony)

0 0 0 0 - - - 0 0 0 - - -

Android API
(frameworks-base)

17 24 15 9 63% 88% 73% 16 16 0 100% 94% 96%

Android API
(frameworks-support)

0 0 0 0 - - - 0 0 0 - - -

Android API (sdk) 3 1 1 0 100% 33% 50% 0 0 0 N/A N/A N/A
Android API (tool-base) 0 0 0 0 - - - 0 0 0 - - -
Apache Commons Lang 1 2 1 1 50% 100% 67% 2 1 1 50% 100% 67%
Apache Cassandra 28 28 28 0 100% 100% 100% 28 28 0 100% 100% 100%
Apache Commons Codec 0 1 0 1 - - - 0 0 0 - - -
Apache Derby 0 0 0 0 - - - 0 0 0 - - -
Eclipse Core 3 5 3 2 60% 100% 75% 0 0 0 N/A N/A N/A
Apache James Mime4j 9 0 0 0 N/A N/A N/A 11 9 2 82% 100% 90%
Google Guava 2 2 2 0 100% 100% 100% 3 0 3 0% 0% 0%
Aardvark 0 0 0 0 - - - 0 0 0 - - -
And Engine 1 2 1 1 50% 100% 67% 0 0 0 N/A N/A N/A
Apache Commons IO 1 0 0 0 N/A N/A N/A 6 0 6 0% 0% 0%
Apache Commons Logging 0 0 0 0 - - - 8 0 8 - - -
Mongo DB 0 0 0 0 - - - 1 0 1 - - -

Overall 86 85 66 19 78% 77% 77% 94 61 33 65% 71% 68%

TABLE 11
Overlap between HIST and Single Snapshot Techniques for

Blob the SS Tech. Is DECOR, for Feature Envy It Is JDeodorant.

Code Smell HIST\SS
Tech.

HISTnSS
Tech.

SS
Tech.n
HIST

# % # % # %

Divergent Change 1 4% 19 87% 2 9%
Shotgun Surgery 0 0% 6 100% 0 0%
Parallel Inheritance 20 50% 15 38% 5 12%
Blob 13 16% 40 51% 27 33%
Feature Envy 44 54% 22 27% 17 19% Fig. 4. One of the identified Divergent Change instances: the class

ViewPager from ANDROID FRAMEWORKS-SUPPORT.
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method and 48 methods in the system, belonging to 31 dif-
ferent classes. This means that, whenever the isAsync

method is modified, also these 48 methods, generally,
undergo a change. Fig. 5 shows all 31 classes involved: each
arrow going from the isAsync method to one of these 31
classes is labeled with the number of times isAsync co-
changed with methods of that class in the analyzed time
period. Note that the total number of changes performed in
the analyzed time period to isAsync is 110. For instance,
isAsync co-changed 104 (95 percent) times with two meth-
ods contained in the Poller class. What is also very sur-
prising about this instance of Shotgun Surgery is that it
triggers changes in over 19 different packages of the soft-
ware system. This clearly highlights the fact that such smell
could be very detrimental in software evolution and mainte-
nance context.

As for the only false positive instance identified by HIST,
it concerns the method dispose from the class GsmData-
ConnectionTracker of the FRAMEWORK-OPT-TELEPHONY

Android APIs (see Table 7). HIST identified association
rules between this method and three other methods in
the system, and in particular: CdmaDataConnection-

Tracker.dispose(), SMSDispatcher.handleSend-

Complete(), and GsmCallTracker.dump(). However,
this behavior was not considered as “smelly” by the

students building the oracle because: (i) differently from
what discussed for the isAsync method, the triggered
changes in this case are spread just across three classes, and
(ii) even if the four involved methods tend to change
together, they are correctly placed into different classes
splitting well the system’s responsibilities. For instance,
while the two dispose methods contained in classes
GsmDataConnectionTracker and CdmaDataConnec-

tionTracker are both in charge of cleaning up a data con-
nection, the two protocols they manage are different (i.e.,
GSM versus CDMA). Thus, even if they co-change during
time, there is no apparent reason for placing them in the
same class with the only goal of isolating the change (poorly
spread in this case). Indeed, as a side effect, this refactoring
operation could create a class managing heterogeneous
responsibilities (i.e., a Blob class).

3.2.3 Parallel Inheritance

Among the 51 instances of the Parallel Inheritance smell,
HIST was able to correctly identify 35 of them (recall 69
percent) with a price to pay of 13 false positives, resulting
in a precision of 73 percent. By using the competitive tech-
nique (i.e., PICA) we were able to retrieve 25 correct
instances of the smell (recall of 49 percent) while also

Fig. 5. One of the identified Shotgun Surgery instances: the AsyncStateMachine.isAsyncmethod from APACHE TOMCAT.
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retrieving 473 false positives (precision of 5 percent). One
of the Parallel Inheritance instances detected by HIST and
missed by PICA is depicted in Fig. 6. The pair of classes
affected by the smell is CompletitionOnQualifiedNa-

meReference and SelectionOnQualifiedNameRefer-

ence from ECLIPSE JDT. As shown in Fig. 6, these two
classes have been committed together on June 27, 2008 in
the same package and since then, the hierarchies having
them as top superclasses evolved in parallel. Indeed, the
first subclass (QualifiedNameReference) has been
added to both superclasses on September 3, 2008 followed
by the second subclass (NameReference) on September
25, 2008. Note that while the name of the subclasses added
to the two superclasses is the same, we are talking about
two different subclasses. Indeed, as show in Fig. 6, these
subclasses are from different packages. For instance, the
NameReference subclass of CompletitionOnQuali-

fiedNameReference is from the org.eclipse.jdt.

internal.codeassist package, while the correspond-
ing subclass of SelectionOnQualifiedNameReference

is from the org.eclipse.jdt.internal.compiler.

ast package.
Looking at the overlap metrics reported in Table 11, we

can see an overlap of 50 percent among the set of smells cor-
rectly identified by the two techniques, while 38 percent of
the correct instances are retrieved only by HIST and the
remaining 12 percent are identified only by PICA. For

example, an instance of Parallel Inheritance detected by PICA
and missed by HIST is the one affecting the pair of classes
Broken2OperationEnum and Broken5OperationEnum

belonging to APACHE COMMONS LANG. In this case, while the
two hierarchies co-evolved synchronously, the (too high)
thresholds used for the support and confidence of the asso-
ciation rule mining algorithm used in HIST did not allow
capturing this specific instance (and thus, to identify the
smell). Obviously, this instance could have been detected
when using lower values for support and confidence, how-
ever, this would naturally result in drastically decreasing
precision while somewhat increasing recall values.

3.2.4 Blob

As for detecting the Blobs, HIST was able to achieve a precision
of 72 percent and a recall of 58 percent (F-measure ¼ 64%),
while DECORwas able to achieve a precision of 54 percent and
a recall of 43 percent (F-measure = 48%). In more details, HIST
achieved better precision values on 13 systems (on average,
þ 45 percent), DECOR on two systems (on average, þ 45
percent), while on one system there was a tie. Thus, for most of
the systems containing Blob instances (13 out of 16) HIST
requires less effort to developers looking for instances of Blobs
due to the lower number of false positives thatwill be inspected
and discarded. Also, HIST ensured better recall on nine out of
the 16 systems containing at least one Blob class, and a tie has

Fig. 6. An identified Parallel Inheritance instance: the pair of classes CompletitionOnQualifiedNameReference and SelectionOnQuali-

fiedNameReference from ECLIPSE JDT.
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been reached on five other systems. On the contrary, HIST was
outperformed by DECOR on Apache Tomcat and jEdit (see
Table 9). However, on the overall dataset, HIST was able to
correctly identify 53 of the 92 existing Blobs, against the 40
identified by DECOR. Thus, as also indicated by the F-mea-
sure value computed over the whole dataset, the overall per-
formance of HIST is better than that one of DECOR (64
percent against 48 percent). Noticeably, the two approaches
seem to be highly complementary. This is highlighted by the
overlap results in Table 11. Among the sets of smells cor-
rectly identified by the two techniques, there is an overlap of
just 16 percent. Specifically, HIST is able to detect 51 percent
of smells that are ignored by DECOR, and the latter retrieves
33 percent of correct smells that are not identified by HIST.
Similarly to the results for the Parallel Inheritance smell, this
finding highlights the possibility of building better detection
techniques by combining single-snapshot code analysis and
change history information.

An example of Blob correctly identified by HIST and
missed by DECOR is the class ELParser from APACHE

TOMCAT, that underwent changes in 178 out of the 1,976
commits occurred in the analyzed time period. ELParser
is not retrieved by DECOR because this class has a one-to-
one relationship with data classes, while a one-to-many
relationship is required by the DECOR detection rule.
Instead, a Blob retrieved by DECOR and missed by HIST is
the class StandardContext of APACHE TOMCAT. While this
class exhibits all the structural characteristics of a Blob (thus
allowing DECOR to detect it), it was not involved in any of
the commits (i.e., it was just added and never modified),
hence making the detection impossible for HIST.

3.2.5 Feature Envy

For the Feature Envy smell, we found instances of this smell
in 12 out of the 20 systems, for a total of 86 affected meth-
ods. HIST was able to identify 66 of them (recall of 77 per-
cent) against the 61 identified by JDeodorant (recall of 71
percent). Also, the precision obtained by HIST is higher
than the one achieved by JDeodorant (78 percent against 65
percent). However, it is important to point out that JDeodor-
ant is a refactoring tool and, as such, it identifies Feature
Envy smells in software systems with the sole purpose of
suggesting move method refactoring opportunities. Thus,
the tool reports the presence of Feature Envy smells only if
the move method refactoring is possible, by checking some
preconditions ensuring that a program’s behavior does not
change after applying the suggested refactoring operation
[48]. An example of considered preconditions is that the
envied class does not contain a method having the same signature
as the moved method [48]. To perform a fair comparison (espe-
cially in terms of recall), we filtered the Feature Envy instan-
ces retrieved by HIST by using the same set of
preconditions defined by JDeodorant [48]. This resulted in
the removal of three correct instances, as well as three false
positives previously retrieved by HIST, thus decreasing the
recall from 78 to 74 percent and increasing the precision
from 78 to 80 percent. Still, HIST achieves better recall and
precision values as compared to JDeodorant.

It is interesting to observe that the overlap data reported in
Table 11 highlights, also in this case, some complementarity

between historical and single snapshot techniques, with
54 percent of correct smell instances identified by both techni-
ques (overlap), 27 percent identified only by HIST, and
19 percent only by JDeodorant.

An example of correct smell instance identified by HIST
only is the method buildInputMethodListLocked

implemented in the class InputMethodManagerService
of the Android framework-base API. For this method, HIST
identified WindowManagerService as the envied class,
since there are just three commits in which the method
buildInputMethodListLocked is co-changed with
methods of its class, against the 16 commits in which it is
co-changed together with methods belonging to the envied
class. Instead, JDeodorant was the only technique able to
correctly identify the Feature Envy smell present in APACHE

ANT and affecting the method isRebuildRequired of
class WebsphereDeploymentTool. In this case, the
envied class is Project, and HIST was not able to identify
it due to the limited number of observed co-changes.

Summary for RQ1. HIST provided acceptable performan-
ces in detecting all smells considered in our study (F-mea-
sure between 64 to 92 percent). While this result was quite
expected on smells which intrinsically require the use of his-
torical information for their detection, it is promising to
observe that HIST provided good performances also when
detecting Blob and Feature Envy smells.

Summary for RQ2. HIST was able to outperform single
snapshot techniques and tools in terms of recall, precision,
and F-measure. While such a result is somewhat expected
for “intrinsically historical” smells, i.e., for (Divergent
Change, Shotgun Surgery, and Parallel Inheritance), noticeably
HIST is also able to perform well for detecting other smells
(i.e., Blob and Feature Envy), provided that historical infor-
mation is available. Last, but not least, for Blob and Feature
Envy, our findings suggest that techniques based on code
analysis of a single snapshot are complementary to HIST
and these two families of approaches can be integrated to
potentially improve performance even further.

4 DEVELOPERS’ PERCEPTION OF SMELLS

Despite having achieved good results in terms of detection
capability, it is also important to point out that a smell
detection technique is actually useful only if it identifies
code design problems that are recognized as relevant prob-
lems by developers. For this reason, we performed a second
study aimed at investigating to what extent the smells
detected by HIST (and by the competitive techniques)
reflect developers’ perception of poor design and imple-
mentation choices and, in this case (i) what is their per-
ceived severity of the problem, and (ii) if they consider as
necessary a refactoring operation aimed at removing the
smell. The design of this second study was based on the
results obtained in the first study. Specifically:

� For purely historical smells (i.e., Divergent Change,
Parallel Inheritance, and Shotgun Surgery) we consider
only instances that are identified by HIST. Indeed,
the results discussed in Section 3 demonstrate low
complementarity between HIST and the competitive
techniques for detecting these smells, with HIST
playing the major role.
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� For the structural smells (i.e., Blob and Feature Envy)
we consider instances identified (i) only by HIST
(onlyHIST group), (ii) only by the competitive tech-
nique (onlyDECOR for Blobs and onlyJD for Feature
Envy), and (iii) by both techniques (both group).
Indeed, the results achieved for these two smells
show that historical and structural information can
both be good alternatives for identifying smells.
Thus, it is interesting to understand which of the
above mentioned groups contains smells that are rec-
ognized as actual problems by developers.

4.1 Study Design

In the following, we report the design and planning of the
study, by detailing the context selection, the research ques-
tions, the data collection process, as well as the analysis
method.

4.1.1 Context Selection

A needed requirement for this study is, of course, soft-
ware developers. In order to recruit participants, we sent
invitations to active developers of ten of the 20 systems
considered in our first study. In particular, we just con-
sidered systems exhibiting instances of at least three of
the code smells investigated in this paper. The active
developers have been identified by analyzing the systems’
commit history.16 In total, we invited 109 developers
receiving responses from 12 of them: two developers
from APACHE ANT, two from ECLIPSE, two from ANDROID

SDK, and six from ANDROID FRAMEWORKS-BASE. Note that,
even if the number of respondents appears to be low (11
percent of response rate), we are inline with the sug-
gested minimum response rate for the survey studies
defined below 20 percent [6].

4.1.2 Research Questions

This study (Study II) aims at addressing the following two
research questions:

� RQ3. Are the historical code smells identified by HIST rec-
ognized as design problems by developers? This research
question focuses its attention on the Divergent Change,
Parallel Inheritance, and Shotgun Surgery smells. HIST
is the first technique able to effectively identify instan-
ces of these smells. Thus, it is worthwhile to know if

the instances of the smells it identifies really represent
design problems for developers.

� RQ4. Which detection technique aimed at Identifying
structural code smells better reflects developers’ percep-
tion of design problems? This research question aims
at investigating how developers working on the
four open-source systems perceive the presence of
structural code smells identified by different detec-
tion techniques. In particular, we focus on smells
identified by HIST only, by the techniques based
on code analysis of a single snapshot only, and
by both.

We answer both research questions through a survey
questionnaire that participants filled-in online.

4.1.3 Survey Questionnaire Design

We designed a survey aimed at collecting developers’ opin-
ions needed to answer two of our research questions. Specif-
ically, given the subject system Si, the following process was
performed:

1) Smell instances selection. The smell instances to con-
sider in our study were selected as follows:
� For each purely historical smell cj (i.e., Divergent

Change, Parallel Inheritance, and Shotgun Surgery)
having at least one instance in Si detected by
HIST, we randomly selected one instance or took
the only one available. Note that we refer to the
“instance” as code component(s) affected by the
smell. For example, it could be a single class
affected by the Divergent Change smell, as well as
a pair of classes affected by the Parallel Inheritance
smell.

� For each structural smell cj (i.e., Blob and Feature
Envy) having at least one instance in Si we ran-
domly selected (i) one instance detected only by
HIST (if any), (ii) one instance detected only by
the competitive technique—i.e., DECOR or JDeo-
dorant—(if any), and (iii) one instance detected
by both techniques (if any).

Note that this study excluded entities affected by more than

one smell instance (e.g., a method affected by both Shotgun

Surgery and Feature Envy). The smells selected on each system

are summarized in Table 12. As it can be seen, we were not

able to get the same number of instances for all the smells and

for all the groups of structural smells. However, we were able

to cover all smells and groups of smells (i.e., onlyHIST, only-

DECOR/JD, both) with at least one smell instance.

TABLE 12
Smell Instances Selected for Each System

System
Divergent Parallel Shotgun Blob Feature Envy

Change Inheritance Surgery onlyHIST onlyDECOR both onlyHIST onlyJD both

Apache Ant - 1 - 1 1 1 1 1 -
Eclipse 1 1 1 1 1 - 1 - -
Android sdk 1 1 - 1 1 1 1 - -
Apache frameworks-base - 1 1 1 1 - 1 1 1

Overall 2 4 2 4 4 2 4 2 1

16. We considered developers that performed at least one commit in
the last two years.
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2) Defining survey questions. For each selected smell
instance, study participants had to look at the source
code and answer the following questions:
� In your opinion, does this code component17

exhibit any design and/or implementation
problem?

� If YES, please explain what are, in your opinion,
the problems affecting the code component.

� If YES, please rate the severity of the design and/
or implementation problem by assigning a score
on the following five-points Likert scale [37]: 1
(very low), 2 (low), 3 (medium), 4 (high), 5 (very
high).

� In your opinion, does this class need to be
refactored?

� if YES, how would you refactor this class?

On the one side, for questions related to purely historical smell

instances detected by HIST, we also added hints on the change

history of the code component (i.e., the same information

exploited by HIST to detect that smell instance). This was

needed to provide participants with information related to the

historical behavior of the involved code components. Indeed,

it is impossible to spot a problem as a Parallel Inheritance

without knowing the number of times the addition of a sub-

class to a class Ci also resulted in the addition of a subclass to

a class Cj. On the other side, for structural smells, no metrics

were shown for instances identified by HIST as well as by the

competitive techniques.

The questionnaires included six tasks18 for APACHE ANT,
ECLIPSE JDT, and ANDROID SDK, and seven tasks for APACHE

FRAMEWORKS-BASE.
Besides the above described survey, we also asked partic-

ipants to fill-in a brief pre-questionnaire in order to assess
their background. In particular, we asked:

� How many years of experience do you have in
programming?

� How many years of experience do you have in
industry?

� Rate your programming skills from 1 = very low to
5 = very high.

Note that all the questions in the survey, as well as the
background questions prefacing the survey, were designed
to make sure that the survey could be completed within
approximately 60 minutes. This is why we limited (i) the
number of tasks and (ii) the number of questions in
the background section, since a higher number could have
resulted in a higher dropout rate before even starting the
main survey.

4.1.4 Data Collection

To automatically collect the answers, the survey and back-
ground questions were hosted on a web application,
eSurveyPro.19 Developers were given 40 days to respond to

the survey. Note that the web application allowed develop-
ers to complete a questionnaire in multiple rounds, e.g., to
answer the first two questions in one session and finish the
rest sometime later. At the end of the response period (i.e.,
of the 40 days), we collected developers’ answers in a
spreadsheet in order to perform data analysis. As explained
before, in the end we collected 12 complete questionnaires
(two developers from APACHE ANT, two from ECLIPSE, two
from ANDROID SKD, and six from ANDROID FRAMEWORKS-BASE).
Note that the developers of the four systems were invited to
evaluate only the smells identified from the system that
they were working on. Indeed, we are interested in gather-
ing only data coming from original developers having suffi-
cient knowledge of the analyzed source code components.
Also, developers were not aware of the types of code smell
investigated in our study.

4.1.5 Analysis Method

To answer RQ3 we computed, for each type of historical
smell:

1) The percentage of cases where the smell has been
perceived by the participants. By perceived, we mean
cases where participants answered yes to the ques-
tion: “In your opinion, does this code component
exhibit any design or coding problem?”

2) The percentage of times the smell has been identified
by the participants. The term identified indicates cases
where besides perceiving the smell, participants
were also able to identify the exact smell affecting
the analyzed code components, by describing it
when answering to the question “If yes, please
explain what are, in your opinion, the problems
affecting the code component”. We consider a smell
as identified only if the design problems described by
the participant are clearly traceable onto the defini-
tion of the smell affecting the code component. For
example, given the following smell description for
the Feature Envy smell: “a method making too many
calls to methods of another class to obtain data and/or
functionality”, examples of “correct” descriptions of
the problem are “the method is too coupled with the Ci

class”, or “the method invokes too many methods of the
Ci class” where Ci is the class envied by the method.
On the other hand, an answer like “the method per-
forms too many calls” is not considered as sufficient to
mark the smell as identified.

3) Descriptive statistics of answers provided by the par-
ticipants to the question “please rate the severity of
the coding problem”. Note that for this point we just
considered answers provided by developers that
correctly identified the code smell.

4) The percentage of participants that answered yes to
the question “does this class need to be refactored?”.
For participants answering “yes”, we also report
their responses to the question “how would you
refactor this class?”.

By performing this analysis for each historical code smell
we should be able to verify if the instances of historical
smells detected by HIST represent actual design problems
for original developers.

17. Depending on the smell object of the question, a code component
could be a method, a class, or a pair of classes.

18. By “task” we refer to the set of questions provided to a partici-
pant for each of the evaluated smell instances.

19. http://www.esurveyspro.comverified on September 2014.
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As for RQ4, we perform the same exact analysis for each
structural smell as described above for the historical smells.
In addition, we compared the answers provided by partici-
pants for smell instances falling into three different catego-
ries (i.e., onlyHIST, onlyDECOR/onlyJD, and both). Given
the limited number of data points, this comparison is lim-
ited to descriptive statistics only, since we could not per-
form any statistical tests.

4.1.6 Replication Package

All the data used in our second study are publicly available
[40]. Specifically, we provide: (i) the text of the email sent to
the developers; (ii) the raw data for the answers (anony-
mized) provided by the developers.

4.2 Analysis of the Results

Before discussing the results of our two research questions, it
is worthwhile to comment on the experience of the develop-
ers involved in our study. Fig. 7 reports the boxplots of the
distribution of answers provided by developers to questions
related to their experience in the background section. Twelve
developers claimed a programming experience ranging
between 5 to 35 years (mean ¼ 18.5, median ¼ 17.5), indus-
trial experience ranging between 1 to 24 years (mean ¼ 12.7,
median ¼ 12). Most of them rated their programming skills
as high. Thus, all 12 participants had some sort of industrial
experience and, most importantly, several years of program-
ming experience.

4.2.1 Are the Historical Code Smells Identified by HIST

Recognized as Design Problems by Developers?

Fig. 8 reports the percentage of developers that correctly
identified the smell present in the code component. As
explained in the design, we computed both the percentage
of developers that perceived and identified the smell.20 How-
ever, in the context of this research question all developers
who perceived the smell were also able to identify it. In addi-
tion, Fig. 9 reports the percentage of developers assigning
each of the five levels of severity (going from very low to
very high) to the identified design/implementation prob-
lems. Finally, Table 13 reports the percentage of developers

that suggested refactoring operations for the identified
smells. Their answers on how to refactor the smells are dis-
cussed in the text.

Starting from theDivergent Change instances identified by
HIST, Fig. 8 shows that developers generally recognized
them as a design/implementation problems. Indeed, the
two ECLIPSE JDT developers, the two ANDROID SDK develop-
ers, and four out of the six involved ANDROID FRAMEWORKS-
BASE developers were able to perceive and identify the pres-
ence of a Divergent Change instance in the analyzed code
components. Most of these developers pointed out low
cohesion of the class as the root cause for the identified
design problem. Low cohesion of classes is clearly a symp-
tom of a Divergent Change smell. Indeed, classes having low
cohesion tend to implement different responsibilities, that
are likely to be changing divergently during time. Interest-
ing is the refactoring suggested by one of the developers of
ANDROID FRAMEWORKS-BASE recognizing this smell in the
PackageManagerService class:

Make a new separate helper class for talking to the
phone’s file system.

In other words, the developer is suggesting performing
an Extract Class refactoring aimed at removing one respon-
sibility from the PackageManagerService, and in partic-
ular the management of the phone file system. Concerning
the severity of the problem as assessed by the developers
identifying the smell, Fig. 9 shows that 25 percent of them

Fig. 7. Experience of the involved developers.

Fig. 8. RQ3: percentage of identified smell instances.

Fig. 9. RQ3: severity assigned by developers to the identified instances
of poorly historical smells detected by HIST.

20. Note that the percentage of identified smells is a subset of the
perceived one (see Section 4.1.3).
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rate the severity as medium, 50 percent as high, and 25 per-
cent as very high. Also, all of them agreed on the need to
refactor the classes affected by Divergent Change.

As for the Shotgun Surgery smell, we have instances of this
smell just in two out of the four subject systems (i.e., ECLIPSE

JDT andANDROID FRAMEWORKS-BASE). The two involved ECLIPSE

JDT developers recognized presence of this smell, explaining
how the high (and spread) coupling of some of the methods con-
tained in the MethodLocator class could represent a design/
implementation problem. Indeed, the basic ingredient for the
appearance of a Shotgun Surgery smell is to have methods
depending on several other classes, like the isAsync

method showed in Fig. 5 in the context of our first study.
Three of the ANDROID FRAMEWORK-BASE developers (50 per-

cent) identified the presence of a Shotgun Surgery instance in
the Handler class as an implementation/design problem.
One of them pointed out that:

Handler is tightly coupled to a few other classes: Mes-
sage, MessageQueue and Looper. Each class has
knowledge about members of the other classes. From a
strict Object Oriented Programming perspective this
is not optimal.

However, the developer explained that from his point of
view in this case the class affected by the smell should not
be refactored, because:

At first glance the coupling looks like a problem, but
these classes are best viewed as one unit. If you accept
that perspective, the design problem just isn’t there.
There may also be performance benefits of accessing
members in the other classes directly. For example,
mLooper.mQueue instead of mLooper.getQueue(). It
makes sense to trade design for performance for a class
at the very core of the message loop.

This example shows exactly what a smell is all about: it is a
symptom in the code that may (or may not) indicate a
design problem. Also, the example highlights the impor-
tance of this evaluation. Indeed, a smell detection tool
should be able to point out smell instances representing an
implementation/design problem that software developers
are interested in refactoring. Note that the developer above
is the only one who did not recognize the need to refactor
Handler class. Concerning the severity of the identified
Shotgun Surgery instances, 70 percent of developers assessed
the severity as high, 15 percent to very high, and the remain-
ing 15 percent to medium. Thus, the instances of Shotgun Sur-
gery identified by HIST are mostly recognized as serious
problems by the developers of these subject systems.

The Parallel Inheritance smell affects three of the subject
systems (see Fig. 8). This smell was the one among the least
perceived (and identified) by developers. Still, one of the

two involved developers of ECLIPSE JDT and APACHE ANT

systems as well as both the developers of ANDROID SDK rec-
ognized its presence, talking about problems in the design
hierarchy. All four developers recognizing the smell,
assessed its severity as high and suggested to refactor it by
moving responsibilities across the hierarchies. This could be
done by applying move method refactoring as well as pull
up/push down method/field refactorings.

Summary for RQ3. Developers recognized most of the
instances of historical smells identified by HIST as design/
implementation problems. Indeed, they recognized 71 per-
cent of the evaluated smell instances (17 out of 24) as
such. Also, developers mostly assessed the severity of the
problems caused by the presence of the historical smells
as high, manifesting the willingness to refactor affected
classes in 100 percent of cases in the presence of Divergent
Change and Parallel Inheritance instances and in 75 percent
of cases in the presence of Shotgun Surgery instances. Thus,
we conclude that the historical code smells identified by HIST
are recognized as actual design problems by developers in most
of the cases.

4.2.2 Which Detection Technique Aimed at Identifying

Structural Code Smells Better Reflects

Developers’ Perception of Design Problems?

Starting from the Blob smell, Fig. 10 reports the percentage
of developers who perceived (the striped columns) and iden-
tified (the filled columns) the Blob instances belonging to the
onlyHIST, onlyDECOR, and both groups. Also, the left part
of Fig. 11 reports the percentage of developers assigning
each of the five severity levels (going from very low to very
high) to the identified Blobs. Finally, the top part of Table 14
reports the percentage of developers that suggested a refac-
toring for the identified Blobs.

We have instances of Blobs identified only by HIST on all
four subject systems. Among the 12 involved developers,
only one developer of ANDROID FRAMEWORKS-BASE did not rec-
ognize the evaluated Blob instance belonging to the onlyHIST
group. The remaining eleven developers (92 percent) clearly
described the problem affecting the analyzed class. For

TABLE 13
RQ3: Percentage of Developers in Favor of Refactoring
the Class among Those Correctly Identifying the Smells

Code Smell % in favor

Divergent Change 100%
Parallel Inheritance 100%
Shotgun Surgery 75%

Fig. 10. RQ4: percentage of perceived and identified Blob instances.
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example, an ECLIPSE JDT developer, referring to the analyzed
class SourceMapper, wrote: “this is a well known Blob in
Eclipse”; an Android frameworks-base developer explained,
evaluating the class WindowManagerService: “it is a very
large and complex class”. The eleven developers recognizing
the Blob instances also evaluated the severity of the problem
as high (18 percent) or very high (82 percent)—see left part of
Fig. 11—manifesting the willingness to refactor such classes
in 100 percent of cases (see Table 14). Most of the developers
suggested to perform an Extract Class refactoring to remove
the smell (e.g., “make the class easier to comprehend by splitting
its responsibilities into different classes”, from an Android frame-
works-base developer). Thus, the Blob instances detected by
HIST andmissed by the competitive technique (i.e., DECOR)
have been mostly recognized by developers as design/
implementation problems. Also, the developers recognized
the high severity of the issue caused by the presence of the
smell, manifesting thewillingness to refactor such classes.

As for the Blob instances detected by DECOR and missed
by HIST, nine out of the 12 developers (75 percent) recog-
nized them as design/implementation problems. In addi-
tion, one of the Apache Ant developers perceived the smell
but failed to identify it21 (see Fig. 10). Concerning the sever-
ity assessed for the Blob instances identified in the onlyDE-
COR group, Fig. 11 shows that 34 percent of developers
selected a low severity, 22 percent medium, 22 percent high,
and 22 percent very high. Also, 78 percent of developers rec-
ognized the need to refactor those Blob instances.

The third group of Blob instances to analyze is the one
grouping together Blobs detected by both HIST and DECOR
(both groups). We have instances of these Blobs only in
APACHE ANT and ANDROID SDK. Interestingly, all developers
recognized the Blob instances belonging to the both group,
even if the severity assigned to them is lower than the sever-
ity assigned to the instances belonging to the onlyHIST
group (see Fig. 11). This result is quite surprising. Indeed,
one would expect a very high severity for smells identified
by both detection techniques. Still, the assessed severity is
medium (25 percent), high (25 percent), or very high (50 per-
cent). Moreover, in 100 percent of the cases developers
agreed on the importance of refactoring the Blob instances
belonging to the both group.

Summarizing, the Blob instances detected by both tech-
niques are the ones that are mostly recognized by devel-
opers (100 percent of the developers), followed by the
ones detected by HIST only (95 percent) and those
detected by DECOR only (75 percent). The instances rec-
ognized as more severe problems are those identified by
HIST only (82 percent very high), followed by those
detected by both techniques (50 percent very high), and
those detected by DECOR only (22 percent very high).
Finally, all the developers agreed on refactoring the Blob
instances detected by both techniques as well as those
detected by HIST only, while 78 percent of developers
agreed on refactoring the onlyDECOR instances.

Thus, when comparing HIST to DECOR, the Blob instan-
ces detected by DECOR only are (i) identified by fewer
developers, (ii) evaluated with a much lower severity level,
and (iii) recognized as less likely refactoring opportunities
by developers. Still, the fact that 75 percent of developers
recognized the smells points out to the conclusion that com-
plementing HIST with structural information (e.g., DECOR)
could be a worthwhile direction in order to identify cur-
rently missed Blob instances. This result confirms the results
of our first study, further highlighting complementarity of
the two techniques.

Turning the attention on the Feature Envy smell, Fig. 12
shows the percentage of developers who perceived (the

TABLE 14
RQ4: Percentage of Developers in Favor of

Refactoring the Class among Those Correctly
Identifying the Smells

Code Smell Detected by % in favor

onlyHIST 100%
Blob onlyDECOR 78%

both 100%
onlyHIST 100%

Feature Envy onlyJD 100%
both 100%

Fig. 11. RQ4: severity assigned by developers to the identified instances
of poorly historical smells detected by HIST (onlyHIST), by the competi-
tive technique (onlyDECOR or onlyJD), and by both.

Fig. 12. RQ4: percentage of perceived and identified Feature Envy
instances.

21. The developer described problems in a method manipulating jar
files.
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striped columns) and identified (the filled columns) the Fea-
ture Envy instances belonging to the onlyHIST, onlyJD, and
both groups. As before, Fig. 11 (right part) reports the sever-
ity assigned by developers to the identified smell instances,
while Table 14 reports the percentage of developers that
would like to refactoring the smell.

The Feature Envy instances falling in the onlyHIST group
(black columns in Fig. 12) have been recognized as design/
implementation problems by nine out of 12 (75 percent)
involved developers. In particular, all the developers of
APACHE ANT, ANDROID SDK, and ECLIPSE JDT identified the
smell instances, while only three of the six ANDROID

FRAMEWORK BASE developers recognized the problem. Devel-
opers recognizing the problem generally described the
issue explaining that the analyzed method has high
coupling with another class (i.e., the envied class). For
example, while analyzing the ECLIPSE JDT method gener-

ateCode from class AND_AND_Expression, one of the
developers explained that “generateCode is a very complex
method and it is highly coupled with the CodeStream class”.
CodeStream is exactly the class identified by HIST as the
envied class for the generateCode method.

Concerning the severity assigned to the smell by the nine
developers identifying it, 67 percent rated it as high, while
33 percent as medium (see Fig. 11). Moreover, all nine devel-
opers suggested to refactor this smell (see Table 14) propos-
ing a Move Method toward the envied class, or an Extract
Method followed by aMove Method.

As for the Feature Envy instances identified by JDeo-
dorant only, we have instances of them just on APACHE

ANT and ANDROID FRAMEWORK BASE. On APACHE ANT both
developers perceived a problem in the analyzed Feature
Envy instance (i.e., the RUN method from the ClearCase

class), but only one correctly identified the smell. On the
ANDROID FRAMEWORK BASE, among the six involved develop-
ers three identified a Feature Envy in the method under
analysis (i.e., executeLoad from the FrameLoader

class). Thus, four out of the eight evaluators (50 percent)
identified the Feature Envy instances in the onlyJD group.
All of them assessed the severity of the spotted instances
of the smell as medium, manifesting some readiness to
refactor them.

Finally, the only instance falling in the both group
belongs to the ANDROID SDK system. This instance has been
identified by both involved developers, that assessed its
severity as high, and suggested a Move Method refactoring to
solve the problem. This confirms, in part, what we observed
for the Blob smell: when both HIST and the techniques
based on a single snapshot analysis detect a code smell, all
involved developers identify the smell and suggest appro-
priate refactoring operation.

Summarizing, the Feature Envy instances detected by
both techniques are the most recognized by developers (100
percent of developers), followed by the ones detected by
HIST only (75 percent) and those detected by JDeodorant
only (38 percent). Also, the instances recognized as more
severe problems are those detected by both techniques
(100 percent high), followed by those detected by HIST only
(67 percent high), and those detected by JDeodorant only
(100 percent medium). Despite these differences, all the
developers identifying the Feature Envy instances falling in

the three different groups (i.e., onlyHIST, onlyJD, and both)
suggested to refactor them.

Summary for RQ4. The smells that perfectly reflect the
developers’ perception of design problems are those identi-
fied by both HIST and techniques based on code analysis of
a single snapshot—100 percent of the involved developers
for both Blob and Feature Envy instances. However, the
smells identified by HIST only are highly recognized as
design problems by developers—95 percent of participants
for Blob instances and 75 percent for Feature Envy instances.
Also, smells belonging to the onlyHIST group are more fre-
quently recognized as problems by developers than those
solely identified by the competitive technique. In summary,
this study confirms that there is a potential to combine
historical and structural information to achieve a better
smell detection.

5 THREATS TO VALIDITY

This section discusses the threats that could affect the valid-
ity of the HIST evaluation.

5.1 Construct Validity

Threats to construct validity concern relationships between
theory and observation. This threat is generally due to
imprecision in the measurements performed in the study.
In the context of Study I, this is mainly due to how the
oracle was built (see Section 3.1.3). It is important to
remark that to mitigate the bias for such a task, the stu-
dents who defined the oracle were not aware of how
HIST actually works. However, we cannot exclude that
such manual analysis could have potentially missed
some smells, or else identified some false positives.
Another threat is due to the baselines—i.e., competitive
approaches—against which we compared HIST. While for
Blob, Feature Envy, Divergent Change, and Shotgun Surgery
we compared HIST against existing techniques/tools, this
was not possible for the Parallel Inheritance smell, for
which we had to define an alternative static detection
technique, that may or may not be the most suitable ones
among those based solely on structural information. Last,
but not least, note that although we implemented the
DECOR rules (for the Blob detection) and the approach by
Rao and Raddy [42] (for Divergent Change and Shotgun
Surgery) ourselves, these are precisely defined by the
authors.

As for Study II, threats to construct validity are mainly
related to how we measured the developers’ perception of
smells. As explained in Section 4.1.3, we asked developers
to tell us whether they perceived a problem in the code
shown to them. In addition, we asked them to explain what
kind of problem they perceived to understand whether or
not they actually identify the smell affecting the code com-
ponent as the design and/or implementation problem.
Finally, for the severity we used a Likert scale [37] that per-
mits the comparison of responses from multiple respond-
ents. We are aware that questionnaires could only reflect a
subjective perception of the problem, and might not fully
capture the extent to which the smell instances identified by
HIST and by the competitive techniques are actually per-
ceived by developers.
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5.2 Internal Validity

Threats to internal validity concern factors that could have
influenced our results. In both studies, a possible threat is
represented by the calibration of the HIST parameters, as
well as of those of the alternative static approaches. We
performed the calibration of these parameters on one
project (Xerces) not used in our study, by computing F-
measures for different possible values of such parameters
(see Section 3.1.4).

A factor that could have affected the results of Study II is
also the response rate: while appearing not very high (11 per-
cent), it is inline what it is normally expected in survey stud-
ies (i.e., below 20 percent [6]). Note also that we just targeted
for this study original developers of the four open source sys-
tems, without taking into account the possibility of involving
students or people with no experience on the object systems.
Still, we cannot ensure that the involved developers had a
good knowledge of the specific code components used in our
surveys. An alternative design would have been to invite
only developers actually involved in the development of the
specific code components evaluated in our survey. However,
(i) the different code components present in our survey are
evolved andmaintained by different developers, and (ii) this
would have resulted in a much lower number of developers
invited, having as a consequence a very likely drop in the
number of participants in our study.

Also, we tried to keep the questionnaire as short as possi-
ble to have more developers answering our survey. For
instance, we did not include any questions on non-smelly
code entities as sanity check in our survey. Thus, we cannot
exclude that participants always indicated that the analyzed
code components contained a design/implementation prob-
lem and the problem was a serious one. However, this holds
for the smell instances identified by HIST as well as for
those identified by the competitive techniques.

Still in the context of Study II, it must be clear that even if
developers recognized most of the code smell instances
identified by HIST and declared that they wanted to refactor
them, this does not always mean that it is possible to take
proper refactoring actions aimed at removing those smells.
Indeed, some systems—e.g., Eclipse JDT—contain classes
that naturally tend to become smelly. For example, parsers
(largely present in the Eclipse JDT) are often affected by
the Blob code smell [7], and are difficult to remove without
taking important (and expensive) refactoring actions.

5.3 External Validity

Threats to external validity concern the generalization of the
results. HIST only deals with five smells, while there might
be many more left uncovered [9], [14]. However, as
explained in Section 2 we focused on (i) three smells—Diver-
gent Change, Shotgun Surgery, and Parallel Inheritance—that
are clearly related to how source code elements evolve over
time, rather than to their structural characteristics, and (ii)
two smells—Blob and Feature Envy—whose characteristics
can be captured, at least in part, by observing source code
changes over time. However, we cannot exclude that there
could be other smells that can be modeled similarly.

As for the first study, we conducted it on 20 Java
projects ensuring a good generalization of our findings. We

evaluated HIST and the competitive techniques on a spe-
cific system’s snapshot selected by splitting the history
of each object system in two equal parts. Thus, the
achieved results, and in particular our main finding in
the context of RQ2 (i.e., HIST was able to outperform single
snapshot techniques and tools in terms of recall, precision,
and F-measure), might be influenced by the specific
selected snapshot. To mitigate such a threat, we repli-
cated Study I on 10 snapshots representing 10 different
releases of a single system, namely APACHE CASSANDRA. In
particular, we considered CASSANDRA’s releases from 0.5
to 1.1.22 Note that we just performed this analysis on a
single system since it required the manual definition of
10 new oracles (i.e., one for each release) reporting the
smell instances present in each release. The oracle defini-
tion was performed by two Master’s students (one of
which was also involved in the definition of the 20
oracles exploited in Study I) by adopting the same proce-
dure described in Section 3.1.3. We run HIST and the
competitive techniques on the 10 snapshots representing
the 10 releases. Such snapshots have been identified
by exploiting the git tagging mechanism. The results
achieved are high consistent when comparing HIST and
the competitive techniques. Fig. 13 reports the boxplots
of the F-Measure achieved by HIST and by the competi-
tive techniques on the 10 CASSANDRA releases for each of
the five considered code smells. The achieved results can
be summarized as follows:

� Divergent change. HIST achieves a higher F-Measure
with respect to the competitive technique (i.e.,
DCPP) in nine out of the 10 considered releases (all
but CASSANDRA 0.5).

� Shotgun surgery. HIST achieves a higher F-Measure
with respect to the competitive technique (i.e.,
DCPP) in nine out of the 10 considered releases (all
but CASSANDRA 0.5). In CASSANDRA 0.5, a tie is reached,
since no instances of the Shotgun Surgery smell are
present, and both detection techniques do not
retrieve any false positive.

Fig. 13. HIST versus single-snapshot competitive techniques (SS):
F-Measure achieved for each smell type on the 10 Cassandra releases.

22. We discarded the first four releases (i.e., from release 0.1 to
release 0.4) since change-history information for these four releases was
not present in the versioning system.
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� Parallel inheritance. HIST achieves a higher F-Mea-
sure with respect to the competitive technique (i.e.,
PICA) in all 10 considered releases.

� Feature envy. HIST achieves a higher F-Measure with
respect to the competitive technique (i.e., JDeodor-
ant) in six out of the 10 considered releases, JDeodor-
ant works better on two releases (the first two,
CASSANDRA 0.5 and 0.6), while a tie is reached on the
remaining two releases.

� Blob. HIST outperforms the competitive technique
(i.e., DECOR) in all 10 considered releases.

Interestingly, when the competitive techniques outper-
form HIST, the releases involved are the 0.5 (in case of
Divergent Change, Shotgun Surgery, and Feature Envy)
and the 0.6 (in case of Feature Envy), representing the first
two considered releases. Thus, we can conclude that a
shorter change history penalizes HIST as compared to the
competitive techniques. Such a limitation is typical of all
approaches exploiting historical information to derive
recurring patterns. Despite that, the overall results achieved
on the release-snapshots confirm our main finding reported
while answering RQ2: HIST outperforms the competitive
detection techniques based on code analysis of a single sys-
tem snapshot. The interested reader can find detailed
results about this analysis in our replication package [40].

Despite the effort we put in extending our evaluation to a
high number of systems, it could be worthwhile to replicate
the evaluation on other projects having different evolution
histories or different architectures (e.g., plugin-based archi-
tecture). Also, the number of code smell instances present in
our oracle was quite low for the Shotgun Surgery smell (six
instances). However, while this means evaluating the HIST
performances on a small number of “true positive” instan-
ces, it is worth noting that achieving high precision levels is
even harder when the number of correct instances in the
oracle is low. Indeed, it is easier to identify a high number
of false positives when the true positives in the oracle are
very few. Despite this, HIST achieved an average precision
of 86 percent for such a smell.

Concerning Study II, external validity threats can be
related to the set of chosen objects and to the pool of the par-
ticipants to the study. Concerning the chosen objects, we are
aware that our study is based on smell instances detected in
four Java systems only, and that further studies are needed
to confirm our results. In this study we had to constrain our
analysis to a limited set of smell instances, because the task
to be performed by each respondent had to be reasonably
small (to ensure a decent response rate).

6 RELATED WORK

This section analyzes the literature related to (i) the identifi-
cation of code smells in source code; and (ii) the analysis of
the evolution of code smells in existing software systems.

6.1 Methods and Tools to Detect Bad Smells

All the techniques for detecting code smells in source code
have their roots in the definition of code design defects
and heuristics for identifying those that are outlined in
well-known books: [10], [14], [45], [50]. The first by Web-
ster [50] describes pitfalls in Object-Oriented (OO)

development going from the management of a project
through the implementation choices, up to the quality
insurance policies. The second by Riel [45] defines more
than 60 guidelines to rate the integrity of a software
design. Fowler [14] defines 22 code smells together with
refactoring operations to remove them from the system.
Finally, Brown et al. [10] describe 40 anti-patterns together
with heuristics for detecting them in code.

Starting from the information reported in these books,
several techniques have been proposed to detect design
defects in source code. Travassos et al. [47] define manual
inspection rules (called “reading techniques”) aimed at
identifying design defects that may negatively impact the
design of object-oriented systems.

Simon et al. [46] provide a metric-based visualization tool
able to discover design defects representing refactoring
opportunities. For example, to identify Blobs, each class is
analyzed to verify the structural relationships (i.e., method
calls and attribute accesses) among its methods. If it is possi-
ble to identify different sets of cohesive attributes and meth-
ods in a class, then an Extract Class refactoring opportunity
is identified.

van Emden and Moonen [49] present jCOSMO, a code
smell browser that detects and visualizes smells in Java
source code. They focus their attention on two code smells
related to Java programming language, i.e., instanceof and
typecast. The first occurs when there is a concentration of
instanceof operators in the same block of code making the
code difficult to understand. As for the typecast code smell,
it appears when an object is explicitly converted from one
class type into another, possibly performing illegal casting
which results in a runtime error.

Kamiya et al. [21] introduced the tool CCFinder in order
to identify clones in source code. In particular, they used a
syntactic-based approach where the program is divided in
lexemes and the token sequences are compared in order to
find matches between two subsequences. However, such
approach appear to be ineffective in cases where duplicated
code suffers from several modifications during its evolu-
tion. To mitigate such a problem, Jiang et al. [18] introduced
DECKARD, a technique able to identify clones using a mix
of tree-based and syntactic-based approaches. They first
translate the source code into syntax tree, and then comple-
ment it with the syntactic information in form of vectors
that are subsequently clustered. To detect clones, heuristic
rules are applied on the clusters.

Marinescu [30] proposed a mechanism called “detection
strategies” for formulating metric-based rules that capture
deviations from good design principles and heuristics. Such
strategies are based on identifying symptoms characterizing
smells and metrics for measuring such symptoms, and then
by defining rules based on thresholds on such metrics.
Then, Lanza and Marinescu [26] describe how to exploit
quality metrics to identify “disharmony patterns” in code
by defining a set of thresholds based on the measurement of
the exploited metrics in real software systems. The detection
strategies are formulated in different steps. First, the symp-
toms that characterize a particular smell are defined. Second,
a proper set of metrics measuring these symptoms is identi-
fied. Having this information, the next step is to define
thresholds to classify the class as affected (or not) by the
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defined symptoms. Finally, AND/OR operators are used to
correlate the symptoms, leading to the final rule for detect-
ing the smells.

Munro [35] presented a metric-based detection technique
able to identify instances of two smells, namely Lazy Class
and Temporary Field, in source code. In particular, a set of
thresholds is applied to the measurement of some structural
metrics to identify those smells. For example, to retrieve
Lazy Class, three metrics are used: Number of Methods,
LOC, weight methods per class (WMC), and Coupling
Between Objects (CBO).

Khomh et al. [25] proposed an approach based on Bayes-
ian belief networks to specify and detect smells in pro-
grams. The main novelty of that approach is represented by
the fact that it provides a likelihood that a code component
is affected by a smell, instead of a Boolean value like previ-
ous techniques. This is also one of the main characteristics
of the approach based on quality metrics and B-splines pro-
posed by Oliveto et al. [36] for identifying instances of Blobs
in source code.

Tsantalis and Chatzigeorgiou [48] presented JDeodorant,
a tool for detecting Feature Envy smells with the aim of sug-
gesting move method refactoring opportunities. In particu-
lar, for each method of the system, their approach forms a
set of candidate target classes where a method should be
moved. This set is obtained by examining the entities (i.e.,
attributes and methods) that a method accesses from the
other classes. In its current version JDeodorant23 is also able
to detect other three code smells (i.e., State Checking, Long
Method, and God Classes).

Moha et al. [33] introduced DECOR, a technique for spec-
ifying and detecting code and design smells. DECOR uses a
Domain-Specific Language (DSL) for specifying smells
using high-level abstractions. Four design smells are identi-
fied by DECOR, namely Blob, Swiss Army Knife, Functional
Decomposition, and Spaghetti Code.

Kessentini et al. [22] presented a technique to detect
design defects by following the assumption that what sig-
nificantly diverges from good design practices is likely
to represent a design problem. The advantage of their
approach is that it does not look for specific code smells (as
most of approaches, including HIST, do) but for design
problems in fwnweL. Also, in the reported evaluation [22]
the approach was able to achieve a 95 percent precision in
identifying design defects.

Boussaa et al. [8] proposed the use of competitive coevo-
lutionary search to the code-smells detection problem. In
particular, two populations evolve simultaneously: the first
generates detection rules with the aim of detecting the high-
est possible proportion of code smells, whereas the second
population generates smells that are currently not detected
by the rules of the other population.

Ligu et al. [28] introduced the identification of Refused
Bequest code smell using a combination of static source code
analysis and dynamic unit test execution. Their approach
aims at discovering classes that really wants to support the
interface of the superclass [14]. In order to understand what
are the methods really called on subclass instances, they

intentionally override these methods introducing an error
in the new implementation (e.g., division by zero). If there
are classes in the system invoking the method, then a failure
will occur. Otherwise, the method is never called and an
instance of Refused Bequest is found.

All the approaches mentioned so far exploit information
extracted from source code—e.g., quality metrics—to detect
code smells. Differently, HIST, the approach described in
this paper, exploits change-history information extracted
from versioning systems for the identification of code smells
in source code. From this point of view, the two most
related approaches are those by Ratiu et al. [44] and by
Gı̂rba et al. [17].

Ratiu et al. [44] describe an approach for detecting smells
based on evolutionary information of problematic code
components (as detected by code analysis) over their life-
time. The aim is to measure persistence of the problem and
related maintenance effort spent on the suspected compo-
nents. This work is the closest to HIST since it discusses the
role of historical information for smell detection. However,
Ratiu et al. did not explicitly use historical information for
detecting smells (as done by HIST), but they only performed
multiple code analysis measurements of design problems
during the history of code components. Historical informa-
tion have also been used by Lozano et al. [29] to assess the
impact of code smells on software maintenance.

Gı̂rba et al. [17] exploited formal concept analysis for
detecting co-change patterns. In other words, they identi-
fied code components that change in the same way and in
the same time. The authors explain how the proposed tech-
nique could be applied for detecting instances of Shotgun
Surgery and Parallel Inheritance. However, the performances
of their approach for the detection of these two smells are
not reported. It is worth noting that while the basic idea
behind the work by Gı̂rba et al. is similar to the one behind
HIST, our approach exploits a totally different underlying
mechanism (i.e., association rules versus FCA) providing
additional information on the degree to which code compo-
nents co-change during time (i.e., support and confidence).
Also, while the approach by Gı̂rba et al. performs a change
analysis at release level (i.e., the changes to each code com-
ponent are detected each time a release is issued), HIST
relies on finer-grained information extracting the changes at
commit level.

Historical information has been also exploited by Ouni
et al. [38] in the context of a multi-objective optimization-
based approach aimed at identifying the best sequence of
refactoring operations that minimizes the number of bad-
smells in a system under analysis while maximizing the
consistence with the development history. While we share
with Ouni et al. the use of historical information to improve
the internal quality of software, HIST is a smell detector
also focused on historical smells, while the approach by
Ouni et al. is a refactoring recommendation system.

Finally, it is worthwhile to mention that co-change analy-
sis has been used in the past for other purposes, for example
by Ying et al. [53], Zimmermann et al. [54], [55], Gall et al.
[15], and Kagdi [16], [19], [20] for identifying logical change
couplings, and by Adams et al. [2], Mulder and Zaidman
[34], and Canfora et al. [10] for the identification of
crosscutting concerns. Although the underlying technique23. http://www.jdeodorant.com/verified on February 2014.
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is similar—i.e., based on the identification of code elements
that co-change—for our purpose (smell detection) appropri-
ate rules are needed, and as explained in Section 2, a fine-
grained analysis, identifying co-changes at method-level, is
often required.

6.2 Empirical Studies on Bad Smells

Code code smells have also been widely studied in order to
investigate their evolution and their effect on maintenance
activities.

As far as the evolution of code smells is concerned, Chat-
zigeorgiou andManakos [11] demonstrated that the number
of code smells increases during the evolution of the system
and that the developers are reluctant to perform activities
aimed at their removal. Also Peters and Zaidman [41]
obtained similar results showing how, even if the develop-
ers are aware about the presence of code smells, they do not
care to perform refactoring activities to remove them from
the system. The reasons of this behavior are explained by
Arcoverde et al. [4], who reported a survey in order to
understand the longevity of code smells and showed that
code smells often remain in source code for a long time and
the main reason to postpone their removal through refactor-
ing activities is to avoid API modifications [4].

As for the studies aimed at analyzing evolution of code
smells, there are several empirical studies targeted at investi-
gating their impact on maintenance properties, such as com-
prehensibility and change- or fault- proneness. Abbes et al. [1]
investigated how two types of code smells—Blob and Spa-
ghetti Code—impact program comprehension. The results
demonstrate that, while the presence of a code smell does not
decrease significantly the developers’ performance, a combi-
nation of more code smells in the same class is able to
destabilize the developers and, consequently, reduce their
performance. Also Yamashita and Moonen [52] studied the
interaction of different code smells, obtaining similar results.
Indeed, they showed that the maintenance problems are
strictly related to the presence of more code smells in the
same file. At the same time, they studied the impact of code
smells on maintainability characteristics [51]. In particular,
they were the first to investigate the key maintainability fac-
tors that are relevant for the developers and then identify
which code smells related to thesemaintainability problems.

Regarding to change- and fault-proneness, Khomh et al.
[23], [24] demonstrated how code smells make the source
code much more change prone [23] and fault-prone [24]
with respect to the other files. Moreover, they provided evi-
dence that code involved in code smells is more fault-prone
than the other files in the system. Khomh et al. also demon-
strated that there are some code smells—such as Message
Chains—where the phenomenon is amplified [24].

The correlation between the presence of code smells and
the probability that the class has errors has also been empiri-
cally evaluated by Li and Shatnawi [27]. They studied the
post-release system evolution process demonstrating that
there are many code smells positively correlated with class
errors.

All these studies provide evidence that code smells have
negative effects on maintenance properties such as under-
standability. However, it is still unclear whether developers

would actually consider code smells as actual symptoms of
suboptimal design/implementation choices. In other words,
there seems to be a gap between the theory and the practice.
Our second study partially bridged this gap, providing
empirical evidence on the extent to which code smells iden-
tified by HIST and by techniques based on the analysis of a
single snapshot are perceived by original developers as
actual design or implementation problems.

7 CONCLUSION AND FUTURE WORK

We presented HIST, an approach aimed at detecting five
different code bad smells by exploiting co-changes extracted
from versioning systems. We identified five smells for
which historical analysis can be helpful in the detection pro-
cess: Divergent Change, Shotgun Surgery, Parallel Inheritance,
Blob, and Feature Envy. For each smell we defined a
historical detector, using association rule discovery [3] or
analyzing the set of classes/methods co-changed with the
suspected smell.

We evaluated HIST through two empirical studies. In the
first study, we assessed its recall and precision over a manu-
ally-built oracle of smells identified in 20 Java open source
projects, and compared it with alternative smell detection
approaches based on the analysis of a single project snap-
shot. The results of our study indicate that HIST exhibits a
precision between 72 and 86 percent, and a recall between
58 and 100 percent. For “intrinsically historical” smells—
such as Divergent Change, Shotgun Surgery, Parallel Inheri-
tance—HIST clearly outperforms approaches based on the
analysis of a single snapshot, and generally performs as
well these latter (if not better) for Blob and Feature Envy
smells. Besides the better detection accuracy (in terms of
precision and recall), HIST has a further advantage: it high-
lights smells that are subject to frequent changes, and there-
fore be possibly more problematic for the maintainer. In
other words, a Blob detected based on structural information
might not be necessarily a problem if it rarely (or never)
changes, whereas it is worthwhile to bring to the attention
of the developer those changing very frequently, hence
identified by HIST. Finally, it is important to remark that in
several cases the sets of smells detected by HIST and by
techniques analyzing a single system’s snapshot are quite
complementary, suggesting that better techniques can be
built by combining them.

In a second study, we involved 12 original developers of
four open source systems to understand to what extent
smell instances identified by HIST and by the competitive
techniques are felt as design/implementation problems by
developers. The results achieved indicated that over 75 per-
cent of smell instances identified by HIST are also recog-
nized by developers as actual design/implementation
problems. In addition, this study showed that smell instan-
ces identified by both HIST and the single-snapshot techni-
ques are the ones that perfectly match developers’
perception of design/implementation problems. This result,
together with the high complementarity between HIST and
some of the competitive techniques observed in our first
study, triggers our future research agenda, aimed at devel-
oping a hybrid smell detection approach, obtained by com-
bining static code analysis with analysis of co-changes.
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Also, we are planning on investigating the applicability of
HIST to other types of smells. Finally, we would like to per-
form a deeper investigation into the characteristics causing
a smell instance to represent/not represent a problem for
developers.
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