Mining Version Histories to Guide Software Changes

Thomas Zimmermann Peter Weil3gerber Stephan Diehl Andreas Zeller
tz@acm.org weissger@st.cs.uni-sb.de diehl@acm.org zeller@acm.org

Saarland University, Saarlcken, Germany

Abstract each time some programmer extended fikeys[] ar-
ray, she also extended the function that sets the pref-
We apply data mining to version histories in order to erence default values. If the programmer now wanted
guide programmers along related changes: “Programmers to commit her changewsithout altering the suggested

who changed these functions also changed...”. Given a location,ROSEwould issue a warning.

set of existing changes, such rules (a) suggest and predict . ,

likely further changes, (b) show up item coupling that is in- Detect coupling mdetegtable by program a_\nalys_|sAs L
detectable by program analysis, and (c) prevent errors due ~ ROSE Operates uniquely on the version history, it is
to incomplete changes. After an initial change, ®DSE able to detect coupling betwe(_an |t.ems t_hat canno.t be
prototype can correctly predict 26% of further files to be detected by program analysis—including coupling
changed—and 15% of the precise functions or variables. between items that are not even programs. In Figure

The topmost three suggestions contain a correct location p0f5|t|or_1 3 on the list 1S aECLIPSE HTMLdocur_nen-
with a likelihood of 64%. tation file with a confidence of 0.75—suggesting that

after adding the new preference, the documentation

. should be updated, too.
1. Introduction P

ROSEIs not the first tool to leverage version histories. In
Shopping for a book at Amazon.com, you may have come earlier work (Sectior7), researchers have used history data
across a section that reads “Customers who bought thio understand programs and their evoluti@h fo detect
book also bought...”, listing other books that were typi- evolutionary coupling between fileg][or classes4], or to
cally included in the same purchase. Such information is support navigation in the source cod# [In contrast to this
gathered bylata mining— the automated extraction of hid- ~ state of the art, the present work
den predictive information from large data sets. In this pa-

per, we apply data mining teersion histories=Progran- ¢ uses full-fledgediata mining techniquet® obtain as-

sociation rules from version histories,

mers who changed these functions also changed...”. Just

like the Amazon.com feature helps the customer browsing e detects coupling between fine-grainpmgram enti-
along related items, ouROSEtool guides the programmer ties such as functions or variables (rather than, say,
along related changes, with the following aims: classes), thus increasing precision and integrating with

Suggest and predict likely changesSuppose you are a program analysis,

programmer and just made a change. What else do e thoroughly evaluates thebility to predict future or
you have to change? Figufieon the following page missing changeshus evaluating the actual usefulness
shows ourROSE tool as a plug-in for theECLIPSE of our techniques.

programming environment. The programmer is ex-

tendingECLIPSEitself with a new preference, and has The remainder of this paper is organized as follows. Sec-

added an element to thikeys[] array. ROSEnOW sug- tion 2 shows how to gather changes and their effects; Sec-
gests to consider further changes, as inferred from thetion 3 applies th'?‘ .tOCVS' Section4 describes the basic .
ECLIPSEversion history. First come the locations with approaches to mining these data, followed by examples in

the highestonfidence-that is, the likelihood that fur- ~ SECtiond. In Section6, we evaluatekOSEs ability to pre-
ther changes be applied to the given location. dict future changes, based on earlier history: How often can

ROSEsuggest further changes, and, if so, how precise is it?
Prevent errors due to incomplete changesin Figure 1, Section7 discusses related work and Sect®oloses with
the top location has a confidence of 1.0: In the past, conclusion and consequences.

% Java - Eclipse Platform E@

File Edit Source Refactor Mavigate Search Project Run Window Help
B-EES | [F-%- ||| RS- 7% e] e
ﬁ ‘F% Package Explarer - X

By =

+ m CompareEditorContributar, jay A
3 + @ CompareMessages. java

B} + @ CorpareMavigator, java

E = m ComparePreferencePage. jave

a_ .
4 =

A) The user inserts a
new preference into jm
the field fKeys]]

T HEW PREFERENCE |
%F OPEN_STRUCTURE_C
SF PREF_SavE_alL_EDT1
3F PrEFIX

W R

Kj *ComparePrefere 4

ublic final OwverlayPreferenceStore. OverlavKey[] ! fEey== !new OverlayPreferenceStore . Overlayl - [

new OverlayPreferenceStore. Overlayley(Overlay ceStore . BOOLEAN, COFPEN_STRUCTURE_COM
new OverlayPreferenceStore. Overlayley(OverlayPreferenceStore . BOOLEAN, SYHCHRONIZE SCROLL
new OverlayPreferenceStore. Overlaykey(OverlayPreferenceStore BOOLEAN, SHOW_PSEUDO COHFLI
new OverlayPreferenceStore. Overlayley(OverlayPreferenceStore BOOLEAN, INITIALLY SHOW_ANC
new OverlayPreferenceStore. Overlayley(OverlayPreferenceStore . BOOLEAN, SHOW_MORE_INFO),

new OverlayPreferenceStore. OverlayKey(OverlayPreferenceStore . BOOLEAN, IGHNORE_WHITESPACE)
new OverlayPreferenceStore. Overlayley(OverlayPreferenceStore BOOLEAN, PREF_SAVE_ALL_EDIT

new OverlayPreferenceStore. OverlayKey(OverlayPreferenceStore . BOOLEAN, HEW_PREFERENCE),

new OverlayPreferenceStore. Overlayley(OverlayPreferenceStore STRING, AbstractTeztEditor.
new OverlayPreferenceStore. Overlayley(OverlayPreferenceStore BOOLEAN, AbstractTextEditor
sonew OverlayPreferenceStore. OverlayKev(OverlayPreferenceStore BOOLEAN, USE_SPLINES),
new OverlayPreferenceStore. Overlayley(OverlayPreferenceStore BOOLEAN, TUSE SIHGLE_LIHE).
s<new OyerlayPreferenceStore. OverlayKey(OverlayPreferenceStore BOOLEAN, USE RESOLVE UI),

F SHOMW_MORE_INFO
¥ SHOW_PSEUDO_CON public static void{initDefault=(IFreferenceStore store)){
3 =y =tore.setDefault - - B N
B) ROSE SuggeStS store.setDefault (SYHCHRONIZE SCROLLING, true):
> store.setDefault (SHOW _PSEUDOD CONFLICTS. false):
locations for further store. setDefault(INITIALLY SHOW ANCESTOR_FANE, false):
store.setDefault (SHOW_MORE INFO, false):
Chan.ges.’ eg the s=tore.setDefault { IGHORE_VWHITESPACE. false):
function initDefaults() store. setDefault (PREF_SAVE_ALL EDITORS. false):
— ssztore.setDefault (USE_SPLINES, false);
tore.setDefault (USE_SINGLE LINE, true): v
o fChed = = =
< ¥
o fCompareC
o feys | & Related Changes laz a4 1 é’§f‘? [] }:D v X
o FowerlayStore " =
o FPreferenceChangelis Syrmbal File: | Support | Confidence |
o FPreviewviewer initDef aults(IPreferenceStore stare ComparePreferencePage. java g 1.0
& ComparePreferenceP: org.eclipse . compare/plugin. properties plugin. properties 7 0.875
B addtheckBox(Compas [4] org.eclipse. compare/buildnotes_rampare. html buildnotes_cormpare., bl 6 0.75
& createContents(Comp @ TextMergeviewer{Composite parent, int style, CompareConfiguration configuration) TextMergeViewer . java -] 0.75
| createGeneralPage(Co m propertyChangelPropertyChangeEvent event) TextMergeviewer java] 0.75
| createPreviewer{Com| @ createGeneralPagel Composite parent) ComparePreferencePage. java 5 0.625
m createTextCompareP: @ createTextComparePage{Composite parent) ComparePreferencePage. java 5 0.625
@ dispose() e @ handleDisposelDisposeEvent event) TextMergeiiewer java 4 0.5
& inib TWnrkhenchi
< > Tasks | Console | Related Changes
‘Writable Insett: 89:5

Figure 1. After the programmer has made some changes to the ECLIPSE source (above), ROSE
suggests locations (below) where, in similar transactions in the past, further changes were made.

2_ ProceSS|ng Change Data Rose Server Rose Eclipse Client
Querying —

ures . SIS =S N
Figure 2 illustrates the basic data flow through dR®OSE watching| ~ | APPlica
tool.! The ROSEserverreads a version archive (far left), Version Transactions Rule Set Suggestions
groups the changes int@nsactionsmines the transactions ~———= v
for ruleswhich describe implications between software en- - i
tities: “If fKeys[] is changed, themitDefaults() is typically -
changed, too.” When the user changes some entity (say, Changef(s) User
fKeys[]), the ROSEclient queries the rule set for applicable
rules and makes appropriate suggestions for further changes ~ Figure 2. The data flow through ROSE.

(say,initDefaults()).

We begin by introducing formal definitions for changes, . .
transactions, and affected entities, generalizing the concepté) - S(p)' € P. Here,P is the set of all products; the set of
as found in existing version archives. Adopting the notation changes is denoted és= P — 7) .
from [26], a changeis a mapping : P — P, which, when Changes can beomposedising the composition oper-

applied, transforms a produpte P into achanged product ~ @toro : € x C — C. This is useful for denotingansac-
tions consisting of multiple changes to multiple locations.

1ROSE stands foReengineering Of Software Evolutioit;is a non- For instance, the transaCt.iQN_l,_Z between two versions
Rational tool. p1, p2 € P, composed ofi individual changess, ..., &,

is expressed a&12 = 810820 -+ 08y With A1 2(p1) = 1|class cat {
(810820 08n)(P1) = 81(82(- - - n(P1))) = P 8 "“_‘3!_.‘.?...S.‘..'.‘..”.?.[.]..P%.‘f*.s..i.f.,..| catcolors |
To express all the syntactic components affected by ajg ! i

Class Cat

: " R public Gat() { CatCat(€S 166 ooovomreoe e

change, we define the concept @itities. An entity is a ol 3 lines 25-30 ; Change inLne s
. . . - . 1 affects H
triple (f, c, i), wheref is the name of the affected file,is 56 e ammals java |
the syntactic category of the affected component such ass|ciass pog { { fleld Cat.COLORS |

method class file, . . ., andi is the identifier of the affected)"”.‘7'vi° Stringl] GeRs = { |D°@J-COL0RS Class Dog

. . . L. 80 lines 60-80 lines 58-99
component. The mappingntitiesretrieves all entities af- 4|,
fected by a change or transaction, as in:

- . . Figure 3. Relating changes to entities.
entitieg A) = entitiegs1) U - - - U entitiegs,) = g g chang
(Comp.java, method initDefaulty)),
(Comp.java, field, fKeyg]),
(Comp.java, class ComparePreferencePage
(Comp.java, file, Comp.java)?,

bers for each chang®OSEthusparseshe files, asso-
ciating syntactic entities with line ranges. As sketched
in Figure3, ROSEcan thus relate any change (given by
file and line) to the affected components.

Entities are the base for later mining: “I changed one entity;

which other entities should | typically change?” .
4. From Transactions to Rules

3. Grouping Changes to Transactions Given the transactions as described in the previous sections,
the aim of theROSEserver is to mineulesfrom these trans-

Our ROSEserver retrieves changes and transactions as dehctions. What is a rule? Here is an example:

scribed above from existing version archives—typically

from CVS archives, which are frequently used for open- {(Comp.java, field, fkeyg])}
source systems. Whilevs is popular, it has some weak- = { (Comp.java, method initDefaults)), @
nesses that require speaita cleaning28): (plug.properties, file, plug.properties) }

This rule means that whenever the user changes the
field fKeyg] in Comp.java, then sheshouldalso change the
methodinitDefaulty) and the fileplug.properties. Here,
eshould” means that the rule is based on experience and
does not constitute absolute truth; the charactet is thus
not to be read as a logical implication that always holds.

Formally, anassociation rule ris a pair(xz, X2) of two
disjoint entity setx; andx,. In the notatiork; = X2, X1 is
called theantecedenandx, the consequent

As said before, rules do not tell an absolute truth. They
have aprobabilistic interpretation based on tr@mount of
evidencein the transactions they are derived from. This
Branches and merges.The evolution of a product some- amount of evidence is determined by two measures:

tlmeslbran(l;hes Into (:I;ffere_nt evlolut|on strﬁ_nds, Vr:’h'Ch Support. The support determines thrimberof transac-
may later be merged again. NGYS archive, the tions the rule has been derived from. Assume that
merge of a branch is not reflected e_xphutly; mstead, the field fKeyg] was changed in 8 transactions. Of
the merge becomes a large transaction which includes these 8 transactions, 7 also included changes of both

all the chgnge; ”?ade In thg branch. - In order to de- the methodnitDefaults) and the fileplug.properties.
tect coupling within transactions, one must take into Then, thesupportfor the above rule is 7

account all branches, but avoid the large merge trans-
actions. ROSEdoes so by ignoring all changes that Confidence. The confidence determines tsieengthof the
affect more than 30 entities. consequence, or the relative amount of the given con-
sequences across all alternatives. In the above exam-
ple, the consequence of changimitDefaulty) and
plug.properties applies in 7 out of the 8 transactions
2To save space, we abbreviate all file names from Figucetheir first involving fKeyg]. Hence, theconfidenceor the above
syllable;Comp.java stands foIcComparePreferencePage.java. rule is 7/8 = 0.875.

Inferring transactions. Most modern version control sys-
tems have a concept g@froduct versioning-that is,
one is able to access transactions as they alter the entir
product.CVS, though provides onlfile versioning To
recover per-product transactions frabvs archives,
we mustgroupthe individual per-file changes into in-
dividual transactionsROSEfollows the classicaslid-
ing windowapproach T]: two subsequent changés
andsdj 1 by the same author and with the same ratio-
nale are part of one transactianif they are at most
200 seconds apart.

Getting entities. CVS has no syntactic knowledge about
the files it stores; it manages only files and line num-

Formally, we define Given this situation, a minimum support of 3 and a mini-

. . mum confidence of 8, ROSEcomputes the following rules:
¢ thefrequencyof a setx in a set of transaction§ as P g

frq(T,x) =[|{t [t e T,x Ct}].

¥ = {(plug.properties, file, plug.properties)} [5; 1.0]
¥ = {(Text.java, method TextMergeViewdd)} [3; 0.6]
¥ = {(Text.java, method propertyChangé)} [3; 0.6]

e thesupportof a rulex; = X by a set of transactions
T assupp(T, X1 = X2) = frq(T, X1 U X2).

o its confidencesconf(T, x; = Xp) = fr?r(T,XMz). % = {(build.html, file, build.html)} [3; 0.6]
q(T,x1) ()
The shorthand notation[s; c] denotes a rule with s = Applying the above rules yields the union of the conse-
supp(T, r) andc = conf(T, r) and a set of transactiofis quents of all rules, because they have the same antecedent.
ROSEwiIll rank the entities by their confidence suggesting
4.1. Applying Rules the user to change the fifdug.properties next.

As soon as the programmer begins to make changes, the

ROSEclient suggests possible further changes. This is done4'2' Computing Rules

by applyingmatching rules. In general, a ruieatchesiset roseuses theApriori Algorithm [1] to compute associa-

of changed entities if this set is equal to the antecedent. 5 rules. The Apriori Algorithm takes a minimum support

Assume the programmer has created a sequence 0fnq minimum confidence and then computes the set of all
changesiodzo---odk. The setof changed entities (called 5550ciation rules in two phases:

situation) is ¥ = entitiegd1 0 82 0 - - - 0 8k). In Figurel, for

instance, the user has extended the varigddgs[] in file 1. The algorithm iterates over the set of transactions and
ComparePreferencePage.java. The situation is thus forms entity setsfrom the entities that occur in the
same transaction. Entity sets that are above the mini-

T = {(Comp.java, field, fKeyg])} @ mal support are calleflequent.Since an entity set can
How does one compute the suggestions? The set of sug- ~ Only be frequent when its subsets are frequent, entity
gestions for a situatio® and a set of rule® is defined as sets are extended in each iteration. This phase finally
theunionof the consequents of all matching rules: yields the sef of frequent entity sets.
apply(Z, R) = U X2 2. The algorithm computes rules from the set&inMore
(Sx)cR precisely, from each of the entity seis € F it cre-
_ o ates those ruleg — X = X where X is a subset of
In the given situatiors from (2) and the ruler from (1), E. (Note that all these rules have the same support
ROsEthus suggests the consequent of supp(T, E), but different confidences.) Only rules that
ooy (1)) — { (Comp.java, method initDefaults)). } are above the minimum confidence are returned.
’ (plug.properties, file, plug.properties) The classical use of the Apriori Algorithm is to compute

The entire seRR of actually mined rules contains further all rules beforehand, and then search the rule set for a given

rules, though. The actual resultafply(Z, R) is shown in Situation. However, computing all rules takes time—several
Figure1, ordered by confidence. days in our experiments. So we ugea optimizations:

Let us assume the user decides to follow the first recom-) -
mendation foiinitDefaults() (with a confidence of 1.0); itis ~ Constrained antecedents.In our S_pef:'f'c case, the an-
obvious that a new preference should get a default value. ~ teécedentis equal to the situation; hence, we only mine

So she changes the methiaiDefaults(). Again ROSEpro- rulespn the flywhich are related to the situation. Min-
poses additional changes, which are in this case the same as N9 With such constrained antecederdtakes only a
before except that nowitDefaults() is missing. few seconds. An additional advantage of this approach
Now, the user examines methodgateGeneralPage() is that it is incremental in the sense that it allows new
andcreateTextComparePage() because they are in the same transactions to be added between two situations.

file asfKeys[] andinitDefaults(). Each of these two meth- . .
. Single consequentsTo speed up the mining process even
ods creates a window where preferences can be set. So she L .
more, we have modified the approach such that it only

extends thereateGeneralPage() method, resulting in computes rules with a single entity in their conse-

(Comp.java, field, fKeyg]), guent. So for a situatiorx the rules have the form
¥ ={ (Comp.java, methodinitDefaulty)), ¥ = {e}. ForROSE such rules are sufficient because
(Comp.java, method createGeneralPagg) ROSEcomputes the union of the consequents anyway

(Section4.1).2 (Our previous example ir3f already 6. Evaluation
used single consequent rules.)
After these rule examples, let us now give empirical evi-

These optimizations make mining very efficient: The aver- dence for the following objectives:

age runtime of a query is about 0.5s for large version histo-

ries like GCC* Navigation through source code.Given a single changed
entity, canROSE point programmers to entities that
5. Some Rule Examples should typically be changed, too?
Error prevention. CanROSEprevent errors? Say, the pro-
Coupling in GCC. GCC has arrays that define the costs of grammer has changed many entities but has missed to
different assembler operations fiNTEL processors. change one entity. Doé®OSEfind the missing one?

These have been changed together in 11 transactions, o
In 9 of these 11 transactions, this change was triggeredClosure- Suppose a transaction is finished—the program-
by a change in the type: mer made all necessary changes. How often does

ROSEerroneously suggest that a change is missing?

{ (i386.h, type processorcosy })
— { (i386.c, var, i386.cosY, (i386.c, var, i486.c0s), Granularity. By default, ROSEsuggests changes fonc-
(i386.c, var, k6.cosb, (i386.c, var, pentiumcos) tionsand other fine-grained entities. What are the re-

(i386.c, var, pentiumpracosy } [9; 0.82] sults ifROSEsuggests changesfitesinstead?

So, whenever the costs type is changed (e.g. for a newg 1. Evaluation Setup

operation),ROSE suggests to extend the appropriate
cost instances, tod. For our evaluation, we analyzed the archives of eight large

open-source projects (Tableon the next page). For each
PYTHON and C files. Our approach is not restricted to a archive, we chose a number of full months containing the
specific programming language. In fact, we can de- |ast 1,000 transactions, but not more than 50% of all trans-
tect coupling between program parts written in differ- actions as ouevaluation period.In this period, we check
ent languages (including natural language). Here is anfor each transaction whether its entities can heedicted

example, taken from theYTHON library: from earlier history:
{ (.Qdmodule.c, func GrafObj getattr()) } 1. We create aest case q= (Q, E) consisting of a
= { (qdsupport.py, func outputGetattrHook) } query QC entitiegA) and anexpected outcome E
[10; 0.91] entitiegA) — Q.
Whenever the C fileQdmodule.c was changed, sowas 3 \ye take all transactiona; that have been completed
the PYTHON file gdsupport.py—a classical coupling before time(A) as atraining setand mine a set of
between interface and implementation. rulesR from these transactions.
POSTGRESQL documentation. Data mining can reveal 3 1 4y4id having the user work through endless lists

coupling between items that are not even programs, as

i - of suggestionsROSE only shows thetop ten single-
in the POSTGRESQLdocumentation: 99 R y p g

consequent rules)8 C R ranked by confidence. In

{ (createuser.sgml, file, createuser.sgml), our evaluation, we applfRyo to get the result of the
(dropuser.sgml, file, dropuser.sgml) } query Aq = apply(Q, Rip). So, the size ofAq is al-
= { (createdb.sgml, file, createdb.sgml), [11; 1.0] ways less or equal than ten.

(dropdb.sgml, file, dropdb.sgml) | 4. The resultAq of a test casg consists of two parts:

Whenever bothcreateuser.sgml and dropuser.sgml
have been changed, the filegseatedb.sgml and
dropdb.sgml have been changed, too.

e AgNEq are the entities thamatchedhe expected
outcome and are consideredirect.

o Ay— Eq are unexpected recommendations which

3For each entitg € xo in a consequent of arul® = xo[s; c] there ex- arewrong

ists a single consequent rie= {e}[se; ce] with higher or equal support

and confidence values > sandce > c. For th t of ¢
4Measured on a PC with Intel 2.0 GHz Pentium 4 and 1 GB RAM. or the assessment or a resmg, WEe use Two measures

5This rule also holds for the other direction, with the same support and from information retrieval 20): Th? PreCiSion R describes
(incidentally) the same confidence. which fraction of the returned entities was actually expected

History (Training) Evaluation
Project, Description in CvSsince | # Txns | # Txns/Day | # Etys/Txn| Period #Txns
ECLIPSE integrated environment 2001-04-28 | 46,843 56.0 3.17 | 2003-03-01to 03-31 2,965
GCC, compiler collection 1997-08-11 | 47,424 22.4 3.90 | 2003-04-01 to 04-3Q 1,083
GIMP, image manipulation tool | 1997-01-01 | 9,796 4.1 454 | 2003-02-01t0 07-31 1,305
JBOSS application server 2000-04-22 | 10,843 9.0 3.49 | 2003-04-01to 07-31 1,320
JEDIT, text editor 2001-09-02 | 2,024 2.9 4.54 | 2003-02-01t0 07-31 577
KOFFICE, office suite 1998-04-18 | 20,903 11.2 4.25| 2003-02-01 t0 05-31 1,385
POSTGRESQ| database system| 1996-07-09 | 13,477 5.4 3.27 | 2003-01-01t0 05-31 925
PYTHON, language + library 1990-08-09 | 29,588 6.2 2.62 | 2003-05-01t0 07-31 1,201

Table 1. Analyzed projects (Txn = Transaction; Ety = Entity)

by the user. Theecall R, indicates the percentage of ex-
pected entities that were returned.

_ |Aq N Egq| _ [Aq N Egq|
d |Aql |Eq|

In case no entities are returnedy(is empty), we define the
precision asPy = 1, and in case no entities are expected,
we define the recall aRy = 1.

Our goal is to achievhigh precisiorandhigh recallval-
ues (near 1)—that is to recommeaiti (recall of 1) ancbnly
expected entities (precision of 1).

For each queryqgi, we get a precision-recall pair
(Pg , Ry). To get an overall measure for the entire history,
we summarize these pairs into a single pair using two dif-
ferent averaging techniques from information retrieval:

Macro-evaluation simply takes the mean value of the
precision-recall pairs:

19 19
PMZNZPQi RM:NZRW

i=1 i=1

Precision

Eclipse (Navigation, Micro-evaluation)
0.9 : ‘

Minimum Support 5 —s—
Minimum Support 3 ----e---
Minimum Support 1 - |

0.8 [
0.7
0.6

05}/

04| N

03 ‘fO T R

o1

02 L L L L
0 0.02 0.04 0.06 0.08 0.1 0.12 014 0.16

Recall
Figure 4. Varying support and confidence

suggestion is wrong/correct”. For example, the pre-
cision P, for PYTHON is 0.50: Every second sugges-
tion is correct, which means that the recommended en-
tity was actually changed later on. Micro-evaluation is
sometimes referred to assystem-orientedpproach,
because it focuses on tlwerall performancef the
system and not on the average query performance.

This approach uses the precision and recall which haveynless otherwise noted, all averages are given by micro-
been computed for each query. As users usually think eyaluation.

in queries macro-evaluation is sometimes referred to as

auser-orientecapproach—it determines the predictive g 2. Precision vs. Recall

strength of individual queries.

A major application forROSE is to guide users through

Micro-evaluation in contrast builds an average precision- source code: The user changes some entityR®SE au-

recall pair based on entities. It does not use the preci-tomatically recommends possible future changes in a view
sion and recall values of single queries, but the sums of (Figure 1). We wanted to evaluate the predictive power of
returned, matching and expected entities of all queries.ROSEn this situation. For each transactidn and each
N N entity e € entitiegA), we queriedQ = {e}, and checked
_ 2i—1lAq NEql R, — Yic1lAq NEgl whetherROSEwould predictE = entitiegA) — {e}. For
" ZiNzl |Aq | " ZiN=1 |Eqg | egch transaction, we thus testedtitiegA)| queries, each
with one element.

One can think of micro-evaluation as summarizing all Figure4 shows a so-callegrecision-recall graphwith
gueries into one large query and then computing preci- the results for theECLIPSE project. For each combina-
sion and recall for this large query. It therefore allows tion of minimum support and minimum confidence the re-
statementssummarizing all queriedike “every nth sulting precision-recall pair is plotted. Additionally, sub-

sequent confidence thresholds having the same support ar6.4. Results: Navigation through Source Code

connected with lines. As a result we get thygecision-
recall curves one for each investigated support. (The con-
necting lines between measured values are for sake of clar
ity and not for interpolation.)

In Figure4, ROSEachieves for a support of 1 and a con-
fidence of 01 a recall of 015 and a precision of.Q6:

e Therecall of 0.15 states thaROSEs suggestion cor-
rectly included 15% of all changes that were actually
carried out in the given transaction.

e The precision of 0.26 means that 26% of all rec-
ommendations were correct—every fourth suggested
change was actually carried out (and thus predicted
correctly by ROSE. The programmer has to check
about four suggestions in order to find a correct one.

Figure 4 also shows thaincreasingthe support threshold
also increasesthe precision, butecreaseghe recall as
ROSEgets more cautious. However, using the highest pos-
sible thresholds does not always yield the best precision
and recall values: If we increase the confidence thresh-
old above (B0, both precision and recall decrease. Fur-
thermore, Figureél shows that high suppoand confidence

We repeated the experiment from Sectta for all eight
projects with a support threshold of 1 and a confidence

threshold of 0L—such that for navigation, the user gets sev-
eral recommendations. The results are shown in TAble

the next page (columNavigation. For these settings the
average recall is 15%, the average precision is 26%; these
values are also found f&CLIPSE(Section6.2). The aver-

age likelihoodL 3 of the three topmost suggestions predict-
ing a correct location is 64%.

While KOFFICE andJEDIT have lower recall, precision,
and likelihood valuesGCC strikes by overall high values.
The reason is the’#OFFICE and JEDIT are projects where
continuously many new features are inserted (which can-
not be predicted from history) whileCcCis a stable system
where the focus is on maintaining existing features.

When given one initial changed entiBQSEcan predict
15% of all entities changed later in the same transact
In 64% of all transactionsROSEs topmost three sugge
tions contain a correct location.

on.

6.5. Results: Error Prevention

thresholds are required for a high precision. Still, such val- Besides supporting navigatioROSE should alsoprevent
ues result in a very low recall—indicating a trade-off be- errors. The scenario is that when a user decides to commit
tween precision and recall. all her changes to the version archi®R@SEchecks if there

In practice, a graph such as the one in Figdiie thus are related changes that have not been changed. If there are,
necessary to select the “best” support and confidence valueg issues a pop-up window with a warning; it also suggests
for a specific project. In the remainder of this paper, though, one or more “missing” entities that should be considered.
we have chosen values that are common across all projects, We wanted to determine in how many cas&SE can

in order to facilitate comparison.

One can either havprecisesuggestions omanysugges
tions, but not both.

6.3. Likelihood

While a precision like 26% sounds low, keep in mind that
this is the likelihood ofeach single recommendatigme-
dicting a specific location. If some changeArresults in ei-
therB, C or D being changedROSEsuggest8, C, andD,

predict such a missing entity. For this purpose, we took each
transaction, left out one entity and checke®®SEcould
predict the missing entity. In other words, the query was
the complete transaction without the missing entity. So, for
each single transactioft, and each entitg € entitiexA),
we queriedQ = entitiegA) — {e}, and checked whether
ROSEwould predictE = {e}. For each transaction, we thus
again ranentitiegA)| tests.

As too many false warnings might undermiR®@SEs
credibility, ROSEis set up to issue warnings only if thégh

but each suggestion has an average precision of only 33%. confidence thresholdf 0.9 is exceeded. Still, we wanted
To assess the actual usefulness for the programmer, weo get as many missing entities as possible, resulting in a
checked thédikelihoodwhether the expected location would support threshold of 3. The results are shown in Table

be included iIrROSESs top threenavigation suggestions (as-
suming that a programmer won’'t have too much trouble
judging the first three suggestions). Formally,is the like-
lihood that for a query = (Q, E), at least one of the first
three recommendations is correct:

L3z = L(lapply(Q, R3) N E| > 0)

whereL (p) stands for the probability of the predicage
If, in the example aboveROSE always suggestedB,
C, andD as topmost suggestionsz = 100% would hold.

(columnPrevention:

e The averageecall is about 4%. This means that in
only one out of 25 queries (iBCC. every 5th query),
ROSEcorrectly predicted the missing entity.

The averagerecisionis above 50%. This means that
every second recommendationROSEis correct, or:

If a warning occurs, anBOSErecommends further en-
tities, the user on average has to check only one false
recommendation before getting to the correct one.

Navigation Prevention| Closure Navigation Prevention| Closure
Support 1 3 3 Support 1 3 3
Confidence 0.1 0.9 0.9 Confidence 0.1 0.9 0.9
Project R, | Pu| L3 | Ri | Pu |Rm| Pm Project Ry, | Pu| L3 | Ry | Pu|Rm| Pm
ECLIPSE |0.15|0.26| 0.53| 0.02|0.48| 1.0| 0.979 ECLIPSE |0.17]0.26|0.54| 0.03| 0.48| 1.0|0.980
GCC 0.28|0.39/0.89| 0.20/0.81| 1.0|0.953 GCC 0.44|0.42|0.87]0.29/0.82| 1.0|0.946
GIMP 0.12|0.25/0.91| 0.03|0.71| 1.0|0.978 GIMP 0.27|0.26] 0.90| 0.08| 0.74| 1.0|0.963
JBOSS 0.16/0.38| 0.69| 0.01]|0.24| 1.0|0.981 JBOSS 0.25|0.37]0.64| 0.05| 0.44| 1.0|0.980
JEDIT 0.07|0.16] 0.52| 0.004| 0.59| 1.0| 0.986 JEDIT 0.25|0.22|0.68|0.01|/0.44| 1.0|0.984
KOFFICE |0.08|0.17|0.46| 0.003| 0.24| 1.0| 0.990 KOFFICE |0.24]0.26|0.67|0.04| 0.61| 1.0|0.971
POSTGRES 0.13| 0.23| 0.59| 0.03|0.66| 1.0| 0.989 POSTGRES 0.23] 0.24| 0.68| 0.05| 0.59| 1.0| 0.978
PYTHON 0.14]0.2410.51| 0.01|0.50| 1.0|0.986 PYTHON 0.24| 0.36| 0.60| 0.03|0.67| 1.0|0.991
Average 0.15/0.26| 0.64| 0.04| 0.50| 1.0|0.980 Average 0.26| 0.30| 0.70| 0.07| 0.66| 1.0|0.973
Table 2. Results for fine granularity Table 3. Results for coarse granularity
(R=recall; P =precision; L = likelihood) (R=recall; P =precision; L = likelihood)
Given a transaction where one change is missRQSE Therefore, we repeated the experiments from Sections
can predict 4% of the entities that need to be changed, On 6.4 to 6.6 with a coarse granularity—e.g. mining and ap-
average, every second recommended entity is correc{. plying rules betweefilesrather than between entities. The
results are shown in Tabl& It turns out that the coarser
6.6. Results: Closure granularity increases recall iall cases (sometimes even

] o . o o dramatically, as the factors 3-8 KDFFICE show). The
The final question in the “Error Prevention” scenario is how precision stays comparable or is increased as well.

many false alarm&OSEwould produce in case no entity If ROSEthus suggests only a file rather than an entity,

is missing. We simulated this by testisgmplete transac- 6 gyggestions become more frequent and more precise.

tions. For each transaction, we queriedQ = en.tities{A), However, each single suggestion becomes less useful, as it
and checked wheth®OSEwould predictE = ¢; we thus g ,gqests a less specific location—namely only a file rather
had one test per transaction. than a precise entify.

As the expected outcome is the empty set, the recall is A possible consequence of this result is to hR@SE

always 1. To measure the number of false warnings we o \yith rather vague suggestions (say, regarding files or
cannot use micro-evaluation anymore, as one single falsepackages), which become more and more specific as the
alarm results in a summarized precision of 0. We thus turn user progresses. We plan to apply and extgeweralized

to magro—ﬁyaluatllorp.reqsrl]on: Tfhe ;l)reC|S|on for a s_lngle association rule$23] such thaROSEcan suggest thinest
query in this setting is either O if at least one entity is rec- granularity wherever possible.

ommended, or 1 if no entities are recommendeag;is the
percentage of commits wheROSEhas not issued a warn- | When given one changditie, ROSEcan predict 26% of
ing, and 1- Py is the percentage of false alarms. the files actually changed in the same transaction. In 70%

The results are shown in TatgcolumnClosurg. One of all transactionsROSEs topmost three suggestions con-
can see that the precision is very high for all projects, usu-| tain a correct location.
ally around 0.98. This means ttROSEissues a false alarm

in only every 50th transaction. 6.8. Threats to Validity

RO.SES wgrnmgs about missing chan_ges should be taken We have studied 10,761 transactions of eight open-source
seriously: Only 2% of all transactions cause a false .
. programs. Although the programs themselves are very dif-
alarm. In other wordsROSEdoes not stand in the way. : X ; AR
ferent, we cannot claim that their version histories would be
. . representative for all kinds of software projects. partic-
6.7. Results: Granularity ular, our evaluation does not allow any conclusions about

By default,ROSErecommends entities at a fine granularity the predictive power for closed-source projects. However,
level, e.g. variables or functions. This results in a low cov- & Stricter software process would result in higher precision
erage of the rules for a project as most functions are rarely@nd higher recall—and hence, a better predictability.

c_hanged. Our hypothe_3|s was that If. we applled mining to 6This is a general trade-off: If all entities were contained within one
files rather than to variables or functions, we would get a e, then any suggestion regarding this one file would yield a precision of

higher support (and thus a higher recall). 100% and a recall of 100%—and be totally useless at the same time.

Transactions do not record thoeder of the individual defined. If two files have these attributes, then they are rel-
changes involved. Hence, our evaluation cannot take theevant to each other. Sayyad-Shirabad thoroughly evaluated
order into account the changes were made—and treats althe predictive power of the concepts found, but none of the
changes equal. In practice, we expect specific orderings ofpapers gives a convincing example of such a concept.
changes to be more frequent than others, which may affect Amir Michail used data mining on the source code of
results for navigation and prevention. programming libraries to detect reuse patterns in form of

We have made no attempt to assess thmlity of association I6] or generalized association rules/]. The
transactions-ROSElearned from past transactions, regard- latter take inheritance relations into account. The items in
less of whether they may be desired or not. Consequentlythese rules are (re-)use relationships like method invocation,
the rules learned and evaluated may reflect good practicesnheritance, instantiation, or overriding. Both papers lack
as well as bad practices. However, we believe that com-an evaluation of the quality of the patterns found. How-
petent programmers make more “good” transactions thanever, Michail mines a single version, whiROSEuses the
“bad” transactions; and thus, there is more good than bad tochanges between different versions.
learn from history. To guide programmers, a number of tools have exploited

We have examined the predictive powelR@SEand as- textual similarityof log messages] or program code].
sumed that suggesting a change, narrowed down to a singl&IPIKAT [6] improves on this by taking also other sources
file or even a single entity, would heseful. However, it may like mail archives and online documentation into account.
well be that missing related changes could be detected durin contrast toROSE all these tools focus on high recall
ing compilation or tests (in which cas®SEs suggestions rather than on high precision, and on relationships between
would not harm), or may be known by trained programmers files or classes rather than between fine-grained entities.
anyway (who may findROSEs suggestions correct, but dis-
tracting). Eventually, usefulness for the programmer can g Conclusion and Consequences
only be determined by studies with real users, which we

intend to accomplish in the future. ROSEcan be a helpful tool in suggesting further changes

to be made, and in warning about missing changes. But
7. Related Work the more there is to learn from history, the more and better
suggestions can be made:

Independently from us, Annie Ying developed an approach
that also uses association rule mining GN'S version
archives P5]. She especially evaluated the usefulness of
the results, considering a recommendation most valuable
or “surprising” if it could not be determined by program
analysis, and found several such recommendations in the

e For stable systems likeCC, ROSE gives many and
precise suggestions: 44% of related files and 28% of
related entities can be predicted, with a precision of
about 40% for each single suggestion, and a likelihood
of over 90% for the three topmost suggestions.

MOZILLA and ECLIPSE projects. In contrast t&ROSE e For rapidly evolving systems lik€OFFICE or JEDIT,
though, Ying’s tool can only suggest files, not finer-grained ROSEs most useful suggestions are at the file level.
entities, and does not support mining-on-the-fly. Overall, this is not surprising, @&0SEwould have to

Change data has been used by various researchers for predictnew functions-which is probably out of reach
guantitative analyses. Word frequency analysis and key- for any approach.

word classification of log messages can identify the purpose

of changes and relate it to change size and time between

changes18]. Various researchers computed metrics on the

module or file level 8, 9, 11, 12] or orthogonal to these per

feature L9 and investigated the change of these metrics

over time, i.e. for different releases or versions of a system.\yhat havewe learned from history, and what are our sug-
Gall et al. were the first to use release data to de- gestions? Here are our plans for future work:

tect logical coupling between module8].[] The CVS his-

tory allows to detect more fine-grained logical coupling Taxonomies. Every change in a method implies a change

e Inabout 4—-7% of all erroneous transactioR®SEcor-
rectly detects the missing change. If such a warning
occurs, it should be taken seriously, as only 2% of all
transactions cause false alarms.

between classedl(], files and functions 47]. None of in the enclosing class, which again implies changes
these works on logical coupling did address its predictive in the enclosing files or packages. We want to ex-
power. Sayyad-Shirabad et al. use inductive learning to ploit suchtaxonomiego identify patterns such as “this

learn different concepts of relevance between logically cou- change implies a change in this package” (rather than
pled files R1, 22]. A concept is a set ottributeslike file “in this method”) that may be less precise in the loca-

name, extension and simple metrics like number of routines tion, but provide higher confidence.

Sequence rules.Right now, we are only relating changes

that occur in thesametransaction. In the future, we
also want to detect rules across multiple transactions:
“The system is always tested before being released”
(as indicated by appropriate changes).

Further data sources. Archived changes contain more

than just author, date, and location. One could $ogn
messageéincluding the one of the change to be com-
mitted) to determine the concern the change is more
likely to be related to (say, “Fix” vs. “New feature”).

Program analysis. Another yet unused data source is pro-

gram analysis; although our approach can detect cou-
pling between items that are not even programs, know-
ing about the semantics of programs could help sepa-
rating related changes into likely and non-likely. Fur-
thermore, coupling that can be found via analygi [
need not be repeated RDSES suggestions.

Rule presentation. The rules as detected bROSE de-

scribe the factual software process—which may or

may not be the intended process. Consequently, these

rules can and should be made explicit. In previous
work [27], we used visual mining to detect regulari-
ties and irregularities of logically coupled items. Such
visualizations could further explain the recommenda-
tions to programmers and managers.

We are currently makingROSE available as a plug-in for
ECLIPSE For information on download and installation, see

http://www.st.cs.uni-sb.de/softevo/

Acknowledgments.This project is funded by the Deutsche
Forschungsgemeinschaft, grant Ze 509/1-1. Holger Cleve,
Carsten @rg, Christian Lindig, Stefan Siersdorfer, and the
anonymousCSE reviewers gave helpful comments on ear-
lier revisions of this paper.

References

(1]

(2]

(8]

(4]

(5]

R. Agrawal and R. Srikant. Fast algorithms for mining association
rules. InProceedings of the 20th Very Large Data Bases Conference
(VLDB), pages 487—499. Morgan Kaufmann, 1994.

D. L. Atkins. Version sensitive editing: Change history as a pro-
gramming tool. In B. Magnusson, editd?yoceedings of System
Configuration Management SCM'98lume 1439 oL NCS pages
146-157. Springer-Verlag, 1998.

T. Ball, J.-M. Kim, A. A. Porter, and H. P. Siy. If your version con-
trol system could talk. ... IHKCSE Workshop on Process Modelling
and Empirical Studies of Software Engineeria§97.

J. M. Bieman, A. A. Andrews, and H. J. Yang. Understanding
change-proneness in OO software through visualizationPrérc.

11th International Workshop on Program Comprehensipages
44-53, Portland, Oregon, May 2003.

A. Chen, E. Chou, J. Wong, A. Y. Yao, Q. Zhang, S. Zhang, and
A. Michail. CVSSearch: searching through source code using CVS
comments. In ICSM 20011}, pages 364-374.

10

(6]
(7]

(20]

(11]

(12]

(23]

(14]

(15]

16]

(17]

(18]

(29]

[20]

(21]

[22]

(23]

(24]

(25]

(26]

[27]
(28]

D. Cubrant and G. C. Murphy. Hipikat: Recommending pertinent
software development artifacts. In ICSE 20Q3][pages 408-418.

K. Fogel and M. O'Neill. cvs2cl.pl: CVS-log-message-to-
ChangelLog conversion scriptSept. 2002. http://www.red-
bean.com/cvs2cl/.

H. Gall, K. Hajek, and M. Jazayeri. Detection of logical coupling
based on product release historyAroc. International Conference
on Software Maintenance (ICSM '9§)ages 190-198, Washington
D.C., USA, Nov. 1998. IEEE.

H. Gall, M. Jazayeri, R. Kisch, and G. Trausmuth. Software Evolu-
tion Observations based on Product Release HistoBrdneedings

of International Conference on Software Maintenance (ICSM,’97)
pages 160-196, 1997.

H. Gall, M. Jazayeri, and J. Krajewski. CVS release history data for
detecting logical couplings. In IWPSE 2008, pages 13-23.

T.L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting fault in-
cidence using software change histofyEE Transactions on Soft-
ware Engineering26(7), 2000.

A. E. Hassan and R. Holt. The chaos of software development. In
IWPSE 2003 15].

Proc. 25th International Conference on Software Engineering
(ICSE) Portland, Oregon, May 2003.

Proc. International Conference on Software Maintenance (ICSM
2001) Florence, Italy, Nov. 2001. IEEE.

Proc. International Workshop on Principles of Software Evolution
(IWPSE 2003)Helsinki, Finland, Sept. 2003. IEEE Press.

A. Michail. Data mining library reuse patterns in user-selected
applications. InProc. 14th International Conference on Auto-
mated Software Engineering (ASE'9pages 24—-33, Cocoa Beach,
Florida, USA, Oct. 1999. IEEE Press.

A. Michail. Data mining library reuse patterns using generalized
association rules. linternational Conference on Software Engi-
neering pages 167—-176, 2000.

A. Mockus and L. G. Votta. Identifying reasons for software
changes using historic databases. Pioc. International Confer-
ence on Software Maintenance (ICSM 2Q0Qfjges 120-130, San
Jose, California, USA, Oct. 2000. IEEE.

A. Mockus, D. M. Weiss, and P. Zhang. Understanding and predict-
ing effort in software projects. In ICSE 2008, pages 274-284.

C. J. V. Rijsbergen. Information Retrieval, 2nd edition Butter-
worths, London, 1979.

J. Sayyad-Shirabad, T. C. Lethbridge, and S. Matwin. Supporting
maintainance of legacy software with data mining techniques. In
ICSM 2001 [L4], pages 22-31.

J. Sayyad-Shirabad, T. C. Lethbridge, and S. Matwin. Mining the
maintenance history of a legacy software systenProc. Interna-
tional Conference on Software Maintenance (ICSM 2088)ster-
dam, Netherlands, Sept. 2003. IEEE.

R. Srikant and R. Agrawal. Mining generalized association rules. In
Proceedings of the 21th Very Large Data Bases Conference (V,LDB)
pages 407-419, 1995.

R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with
item constraints. liProceedings of the 3rd International Conference
on KDD and Data Mining (KDD '97) Newport Beach, California,
USA, Aug. 1997.

A. T. T. Ying. Predicting source code changes by mining revision
history. Master’s thesis, University of British Columbia, Canada,
Oct. 2003.

A. Zeller and R. Hildebrandt. Simplifying and isolating failure-
inducing input. IEEE Transactions on Software Engineering
28(2):183-200, Feb. 2002.

T. Zimmermann, S. Diehl, and A. Zeller. How history justifies sys-
tem architecture (or not). In IWPSE 20089, pages 73-83.

T. Zimmermann and P. Wei3gerber. Preprocessing CVS data for
fine-grained analysis. Technical report, Saarland University, Mar.
2004. Submitted for publication.

http://www.st.cs.uni-sb.de/softevo/

	1 . Introduction
	2 . Processing Change Data
	3 . Grouping Changes to Transactions
	4 . From Transactions to Rules
	4.1 . Applying Rules
	4.2 . Computing Rules

	5 . Some Rule Examples
	6 . Evaluation
	6.1 . Evaluation Setup
	6.2 . Precision vs. Recall
	6.3 . Likelihood
	6.4 . Results: Navigation through Source Code
	6.5 . Results: Error Prevention
	6.6 . Results: Closure
	6.7 . Results: Granularity
	6.8 . Threats to Validity

	7 . Related Work
	8 . Conclusion and Consequences

