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ABSTRACT
11b-hydroxysteroid dehydrogenases (11b-HSDs) catalyze the in-

terconversion of active glucocorticoids (cortisol, corticosterone) and
inert 11-keto forms (cortisone, 11-dehydrocorticosterone). 11b-HSD
type 2 has a well recognized function as a potent dehydrogenase that
rapidly inactivates glucocorticoids, thus allowing aldosterone selec-
tive access to otherwise nonselective mineralocorticoid receptors in
the distal nephron. In contrast, the function of 11b-HSD type 1 has,
until recently, been little understood. 11b-HSD1 is an ostensibly
reversible oxidoreductase in vitro, which is expressed in liver, adipose
tissue, brain, lung, and other glucocorticoid target tissues. However,
increasing data suggest that 11b-HSD1 acts as a predominant 11b-
reductase in many intact cells, whole organs, and in vivo. This reac-

tion direction locally regenerates active glucocorticoids within ex-
pressing cells, exploiting the substantial circulating levels of inert
11-keto steroids. While the biochemical determinants of the reaction
direction are not fully understood, insights to its biological importance
have been afforded by use of inhibitors in vivo, including in humans,
and the generation of knockout mice. Such studies suggest 11b-HSD1
effectively amplifies glucocorticoid action at least in the liver, adipose
tissue, and the brain. Inhibition of 11b-HSD1 represents a potential
target for therapy of disorders that might be ameliorated by local
reduction of glucocorticoid action, including type 2 diabetes, obesity,
and age-related cognitive dysfunction. (Endocrinology 142: 1371–
1376, 2001)

GLUCOCORTICOIDS and mineralocorticoids, like other
steroids, are lipophilic and readily access their intra-

cellular receptors. Until a decade or so ago, it was thought
that the main determinants of corticosteroid action were the
levels of hormones in the blood, their binding by plasma
proteins (e.g. corticosteroid binding globulin), and the vary-
ing densities of receptors in target tissues. However, it has
become apparent that an additional and important level of
control is exerted by pre-receptor metabolism of ligands by
tissue-specific enzymes. Such modulation of steroid action
by local metabolism has been described for other hormones,
including androgens (5a-reductases), oestrogens (17b-
hydroxysteroid dehydrogenases and aromatase), and thyroid
hormones (59-monodeiodinases). For glucocorticoids, the key
enzymes are 11b-hydroxysteroid dehydrogenases (11b-HSDs).
Understanding the tissue-specific functions of 11b-HSDs has
led to new insights into pathophysiology of common diseases
and has suggested novel approaches to target experimental and
therapeutic manipulations of steroid action. Here we review the
emerging biology of 11b-HSDs with emphasis on the hitherto
rather neglected type 1 isozyme.

History

Almost 50 yr ago Amelung and colleagues (1), discovered
the enzymic interconversion of active 11-hydroxy glucocor-
ticoids (cortisol, corticosterone) and inert 11-keto forms (cor-

tisone, 11-dehydrocorticosterone). This 11b-HSD activity
was subsequently described in a broad range of cells and
tissues. In the mid 1980s Monder and co-workers in New
York purified an NADP(H)-dependent 11b-HSD activity
from rat liver, which catalyzed both 11b-dehydrogenation of
cortisol to inert cortisone and also the 11b-reduction of cor-
tisone to active cortisol (2). At this stage, 11b-HSD was
thought to represent one of several arcane pathways for
clearance of glucocorticoids and no specific function was
ascribed to it. However, in the late 1980s Edwards and col-
leagues in Edinburgh and Funder et al. in Melbourne (3, 4)
recognized the key physiological importance of the inacti-
vation of cortisol to cortisone. These workers discovered that
11b-HSD activity in the distal nephron could explain the
mineralocorticoid receptor paradox. This arose from findings
that purified or recombinant mineralocorticoid receptors
were nonselective in vitro and bound the glucocorticoids
cortisol and corticosterone with equal affinity to the physi-
ological mineralocorticoid aldosterone (5). Nevertheless, the
same receptors in vivo were aldosterone specific in the face
of severalfold molar excess of glucocorticoid (6). The expla-
nation lay in 11b-HSD, which rapidly inactivated glucocor-
ticoids in aldosterone target cells in the distal nephron, thus
allowing selective access of aldosterone to mineralocorticoid
receptors. In the congenital absence of this activity (the syn-
drome of apparent mineralocorticoid excess) (7), or with
liquorice-based inhibitors of 11b-HSD (8), glucocorticoids
illicitly occupy mineralocorticoid receptors causing sodium
retention, hypokalemia, and hypertension.

One or two isozymes of 11b-HSD?

Monder and colleagues then cloned a complementary
DNA (cDNA) using antibodies raised against their 11b-HSD
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purified from rat liver (9). This cDNA hybridized with a
product highly expressed in rat kidney (10) and was thought
to represent the active 11b-dehydrogenase. However, it be-
came clear that this enzyme could not explain mineralocor-
ticoid receptor protection in the distal nephron. For example,
it was expressed widely (including in hippocampus, where
mineralocorticoid receptors are not selective for aldoste-
rone), was of low affinity (micromolar Km for active 11-
hydroxysteroids), and did not match the regulation or co-
factor preference of the 11b-dehydrogenase activity in distal
nephron. These discrepancies were resolved with the puri-
fication (11) and cloning (12, 13) of a second isozyme, 11b-
HSD2 (see Fig. 1).

11b-HSD2 is highly expressed in classical aldosterone-
selective target tissues (distal nephron, colon, sweat glands)
and the placenta. 11b-HSD2 cDNA encodes a high affinity,
NAD-dependent dehydrogenase that rapidly inactivates
glucocorticoids with a low nanomolar Km. This enzyme has
negligible 11b-reductase activity. Mutations in the 11b-HSD2
gene are seen in patients with the congenital syndrome of
apparent mineralocorticoid excess (14). Mice homozygous
for targeted disruption of the 11b-HSD2 gene (15) recapit-
ulate the features of glucocorticoid-dependent mineralocor-
ticoid excess. It is therefore quite clear that 11b-HSD2 is the
enzyme responsible for protecting mineralocorticoid recep-
tors from glucocorticoids in vivo. What then is the function
of Monder’s rat liver enzyme, 11b-HSD Type 1?

Modulation of Receptor Activation by 11b-HSD1

11b-HSD1 is widely expressed, most notably in liver, lung,
adipose tissue, vasculature, ovary, and the central nervous
system (CNS) (16, 17). High expression is also observed in the
kidney and testis in the rat, but not in the mouse. In many
of these sites there is negligible expression of mineralocor-
ticoid receptors, but glucocorticoids play a key role in reg-
ulation of metabolism through activation of relatively low
affinity glucocorticoid receptors. Might 11b-HSD1 have a
role in modulating glucocorticoid access to these receptors?
If so, would this attenuate or enhance glucocorticoid receptor
activation?

11b-dehydrogenase or 11b-reductase?

In original purification studies, the 11b-HSD1 in the liver
was shown to be bidirectional, although, in contrast with its
dehydrogenase activity, the reductase activity was unstable
in vitro (2). More recently, a series of studies suggest that the
enzyme prefers the reductase direction unless cells are dis-
rupted. This applies in primary cultures of cells from liver
(18), adipose tissue (19), lung (20), CNS (21), and vascular
smooth muscle (22). In a few studies, for example in Leydig
cells, 11b-dehydrogenase activity has been reported in ap-
parently intact cell preparations (23), but others have found
predominant 11b-reduction (24) and argued that some 11b-
HSD1 must be liberated from damaged cells to detect 11b-
dehydrogenase activity. This striking change in directional-
ity between intact cells and homogenates has never been
satisfactorily explained, but may reflect the specific intracel-
lular localization of 11b-HSD1 in the inner leaflet of the
endoplasmic reticulum, where neighboring enzymes may be
powerful generators of the reduced cosubstrate NADPH.
Short-term post-translational changes such as enzyme phos-
phorylation may also be pertinent, particularly to the ap-
parent instability of the 11b-reductase activity in homoge-
nates, but remain to be investigated. Alternative
explanations, such as longer-term posttranslational modifi-
cations (varying N-linked glycosylation) (25) would not ex-
plain why 11b-HSD1 activity is overwhelmingly reductive in
intact cells and then shows predominant dehydrogenation in
homogenates of these same cells.

These observations in cells suggested a novel role for 11b-
HSD1, involving reactivation rather than inactivation of glu-
cocorticoid. Does this occur in intact organs? Isolated per-
fused cat (26) or rat (27) liver models suggest that 11b-HSD1,
which is the only isozyme expressed in the liver, is indeed a
predominant 11b-reductase with a high capacity for reacti-
vating 11-ketosteroid substrate over a broad range of sub-
strate concentrations. These findings can be extrapolated to
human liver in vivo, since historical work suggests that, on
oral administration, cortisone (the first pharmacological glu-
cocorticoid used in man) is rapidly activated to cortisol.
Indeed, recent studies confirm that very little oral cortisone

FIG. 1. Contrasting functions of the
isozymes of 11b-HSD. 11b-HSD2 is an
exclusive 11b-dehydrogenase that acts in
classical aldosterone target tissues to ex-
clude cortisol from otherwise nonselec-
tive mineralocorticoid receptors. Inacti-
vation of cortisol also occurs in placenta.
11b-HSD1 is a predominant 11b-reduc-
tase in vivo that acts in many tissues to
increase local intracellular glucocorticoid
concentrations and thereby maintain ad-
equate exposure of relatively low affinity
glucocorticoid receptors to their ligand.
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reaches the systemic circulation (28) and that hepatic vein
cortisol/cortisone ratios are very high (29). 11b-reductase
activity has been shown in other human tissues in vivo, in-
cluding sc adipose tissue (30).

Availability of substrate

So, 11b-HSD1 acts as a reductase to reactivate glucocor-
ticoids in most, if not all, cells in which it is expressed in vivo.
In order for this reactivation to play any physiological role
in regulating receptor exposure (as opposed to a pharma-
cological role when cortisone is administered), there would
need to be a substantial pool of substrate inert 11-ketoste-
roids available. The main source of 11-ketosteroid is 11b-
HSD2, predominantly in kidney (31). In humans, cortisone
circulates at levels around 50–100 nmol/liter, largely un-
bound to plasma proteins and without a pronounced diurnal
rhythm (29). In contrast, cortisol is approximately 95%
bound, largely to corticosteroid-binding globulin, giving
“free” cortisol levels between approximately 1 nmol/liter at
the diurnal nadir and approximately 100 nmol/liter during
the diurnal peak and on stress. In the rat, plasma concen-
trations of 11-dehydrocorticosterone are also approximately
50 nmol/liter, though in the mouse levels are lower around
3–5 nmol/liter (32). Thus, for at least part of the day, circu-
lating cortisone levels equal or exceed free cortisol levels and
similar ratios pertain in rodents.

Evidence that 11b-HSD1 amplifies glucocorticoid action

Early studies had addressed the hypothesis that 11b-
HSD1, like 11b-HSD2, was a predominant dehydrogenase
enzyme, which protected glucocorticoid receptors, e.g. in
testis (33). However, from the above, it appears that there is
an ample supply of inert substrate that can be reactivated by
predominant 11b-reductase activity of 11b-HSD1 in many
tissues in vivo. What is the evidence that this influences local
glucocorticoid receptor activation?

Liver. The most persuasive data that 11b-HSD1 increases
effective intracellular glucocorticoid action have been ob-
tained in liver. Here, glucocorticoids oppose the actions of
insulin, for example, by up-regulating expression of the rate-
limiting enzyme for gluconeogenesis, phosphoenol-pyru-
vate carboxykinase (PEPCK). In male rats, estradiol potently
down regulates 11b-HSD1 expression (34) and, only in the
presence of glucocorticoids, also down-regulates PEPCK ex-
pression (35). Such indirect studies, as well as the use of
relatively nonselective liquorice-based inhibitors, indicate
that impaired activity of 11b-HSD1 in liver is associated with
features of reduced glucocorticoid action and increased in-
sulin sensitivity in hepatocytes.

To explore this further, 11b-HSD1 knock-out mice have
been generated (32). These mice appear to develop normally
and are viable, fertile, and normotensive. This model shows
that 11b-HSD1 is the sole major 11b-reductase, at least in
mice, since adrenalectomized knockout mice cannot convert
administered 11-dehydrocorticosterone to active corticoste-
rone. However, despite slightly elevated basal plasma cor-
ticosterone levels (see below), 11b-HSD1 2/2 mice have a
phenotype compatible with impaired intracellular glucocor-

ticoid regeneration and reduced antagonism of insulin ac-
tion. For example, they show impaired induction of PEPCK
and glucose-6-phosphatase on fasting and a lesser hyper-
glycemic response to stress or induction of obesity (32).

These findings are supported by experiments in healthy
humans using the liquorice derivative carbenoxolone to in-
hibit 11b-HSD1 activity (36). This is similarly associated with
enhanced insulin sensitivity, as measured in a euglycaemic
hyperinsulinaemic clamp study, although it remains to be
demonstrated whether this is due to altered glucose dynam-
ics in liver and/or peripheral tissues such as adipose.

Brain. There is also good evidence that 11b-reductase mod-
ulates glucocorticoid action in brain. In the CNS, glucocor-
ticoids regulate key developmental, metabolic, neurotrans-
mitter and structural functions, particularly in neurons.
Chronic glucocorticoid excess has deleterious effects most
notably in the hippocampus, which has a very high density
of receptors. 11b-HSD1 is highly expressed in hippocampus
as well as other CNS regions (37). As elsewhere, 11b-HSD1
in hippocampal cells is a reductase, amplifying glucocorti-
coid action. Indeed, 11-dehydrocorticosterone is as potent as
corticosterone in potentiating excitatory amino acid neuro-
toxicity in vitro, an effect lost on inhibition of the enzyme (21).
Use of liquorice-based inhibitors has not supported the no-
tion that this reaction is important in hippocampal function/
neuronal survival in vivo (38). However, such compounds
penetrate the CNS rather patchily (39) and are relatively
nonselective [i.e. inhibit both 11b-HSD isozymes, as well as
other enzymes of steroid metabolism and even prostaglandin
degradation (40)]. Preliminary studies in 11b-HSD1 null
mice support the notion that the enzyme attenuates the del-
eterious effects of chronic glucocorticoid excess upon cog-
nitive function (Yau et al., 40a).

Expression of 11b-HSD1 in hippocampus, hypothalamus,
and pituitary also suggests that it may influence negative
feedback regulation of the hypothalamic-pituitary-adrenal
axis (HPA) by endogenous glucocorticoids. 11b-HSD1 null
mice have adrenocortical hypertrophy and increased re-
sponses of the adrenal to ACTH in vitro (32). This could be
explained because they are unable to regenerate glucocorti-
coids in the periphery and hence have enhanced metabolic
clearance rate. However, plasma levels of corticosterone are
also modestly elevated at the diurnal nadir, findings sug-
gestive of HPA axis activation over and above that required
to compensate for altered peripheral clearance. Such effects
might be due to either increased forward drive to the HPA
axis and/or to attenuated glucocorticoid feedback control.
Recent data suggest that this is, at least in part, due to blunted
sensitivity to glucocorticoid feedback, since administration
of a dose of cortisol that suppresses the HPA responses to a
subsequent stressor in wild-type mice fails to do so in 11b-
HSD1 null mice (41).

Other glucocorticoid targets. In some tissues, the role of 11b-
HSD1 has been more difficult to establish because of nearby
expression of 11b-HSD2. An example is in the blood vessel
wall. Here, glucocorticoids and mineralocorticoids act on
many targets to influence vascular responses. Early data
showed expression of 11b-HSD1 in vascular smooth muscle
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(42) with potentiation of responses to glucocorticoids by
liquorice derivatives (43), suggesting predominant 11b-
dehydrogenase activity. However, 11b-HSD2 has recently
been described in endothelial cells (44) where glucocorticoids
influence nitric oxide generation (45). 11b-HSD1 knockout
mice have normal vascular function, whereas 11b-HSD2
knockout mice have endothelial dysfunction. Whether reac-
tivation of glucocorticoids by 11b-HSD1 in vascular smooth
muscle offsets the influence of 11b-HSD2 in the endothelium
remains to be established.

In many other tissues, descriptive studies suggest an as-
sociation between 11b-HSD1 expression and the necessity for
adequate exposure to glucocorticoids. These are not re-
viewed in detail here (see Refs. 16 and 17) but include ovarian
granulosa cells, cells within the eye, stromal cells in the
lymph node, and the lung.

Role of 11b-HSD1 in the coordinated control of
metabolic function

Having established that 11b-HSD1 can modulate glu-
cocorticoid action in key sites controlling metabolic fuel uti-
lization, the next step will be to understand how these effects
are regulated and integrated in the metabolic responses to
environmental stimuli. In contrast with 11b-HSD2, which
provides a constitutive barrier against glucocorticoid access
to receptors, 11b-HSD1 expression is highly regulated. Fac-
tors influencing 11b-HSD1 expression and activity include
glucocorticoids, thyroid hormones, sex steroids, GH, IGF-1,
insulin, and cytokines. These are not reviewed in detail here
(see Refs. 16 and 17). A clear synthesis of the physiological
importance of these factors remains elusive, in part because
studies of these processes have been hampered by variations
between species and between tissues. However, several re-
cent strands suggest that 11b-HSD1 has a place in coordi-
nated metabolic control. For example, in the long term,
chronic stress or elevated glucocorticoid levels appear to
attenuate 11b-HSD activity (46), at least in liver and hip-
pocampus. This might represent a homeostatic mechanism to
reduce excessive metabolic effects of glucocorticoids during
chronic stress, while maintaining exposure of other periph-
eral tissues (e.g. in the immune system) to elevated circulat-
ing glucocorticoid levels.

Very recent studies have attempted to elucidate the mo-
lecular basis for regulation of 11b-HSD1. In the rat, the pro-
moter is predominantly regulated, at least in liver, by the
C/EBP family of transcription factors (47), mainly C/EBPa.
C/EBPa coordinately regulates a series of genes concerned
with the metabolism of fuels and is in turn regulated by
glucocorticoids. It has been suggested that such cross-talk
allows C/EBPa to regulate not only its direct target genes but
also to amplify glucocorticoid action, engendering a coordi-
nate response to metabolic challenge (47). Similar pathway
cross-talk may occur with other transcription factors. Thus,
PPARa ligands, such as fibrates, attenuate 11b-HSD1 (48).
This action may allow PPARa activators to reduce triglyc-
eride levels both directly via PPARa target genes and indi-
rectly via reduced 11b-HSD1 amplification of glucocorticoid
target gene expression in liver. Such speculations remain to
be directly analyzed. The basis of the tissue-specific re-

sponses of 11b-HSD1 to transcriptional and other regulation
also remains a key target for determination.

11b-HSD1 in Human Disease

Glucocorticoid excess and deficiency produce the dra-
matic clinical features of Cushing’s syndrome and Addison’s
disease, respectively. It has long been suspected that glu-
cocorticoids contribute to the pathophysiology of more com-
mon disorders, including hypertension, obesity, and type 2
diabetes mellitus. Understanding the physiological role of
11b-HSDs has led clinical investigators to address the im-
portance of prereceptor metabolism. Subtle deficiency of
11b-HSD2 may be important in some patients with essential
hypertension (49, 50). The potential importance of 11b-HSD1
in pathophysiology and treatment has only been appreciated
relatively recently.

A handful of patients with apparent congenital cortisone
reductase deficiency have been described, but none has had
mutations in the coding regions of the 11b-HSD1 gene (28,
51). This suggests that either another enzyme is responsible
for the apparent loss of 11b-reductase or, more likely, that the
deficit lies at the level of gene regulation. Mutations in pro-
moter or intronic regions have not as yet been fully screened.
Whatever the etiology, such patients show the predicted
exaggerated HPA axis function with increased adrenal an-
drogen production. Measurements of glucocorticoid re-
sponses in target tissues such as liver and fat have not been
made.

Impaired 11b-HSD1 may also be important in more com-
mon clinical syndromes. In the leptin-resistant Zucker obese
rat, 11b-HSD1 is impaired in liver, a change predicted to
ameliorate the local intrahepatic metabolic consequences of
the obesity (52). However, this may also activate the HPA
axis to compensate for the increased clearance of glucocor-
ticoids though reduced hepatic regeneration. It appears that
similarly impaired hepatic 11b-HSD1 in liver occurs in pa-
tients with polycystic ovary syndrome (53) and primary obe-
sity (54, 55).

An alternative possibility is that enhanced 11b-HSD1 is
important in increasing local glucocorticoid action and pro-
moting adverse metabolic effects. In the face of impaired
11b-HSD1 activity in liver, Zucker obese rats show selec-
tively enhanced activity of 11b-HSD1 in omental adipose
tissue (52). Very recent studies suggest the same tissue-
specific pattern of dysregulation of 11b-HSD1 (i.e. impaired
in liver, enhanced in adipose tissue) in human obesity (30,
55).

Finally, whether or not altered 11b-HSD1 is involved in the
pathophysiology of a disorder, manipulation of enzyme ac-
tivity may provide a means of manipulating glucocorticoid
action in specific tissues without affecting circulating cortisol
levels. For example, studies in rats show that 11b-HSD1 is
down-regulated, at least in liver, by continuous (female pat-
tern) GH administration (34). Administration of daily GH to
hypopituitary patients also results in lower ratios of cortisol/
cortisone metabolites consistent with inhibition of 11b-HSD1
(56). It is intriguing to think that a resultant lowering of
intraadipose cortisol concentrations contributes to the re-
duction in body fat that accompanies GH therapy in these
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patients. Similarly, the observation that an inhibitor of 11b-
HSD1, carbenoxolone, enhances insulin sensitivity in healthy
volunteers (36) offers the tantalizing prospect that selective
11b-HSD1 inhibitors will be novel insulin-sensitizing agents.

Future Directions

The findings reviewed above suggest that 11b-HSD1,
rather than being the Cinderella of the 11b-HSD sisters, may
be the more intriguing and therapeutically important
isozyme. If studies in null mice and with nonselective in-
hibitors are correct, inhibitors of 11b-HSD1 might increase
insulin sensitivity in liver and fat and even reduce the del-
eterious aging effects of chronic glucocorticoid exposure in
the CNS (cognitive impairment, dementia). Such work re-
quires the development of selective inhibitors that do not
interfere with other enzymes, particularly 11b-HSD2. How-
ever, it is also clear that a number of issues need to be
resolved.

It will be important to determine what are the major con-
trols of enzyme reaction direction in vivo since swinging the
balance between reduction and dehydrogenation might be
an alternative approach to manipulating tissue glucocorti-
coid levels. A key step will be to obtain a crystallographic
structure for the enzyme and understand its interactions with
substrates and cofactors. It is also crucial to work out the
molecular basis for tissue-specific regulation of 11b-HSD1.
The potential to manipulate this enzyme in a tissue-specific
manner opens up intriguing investigational and therapeutic
possibilities. The role of 11b-HSD1, notably at the tissue-
specific level, requires to be dissected in humans. Current
measures of overall enzyme activity using GC-MS estima-
tions of urinary metabolites are blunt, and removing cells
into culture is anticipated per se to alter enzyme expression
and potentially kinetics. Finally, studies of 11b-HSD1 gene
structure, polymorphisms and haplotypes will perhaps help
explain heterogeneity of activity and regulation in the
population.

This review illustrates how fundamental observations
during the last 5 yr have been applied rapidly in physiolog-
ical and pharmacological studies of 11b-HSD1. The next 5 yr
will likely reveal just how complex and valuable the 11b-
HSD system may be.
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