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Adipose tissue is a dynamic endocrine organ that secretes a
number of factors that are increasingly recognized to con-
tribute to systemic and vascular inflammation. Several of
these factors, collectively referred to as adipokines, have now
been shown regulate, directly or indirectly, a number of the
processes that contribute to the development of atheroscle-
rosis, including hypertension, endothelial dysfunction, insu-
lin resistance, and vascular remodeling. Several adipokines
are preferentially expressed in visceral adipose tissue, and
the secretion of proinflammatory adipokines is elevated with
increasing adiposity. Not surprisingly, approaches that re-
duce adipose tissue depots, including surgical fat removal,

exercise, and reduced caloric intake, improve proinflamma-
tory adipokine levels and reduce the severity of their result-
ant pathologies. Systemic adipokine levels can also be favor-
ably altered by treatment with several of the existing drug
classes used to treat insulin resistance, hypertension, and hy-
percholesterolemia. Greater understanding of adipokine reg-
ulation, however, should result in the design of improved
treatment strategies to control disease states associated with
increase adiposity, an important outcome in view of the grow-
ing worldwide epidemic of obesity. (Endocrinology 144:
2195–2200, 2003)

Adipose Is a Proinflammatory Tissue

INCREASING EVIDENCE INDICATES that adipose tissue
is an important source of cytokines (1) and that adiposity

contributes to a proinflammatory milieu (2). Fat is both a
dynamic endocrine organ, as well a highly active metabolic
tissue. Fat produces and secretes inflammatory factors,
which are well known to play important roles in the ath-
erosclerotic process (Fig. 1). Collectively, these factors are
called adipocytokines or adipokines. These include TNF�,
leptin, plasminogen activator inhibitor-1 (PAI-1), IL-6, resis-
tin, and angiotensinogen (1). Serum adipokine levels are
elevated in humans and animals with excess adiposity (2–5),
and visceral fat appears to produce several of these adipo-
kines more actively than sc adipose tissue (6–9). Reduction
in fat mass correlates with decrease in the serum levels of
many of these adipokines (10–14), implying that approaches
designed to promote fat loss should be useful in attenuating
the proinflammatory milieu associated with obesity. Some of
these adipokines, in addition to their proinflammatory ac-
tions, also affect insulin action. For example, TNF� inhibits
tyrosine kinase phosphorylation of the insulin receptor, re-
sulting in defects in insulin signaling and ultimately leading
to insulin resistance and impaired glucose transport (15).
Leptin has recently been shown to enhance cellular immune
responses (16), as well as to increase blood pressure (17, 18).
Leptin also tends to decrease insulin sensitivity when given
to obese rats (19), although it markedly improves insulin
sensitivity in patients with lipodystrophy, who tend to have
low circulating levels of leptin (20). Resistin administration

also markedly decreases insulin-mediated glucose uptake
(21). Adiponectin (Acrp30), a recently described adipokine of
emerging importance, is distinct from other known adipo-
kines in that it alone among them appears to improve insulin
sensitivity and inhibits vascular inflammation (22–24). Se-
rum adiponectin levels are low in obese subjects but increase
upon weight loss (25, 26).

Undoubtedly, other adipokines produced by fat are yet to
be discovered. A potentially important therapeutic strategy
for the treatment of obesity and the metabolic syndrome will
be to alter the ratio of proinflammatory, insulin-desensitizing
adipokines to antiinflammatory, insulin-sensitizing adipo-
kines, to both attenuate the inflammatory milieu and im-
prove the metabolic state.

The Monocyte and Inflammation Are Integral
Components of the Atherosclerotic Process

Monocyte migration is integral to the development of ath-
erosclerosis. Early in the process of atherosclerosis, circulat-
ing monocytes adhere to the endothelial layer of the vessel
wall, migrate into the vascular interstitium, and phagocytize
oxidized low-density lipoprotein cholesterol (LDLC; Ref. 27).
This process results in the formation of lipid-laden foam cells,
which accumulate within the arterial wall to form fatty
streaks. Ultimately, these early lesions evolve into advanced
atherosclerotic plaques that contain necrotic lipid cores sur-
rounded by proteoglycan matrix and covered by a fibrous
cap and thickened intima. This structure defines an orga-
nized atherosclerotic plaque.

A number of approaches have been used to cripple mac-
rophage activity in genetically prone mouse models of ath-
erosclerosis, all of which attenuated the atherosclerotic pro-
cess. These include mouse models deficient for expression of
1) macrophage chemoattractive protein-1 (MCP-1; Ref. 28),
which stimulates macrophage movement into the vessel
wall; 2) chemokine receptor-2 (29), a macrophage receptor
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that binds MCP-1; 3) macrophage colony stimulating factor
(M-CSF; Ref. 30), which enhances conversion of monocytes
to macrophages; 4) macrophage osteopontin, which may pre-
vent macrophage apoptosis, similar to its effects on endo-
thelial cell survival (31). These observations underscore the
prominent role of the macrophage in the pathogenesis of
atherosclerosis.

Adipokines enhance the attachment and migration of
monocytes into the vessel wall and their conversion into
macrophages. In particular, TNF� activates the transcription
factor nuclear factor-��, which orchestrates a series of in-
flammatory changes in vascular tissue, including expression
of adhesion molecules on the surface of the endothelial cells
and vascular smooth muscle cells (VSMC). This includes
elevated expression of intracellular adhesion molecule-1 and
vascular cell adhesion molecule-1 (32–35), which enhance
monocyte adhesion to the vessel wall (36–40); endothelial
cells and VSMC production of MCP-1 and M-CSF (32, 41–43);
and activation of a proinflammatory macrophage state re-
sulting in increased macrophage expression of inducible ni-
tric oxide (NO) synthase, interleukins, superoxide dis-
mutase, etc. (44–47). T lymphocytes are also activated and
enhance macrophage atherosclerotic activity (48). Leptin is
also reported to stimulate cholesterol accumulation by the
macrophage, particularly in the presence of high glucose
(49). The cytokine, IL-6, also has proinflammatory activity by
itself and through increasing the levels of IL-1 and TNF�; all
of these have been implicated in atherogenesis (CRP; Ref. 50).
Importantly, IL-6 stimulates liver production of CRP (51).
Serum CRP measured by a highly sensitive assay (hsCRP)

has become an important marker of vascular inflammation
and predictor of atherosclerosis (52–56). Recent data suggest
that hsCRP is as important a predictor of atherosclerosis as
circulating LDLC (57). Thus, inflammation may be poten-
tially as important as cholesterol in contributing to athero-
sclerosis. High levels of hsCRP in obesity also predict later
development of diabetes (58).

Angiotensinogen is a precursor to a major vasconstrictive,
proatherogenic peptide, angiotensin II (AngII). This product
of the renin-angiotensin system enhances multiple steps
leading to foam cell formation. AngII directly stimulates
intracellular adhesion molecule-1, vascular cell adhesion
molecule-1, MCP-1, and M-CSF expression in the cells of the
vessel wall (59). When infused into animal models, an early
increase in arterial macrophage accumulation occurs in the
vessel wall (60). In addition, another important affect of
AngII is to enhance the metabolism of NO into oxygen free
radicals, which damage the vascular tissue. AngII accom-
plishes this effect by stimulating nicotinamide adenine dinu-
cleotide phosphate (reduced) oxidase, resulting in decreased
bioavailability of NO (61). Importantly, NO is not only a
vasodilator, but protects the vessel wall from macrophage
adhesion and accumulation (62), decreases VSMC growth
(63), and decreases platelet adherence to the endothelium
(64). An imbalance between AngII and NO leads to endo-
thelial dysfunction with not only a loss of vasodilator ca-
pacity, but also increased monocytes/macrophage platelet
activity in the vessel wall.

PAI-1 has two important actions in the vessel wall. First,
it inhibits the breakdown of fibrin clots and, therefore, plays
a key role in promoting thrombus formation upon rupture of
unstable atherosclerotic plaques (65). In addition, elevated
PAI-1 activity, by altering the fibrinolytic balance, also con-
tributes to remodeling of the vascular architecture (66–69).
In human population studies, circulating PAI-1 levels cor-
relate with atherosclerotic events and mortality, and some
studies suggest that PAI-1 may be an independent risk factor
for coronary artery disease (CAD; Ref. 70–72). Hyperglyce-
mia (73, 74), AngII (75, 76), and very LDLC (77), in addition
to obesity (78), contribute to elevated serum PAI-1 levels. All
of these factors increase PAI-1 gene expression (79–83). High
levels of PAI-1 in patients with diabetes are a major contrib-
utor to the prothrombotic state in diabetes, which leads to
enhanced atherosclerotic mortality (84). Use of aspirin to
attenuate this prothrombotic state is associated with atten-
uation of CAD (85).

Diabetes is an atherosclerotic risk equivalent. Both are the
end result of two important parallel pathways (Fig. 2): 1) the
progression of insulin resistance to the metabolic syndrome,
prediabetes, and, ultimately, diabetes and 2) the progression
of endothelial dysfunction with progressive inflammation,
thrombosis, and oxidation at the vessel wall to fatty streak
formation and, ultimately, to development of advanced
atherosclerotic plaques. Indeed, in the prediabetic state
(impaired glucose tolerance), there is a 2-fold increased ath-
erosclerosis risk, and, in frank diabetes, the risk is increased
3- to 4-fold (86). The metabolic syndrome, itself, is also as-
sociated with increased CAD risk (87). Early in the insulin
resistant, hyperinsulinemic state, there is also evidence of
brachial artery endothelial dysfunction, as well as abnormal

FIG. 1. Many of the adipokines whose expressions are altered during
obesity promote inflammation and can promote insulin resistance,
endothelial dysfunction, and, ultimately, atherosclerosis.
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coronary artery vasomotion, which appears to result from
the endothelial dysfunction (88). Thus, insulin resistance,
itself, appears to be an endothelial dysfunction risk equiv-
alent. The pathways are clearly interdigitated and sparked in
obesity, in large part by excess adipokine production.

Is Decreasing Adipokine Production Useful?

Reducing adipocyte mass is associated with a reduction in
proinflammatory, insulin-desensitizing adipokines and a
rise in circulating adiponectin. Exercise and weight loss im-
prove endothelial function and prevent diabetes (89–91).
Thus, there is a strong association between changes in adi-
pokines, endothelial function, and prevention of diabetes
through lifestyle modifications.

Treatment with insulin-sensitizing ligands that activate
the nuclear receptor, peroxisome proliferator activated re-
ceptor � (PPAR�), is reported to decrease serum hsCRP (92),
leptin (5), PAI-1 (93), and TNF� (94) levels and to increase
circulating adiponectin (95, 96). These agents also improve
endothelial function (97–99). The TRIPOD study suggested
that an early PPAR� ligand, troglitazone, prevented type 2
diabetes in a high-risk cohort (100). The PPAR� ligands cur-
rently in clinical use, rosiglitazone and pioglitazone, are be-
ing tested in clinical trials for their ability to prevent diabetes
and decrease CAD events. In mice that are genetically prone
to develop atherosclerosis, PPAR� ligands consistently at-
tenuate vascular lesions (101, 102).

Statins decrease hsCRP by 30–40%, which is not corre-
lated with their cholesterol-lowering capability (103); they
consistently improve endothelial function, decrease cardio-

vascular events and mortality, and in the West of Scotland
study decreased new onset type 2 diabetes (104, 105). Statins
are reported to have additive and possibly synergistic effects
with PPAR� ligands on vascular inflammation (106). Statins
have also been reported to decrease plasma TNF� (107) and
may also lower plasma PAI-1 (108).

Angiotensin converting enzyme inhibitors and AngII
AT1 receptor blockers (ARBs) lower hsCRP, although incon-
sistently, and angiotensin converting enzyme inhibitors are
reportedly better at lowering serum PAI-1 than ARBs, al-
though ARBs have been reported to have this effect (109–
112). Both classes of agents improve endothelial function and
reduce atherosclerosis-associated events. In the HOPE trial,
Ramipril administration was associated with 32% less new-
onset diabetes than placebo (113), and, in the LIFE trial,
Losartan administration was associated with less new-onset
diabetes than its comparator, Atenolol (114, 115). These
agents tend to decrease circulating TNF�, but their effects on
leptin and adiponectin are unknown (116–118). AngII is re-
ported to increase leptin secretion from cultured adipocytes
through a prostaglandin-independent mechanism but has no
effect on adiponectin expression in these cells.

Clearly, much more investigation is needed, but insight
into mechanisms by which the adipocyte communicates with
both insulin target tissues and the vasculature allows us to
better understand the relationships between obesity and car-
diovascular disease. Furthermore, study of the regulation of
these mechanisms will help us to develop treatment strate-
gies to prevent diabetes and heart disease in the growing
epidemic of obesity.
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