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The classification of breast cancer into molecular subtypes with distinctive gene expression sig-
natures that predict treatment response and prognosis has ushered in a new era of personalized
medicine for this remarkably heterogeneous and deadly disease. Basal-like breast cancer (BLBC) is
a particularly aggressive molecular subtype defined by a robust cluster of genes expressed by
epithelial cells in the basal or outer layer of the adult mammary gland. BLBC is a major clinical
challenge because these tumors are prevalent in young woman, often relapsing rapidly. Addi-
tionally, most (but not all) basal-like tumors lack expression of steroid hormone receptors (estro-
gen receptor and progesterone receptor) and human epidermal growth factor receptor 2, limiting
targeted therapeutic options for these predominantly triple-negative breast cancers. This minire-
view will focus on new insights into the molecular etiology of these poor-prognosis tumors that
underlie their intrinsic genomic instability, deregulated cell proliferation and apoptosis, and
invasive tumor biology. We will also review ongoing efforts to translate these fundamental
insights into improved therapies for women with BLBC. (Molecular Endocrinology 25: 199–211,
2011)

Breast cancer is the most common noncutaneous ma-
lignancy in women and second only to lung carci-

noma in cancer mortality (1). In the United States, women
have an estimated 12.0% lifetime risk of being diagnosed
with breast cancer; the risk of breast cancer-related death
is estimated at 2.82% (2). One of the genuine triumphs of
personalized medicine in the last decade has been the mo-
lecular classification of breast cancer based on gene ex-
pression profiles. Transcriptome analyses of human
breast tumors have revealed remarkably robust molecular
subtypes with distinctive gene signatures (differential ex-
pression of an �500 intrinsic gene subset) and clinical
outcomes (3–6). These intrinsic subtypes include luminal
A and B, defined by the expression of genes in the luminal
epithelial layer of the mammary gland, such as the estro-
gen receptor (ER) and its targets; human epidermal
growth factor receptor 2 (HER2/ErbB2), characterized by

high expression of the HER2 oncogene and neighboring
genes on its 17q12–21 amplicon; basal-like, defined by
expression of genes characteristic of the outer or basally
located epithelial layer of the mammary gland, such as
cytokeratins 5 and 17 and the epidermal growth factor
receptor (EGFR/HER1); and normal-like, which express
adipose and other nonepithelial genes and have high
basal-like and low luminal gene expression. Strikingly,
these molecular subtypes are strongly associated with sur-
vival: luminal A tumors have the most favorable progno-
sis, normal-like tumors have an intermediate prognosis;
luminal B, HER2-positive, and basal-like tumors are as-
sociated with the shortest relapse-free and overall survival
(4–6). Molecular subtypes also predict treatment re-
sponse, with HER2-positive and basal-like tumors para-
doxically having higher rates of complete response to pre-
surgery chemotherapy than luminal and normal-like
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tumors (7). Overall, gene profiling has radically altered
our conceptualization of breast cancer and provided a
myriad of translational opportunities to improve (i.e.
personalize) prognostic and therapeutic approaches to
this disease.

Of all the molecular subtypes, basal-like breast cancer
(BLBC) remains the greatest challenge because of its clin-
ically aggressive nature and poorly characterized molec-
ular pathogenesis. Unlike ER-positive luminal tumors
and HER2-positive tumors, the basal-like subtype typi-
cally lacks expression of the molecular targets that confer
responsiveness to highly effective targeted therapies such
as tamoxifen and aromatase inhibitors (ER) or trastu-
zumab (HER2 amplification) (8, 9). Indeed, identification
of the relevant molecular targets in BLBC remains a for-
midable challenge. Although there are several excellent
reviews on various aspects of BLBC (8–12), the present
review will highlight recent discoveries that have led to
fundamentally new insights into the molecular etiology of
these tumors and emerging efforts to translate these dis-
coveries into improved therapies.

Basal-Like or Triple-Negative: Capturing
the Gene Signature in the Clinic

Although the intrinsic subtypes have robust prognostic
and predictive value (4–7), standard microarray-based
transcriptional profiling, which requires fresh frozen tis-
sue, is not currently feasible in the clinic. One potential
strategy to overcome this translational barrier is a 50-
gene subtype predictor that utilizes quantitative RT-PCR
analysis of clinically available breast tumor tissue to de-
termine molecular subtype (13); however, this methodol-
ogy is a research tool at present that needs to be validated
in additional cohorts. A more practical strategy is the use
of immunohistochemistry to identify protein expression
surrogates for the basal-like gene signature. Basal-like tu-
mors are generally ER- and progesterone receptor (PR)-
negative and also lack high expression/amplification of
HER2 (i.e. triple-negative tumors), but not uniformly so
(4, 5, 14). In one series, 71% of triple-negative breast
tumors had a basal-like gene profile, whereas 29% did
not (14). To address these disparities between basal-like
and triple-negative tumors, several biomarker surrogates
have been proposed that incorporate basal-like markers
in combination with hormone receptor negativity. A four-
biomarker panel defined by positive staining for one basal
maker [cytokeratin 5/6 and/or EGFR], and negative stain-
ing for both ER and HER2 has been shown to be 76%
sensitive and 100% specific for BLBC identified by basal-
like gene expression profile (15). The four-biomarker
panel has also been expanded by adding PR or additional

basal cytokeratins (cytokeratin 14 or -17) to identify
BLBC (16–18). This distinction between BLBC and triple-
negative breast cancer (TNBC) is not merely an academic
subtlety: triple-negative tumors that express basal mark-
ers have distinct molecular lesions (e.g. p53 stabilization
and higher mitotic indices) and are associated with worse
survival than triple-negative tumors that lack basal-like
markers (Table 1) (17, 18). In this review, BLBC refers to
tumors defined by gene expression or biomarker surro-
gates, whereas TNBC refers to ER, PR, and HER2-nega-
tive tumors not otherwise characterized.

Epidemiology and Clinical Presentation

The prevalence of BLBC ranges from 12.3–36.7% of
breast cancer cases in different patient cohorts (3–6, 15,
16, 18–25). BLBC is more common in African and Afri-
can-Americans and in young and premenopausal women
(especially among African-Americans) (15, 23, 24). The
incidence of BLBC is inversely related to duration of lac-
tation. However, unlike luminal tumors, BLBC is more
common in women with increased parity, early age of
menarche, and first full-term pregnancy before age 26
(23, 24). Although body mass index has not been shown
to be significantly associated with BLBC as it has for the
other molecular subtypes, an increased waist-hip ratio is
positively associated with BLBC in premenopausal
women (23, 24).

Much more epidemiological data exists for TNBC. In
addition to the above BLBC risk factors, TNBC is more
common in Hispanic women (25–29), in women with
lower social economic status (27), in women with the
metabolic syndrome (30), and in some studies in women
with more than 1 yr of oral contraceptive use or use be-
fore age 18 (31, 32). Of note, young African-American

TABLE 1. Comparison of TNBCs: basal-like vs. nonbasal

Triple
negative:
nonbasal

Triple
negative:
basal-like

Basal-like markers:
CK 5/6 and/or

EGFR-positive by IHC
No (47.4%) Yes (52.6%) (17)

CK 5/6, CK14, CK17,
and/or EGFR-positive
by IHC

No (28.9%) Yes (71.1%) (18)

Basal-like gene profile No (28.5%) Yes (71.5%) (14)
p53 positive by IHC 41.0% 62.0% (18)
Distant metastasis, 10-yr

follow-up
26.0% 37.0% (18)

Breast cancer-specific
survival, 10-yr
follow-up

71.6%
75.5%

62.2% (17)
56.6% (18)

IHC, Immunohistochemistry; CK, cytokeratin.
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women are especially adversely affected by TNBC: not
only is their recurrence-free and overall survival rate re-
duced compared with postmenopausal and non-African-
American women with TNBC, those women with stage
III/IV disease at diagnosis have only a 14% 5-yr survival
rate compared with 37% and 36% survival in Hispanic
and Caucasian women, respectively (16, 26).

Despite often presenting as large, advanced stage tu-
mors at diagnosis, TNBC/BLBC tumors may be more sen-
sitive to presurgery chemotherapy as evidenced by higher
rates (22–45%) of pathological complete response (i.e.
no tumor found at surgery) (7, 33, 34). Meta-analyses by
the Early Breast Cancer Trialists’ Collaborative Group
have examined the impact of combined chemotherapy on
breast cancer recurrence and include early data from both
treated and untreated controls. Among patients with ER-
negative breast cancer (TNBC and HER2 subtypes) under
the age of 50, the 5-yr recurrence rate in the untreated
cohort is 38.8%, which is reduced to 25.5% by combined
chemotherapy (35). Hence, chemotherapy is highly effec-
tive in patients with ER-negative breast cancer, including
TNBCs (35, 36). The higher response rate to neoadjuvant
chemotherapy may reflect the typically high tumor grade
and mitotic index of BLBC (16, 24, 37). Importantly,
patients who achieve pathological complete response
have survival rates similar to non-TNBC/BLBC patients
(33, 34). However, the majority of women with TNBC/
BLBC do not have a complete response and are at high
risk for early relapse within the first 2–5 yr after treat-
ment, resulting in an overall lower 5-yr survival rate (26,
28, 34, 38). TNBC/BLBC has a distinctive pattern of organ-
specific distant metastases, with the lungs, liver, and
central nervous system as the preferred sites (39–41). A
particularly devastating aspect of TNBC is the high fre-
quency of parenchymal central nervous system metasta-
ses that are observed in up to 46% of women with met-
astatic TNBC (6.7%–9.6% of all TNBC cases) and are
associated with a median survival of less than 5 months
from the time of diagnosis (41–43). The reader is referred
to the elegant work of Joan Massagué and colleagues
(44–46) who have identified genes regulating organic-
specific metastasis in breast cancer.

Molecular Pathogenesis

BRCAness of BLBC: the BCRA1 connection
The study of hereditary breast cancer has revealed

high-penetrance breast cancer susceptibility genes
(BRCA1 and BRCA2) that function as tumor suppressor
gene products that preserve genome integrity (47, 48).
Women with inactivating germline mutations in BRCA1
or BRCA2 have up to an 85% chance of developing

breast cancer in their lifetime. Loss of heterozygosity
(LOH) of the second BRCA1/2 allele in breast epithelium
results in disruption of double-strand DNA repair via the
high-fidelity homologous recombination repair pathway.
Instead, cells rely on nonhomologous end joining, which
is error prone and may result in chromosomal transloca-
tions because the repair is not templated by the damaged
DNA’s sister chromatid sequence. Normally, the presence
of double-stranded DNA damage leads to cell cycle arrest
and cell death, but in the presence of p53 mutations, the
checkpoint arrest is abrogated and widespread genomic
instability and aneuploidy ensue (47).

One of the earliest insights into the pathogenesis of
BLBC was the observation that sporadic BLBC pheno-
copies many aspects of hereditary breast cancer arising in
BRCA1 (but not BRCA2) carriers (49). Specifically,
breast tumors in BRCA1 carriers and nonhereditary
BLBC share the following features: 1) they are largely
triple negative and basal like by gene expression profile
and biomarker surrogates (5, 50); 2) they are character-
ized by high tumor grade, high mitotic indices, p53 mu-
tations, and chromosomal instability (51, 52); 3) they
frequently have X chromosome abnormalities, including
defects in X chromosome inactivation, a well-established
function of BRCA1 (53, 54); and 4) they have similar
clinical features, including young age at presentation,
poor prognosis, early relapses, and favorable response to
DNA-damaging chemotherapy (9, 49). However, muta-
tional inactivation of BRCA1 is uncommon in sporadic
breast cancer (54, 55), suggesting that other mechanisms
account for the BRCA1 dysfunction phenotype of these
tumors. BRCA1 inactivation by promoter CpG island
methylation, often in combination with BRCA1 LOH,
has been observed in 11–13% of sporadic breast cancers,
the majority of which are ER-negative tumors (56, 57).
Additionally, the dominant-negative transcriptional reg-
ulator ID4 has been shown to regulate BRCA1 expression
and to be preferentially expressed in BLBC (58, 59). Nev-
ertheless, many cases of BLBC have normal expression
and nuclear localization of BRCA1 (54), suggesting that
epigenetic and/or genetic abnormalities in other BRCA1-
associated proteins [e.g. Fanconi anemia proteins, ataxia
telangiectasia mutated gene product, Bloom syndrome
protein, or Rad50 (60, 61)] might underlie the BRCA1
dysfunction phenotype of BLBC. Regardless of the under-
lying molecular mechanisms, the BRCAness of BLBC has
emerged as a promising therapeutic target in these poor-
prognosis tumors.

Apoptosis resistance
Defects in the apoptotic cell death machinery play a

critical role in the pathogenesis of cancer, and BLBCs are
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characterized by a distinctive pattern of apoptotic gene
abnormalities. As noted, BLBC has a high frequency (44–
82%) of TP53 mutations, which impair DNA damage-
induced checkpoint activation and apoptosis, thereby
promoting genome instability (4, 16, 62). Indeed, loss of
one TP53 allele in mice with mammary-specific deletion
of BRCA1 dramatically accelerates mammary tumori-
genesis (63), suggesting that p53 mutations may act syn-
ergistically with functional BRCA1 defects in sporadic
BLBC to drive tumor initiation. The receptor tyrosine
kinase EGFR is expressed in 39–54% of BLBC and con-
fers resistance to apoptosis by ligand-dependent activa-
tion of the phosphatidylinositol-3 (PI3)-kinase/Akt/
mTOR pathway (15, 64, 65). Another characteristic
apoptotic abnormality in BLBC is expression of the
molecular chaperone �B-crystallin, which suppresses
apoptosis by inhibiting proteolytic activation of the
proapoptotic protease caspase-3 (66, 67). �B-Crystallin is
expressed in 45% of BLBC and only rarely (5%) in other
molecular subtypes. Notably, �B-crystallin expression is
associated with resistance to presurgery chemotherapy
and poor survival in breast cancer patients, whereas ec-
topic expression of this molecular chaperone leads to an
invasive tumor phenotype in preclinical models (67, 68).
Additionally, loss of the phosphatase and tensin analog
(PTEN) tumor suppressor gene, with resultant aberrant
activation of the antiapoptotic PI3-kinase/Akt/mTOR
pathway, is commonly observed in TNBC (69–71). In-
triguingly, PTEN inactivation has also recently been
linked to chromosome instability due to defects in Rad51-
mediated DNA double-strand break repair, resulting in
further genome instability in BLBC (72). Furthermore,
mutational inactivation of Fbxw7, a component of an E3
ubiquitin ligase that degrades mTOR and Cyclin E (see
next paragraph), has been reported in BLBC and likely
results in enhanced levels of these key regulatory mole-
cules (73–75).

Proliferation
As noted, BLBC is characterized by high mitotic indi-

ces and rates of proliferation (76). EGFR is commonly
expressed in these tumors and promotes cell proliferation
via activation of the Ras/MAPK/MAPK kinase (MEK)
pathway (64). BLBC is also characterized by low expres-
sion of the RB and Cyclin D1 genes and high expression
of E2F3 and Cyclin E genes (77). Cell proliferation re-
quires progression through the G1 to S cell cycle transition
that is negatively regulated by the RB tumor suppressor
gene product (78). Cyclin D-CDK4/CDK6 complexes
phosphorylate RB and promote S-phase entry by releas-
ing E2F family transcription factors, which induce Cyclin
E expression. Cyclin E-CDK2 complexes induce addi-

tional phosphorylation of RB and ensure S-phase entry. A
59-gene expression signature reflecting RB pathway dys-
regulation and a distinct RB LOH signature were more
prevalent in TNBC than other subtypes (79, 80). Cyclin
E1 is present in higher copy number in BLBC than other
molecular subtypes, and its expression correlates with
poor survival in breast cancer (81–83). Taken together,
these studies suggest a specific role of RB loss and/or
Cyclin E overexpression in the highly proliferative phe-
notype of BLBC.

Epithelial-mesenchymal transition
A key step in the metastatic cascade of epithelial tu-

mors is the epithelial-mesenchymal transition (EMT), a
carefully orchestrated program whereby carcinoma cells
lose epithelial characteristics, such as cell-cell adhesion
and polarity, and acquire mesenchymal features, facil-
itating invasion of the extracellular matrix (84). Devel-
opmental EMT pathways may be co-opted by BLBC or
stimulated by environmental pressures such as hypoxia
(85, 86). EMT markers such as N-cadherin and vimen-
tin are frequently highly expressed in BLBC, whereas
epithelial markers such as E-cadherin are often lost (87,
88). Down-regulation of E-cadherin expression and
promotion of EMT have shown to be achieved in BLBC
through the activation of TGF-�, Wnt, and Notch
pathways leading to expression of EMT-associated
transcription factors such as FOXC2, Twist, Slug,
Snail, and LBX1 (89 –91). EGFR also promotes EMT
by inducing expression of Twist and plays a key role in
cell motility and invasion (92, 93). Moreover, the Src
family tyrosine kinase LYN is an EMT mediator that is
commonly expressed in BLBC and is associated with
poor survival (94). Of note, the recently defined clau-
din-low gene expression signature is characterized by
low expression of cell-cell adhesion genes (e.g. Clau-
dins and E-cadherin) leading to an EMT phenotype
(95). Most closely linked with the basal-like subtype,
claudin-low tumors are generally ER and HER2 nega-
tive; however, claudin-low tumors have variable ex-
pression of basal-like markers and so constitute a dis-
tinct intrinsic gene expression subtype (95, 96).
Overall, these findings point to multiple mechanisms
promoting EMT and an invasive tumor phenotype in
BLBC.

Angiogenesis
Vascular endothelial growth factor A (VEGFA/VEGF)

is a potent mitogen for endothelial cells and regulates
tumor angiogenesis and vascular permeability, thereby
promoting primary tumor growth and metastasis (97).
The actions of VEGF on endothelial cells are mediated by
the receptor tyrosine kinases VEGF receptor (VEGFR)1/
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Flt1 and VEGFR2/KDR/Flk1 as well as Neuropilin core-
ceptors. VEGF is expressed at approximately 3-fold
higher levels in TNBC compared with non-TNBC as de-
termined by ELISA (98). Moreover, the VEGF gene is
located on a chromosomal region (6p21.2–6p12.3) char-
acterized by frequent copy number gain in TNBC, and
specific probes for VEGF have confirmed VEGF gene
copy gain and increased mRNA expression in approxi-
mately one third of TNBCs (99). A 13-gene VEGF signa-
ture was recently reported to predict distant metastases in
breast cancer (100), underscoring the link between VEGF
and metastasis. Breast tumors with p53 mutations have
higher VEGF levels, suggesting a mechanism by which
p53 mutation may promote angiogenesis (101). Addi-
tionally, high VEGFR2 expression has been observed in a
subset of TNBC and correlates with shorter survival
(102). Interestingly, VEGF also promotes breast cancer
growth independently of its proangiogenic actions by
an autocrine loop involving VEGFR1 and the VEGF
coreceptor Neuropilin-1; EGFR activation acts syner-
gistically with this VEGF autocrine loop by inducing
VEGF, VEGFR, and Neuropilin-1 via a MAPK-depen-
dent mechanism (103). Collectively, these results im-
plicate the VEGF pathway in the etiology of TNBC and
provide a strong rationale for targeting this pathway
therapeutically.

Insights from microRNA (miRNA)
expression analysis

miRNAs are noncoding RNAs that regulate gene ex-
pression predominately at the level of translation. After
sequential processing, mature approximately 22-base
miRNAs become part of silencing complexes that associ-
ate with the 3�-untranslated regions of target genes and
inhibit translation and/or promote target RNA degrada-
tion (104). miRNA cancer signatures have been reported,
as have miRNA signatures characteristic of different his-
tological and molecular subtypes of breast cancer (105–
107). The expression of the let-7 family of miRNAs, in-
cluding let-7a, is commonly reduced in BLBC/TNBCs
(105, 108). Let-7 miRNAs are also down-regulated in
rare breast cancer cells with stem-like properties (breast
cancer stem cells) and have been implicated in the self-
renewal, tumor-initiating, and metastatic properties of
breast cancer stem cells via their actions on several targets
including H-Ras, HMGA2, and IL-6 (109, 110). These
findings suggest a link between reduced expression of
let-7 miRNAs and an aggressive cancer stem cell pheno-
type in BLBC. Moreover, miR-126, a suppressor of primary/
metastatic tumor growth and cell proliferation, is
down-regulated in a subset of BLBCs (105, 111), sug-
gesting that reduced expression of miR-126 may pro-

mote tumor progression and metastasis in these breast
carcinomas.

Integrating genomic and transcriptome analyses
Comparative genome hybridization (CGH) studies us-

ing bacterial artificial chromosome and higher resolution
single nucleotide polymorphism and oligo arrays have
revealed distinctive chromosomal aberrations in each mo-
lecular subtype of breast cancer. Copy number aberra-
tions (CNAs) are distributed throughout the genome in
BLBC resulting in a sawtooth pattern, which is similar to
that seen in BRCA1-associated hereditary breast cancer
(112). In contrast to luminal and HER2 tumors, regions
of high-level amplification are rare in BLBC (112–114).
Low-level copy number aberrations in BLBC often in-
clude gains at 1q, 6p, 8p, and 10p, with losses at 4p, 5q,
14q, and 15q (112–115). Cluster analyses of CGH data
have identified three molecular classes of breast cancer
based on CNAs (99); 64% of TNBCs fall into class I,
characterized by frequent gains on chromosome 6p21-
p23 and frequent losses on chromosome 15q14-q22.
6p21-p23 contains many cancer-relevant genes; specific
probes for VEGFA and E2F3 were gained in approxi-
mately one third of TNBCs but only 10% or less of non-
TNBCs. Furthermore, EGFR gain and PTEN loss were
observed with similar frequencies in TNBC. These spe-
cific CNAs were accompanied by corresponding mRNA
expression levels, i.e. high expression of VEGFA, E2F3,
and EGFR and low expression of PTEN in TNBC. An-
other study integrating CGH and transcriptional profiles
of TNBCs identified 40 genes that were both amplified
and overexpressed, including FGFR2, BUB3, RAB20,
NOTCH3, and PKN1 (116). FGFR2 is amplified in 4%
of TNBC and encodes a receptor tyrosine kinase that
confers resistance to apoptosis by activating the PI3-ki-
nase/Akt/mTOR pathway (116, 117). TNBC cells with
FGFR2 amplification are selectively sensitive to apoptosis
induction by silencing FGFR2 or a pan-FGFR tyrosine
kinase inhibitor, highlighting the functional relevance of
this pathway in FGFR2-amplified TNBC cells (116).
Taken together, these studies underscore the translational
potential of integrating CGH and transcriptome plat-
forms to illuminate molecular pathways deregulated in
BLBC.

Translating Molecular Profiles into
Targeted Therapies

Chemotherapy: a platinum lining?
Given the absence of validated molecular targets in

TNBC, conventional chemotherapy (typically including a
DNA-damaging anthracycline such as doxorubicin and a
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microtubule-stabilizing taxane) has been the only thera-
peutic option for women with these poor-prognosis tu-
mors. Although the rates of pathological complete re-
sponse (22–45%) for presurgery chemotherapy are
higher for TNBC than luminal and normal-like tumors,
the majority of women with TNBC have residual disease
and are at high risk for relapse and death within the first
2–5 yr of diagnosis (7, 33, 34). Moreover, the nonspecific
cytotoxicity of these agents results in significant dose-
limiting side effects. Hence, the development of targeted
therapies with improved therapeutic indices is of para-
mount importance (Fig. 1 and Table 2).

Based on the BRCA1 dysfunction phenotype of BLBC,
one approach has been the exploration of platinum che-
motherapy agents (carboplatin, cisplatin, and others) in

these patients. Platinum agents produce DNA cross-links,
which lead to DNA double-strand breaks, normally re-
paired by BRCA1/2-mediated high-fidelity homologous
recombination repair mechanisms (47, 118). Conse-
quently, BRCA1/2-deficient cells are highly sensitive to
apoptosis induced by these agents (119). Cisplatin also
promotes apoptosis in TNBC by disrupting a complex
between the p53 family members �Np63 and TAp73 that
is present selectively in TNBC with mutant TP53 (120).
Specifically, cisplatin induces c-Abl-mediated phosphor-
ylation of TAp73, which releases pro-apoptotic TAp73
from the inhibitory complex and triggers apoptosis. A
recent small clinical study of 28 women with TNBC (in-
cluding two BRCA1 mutation carriers) who were treated
with presurgery cisplatin resulted in a 22% pathological

FIG. 1. Schematic representation of key signal transduction pathways implicated in the pathogenesis of BLBC and targeted therapies. Commonly
dysregulated pathways and their biological outcomes are depicted. Representative drug inhibitors are indicated in red. DSB, double-strand break; JAK,
Janus family of tyrosine kinases; SSB, single-strand break; PI3K, phosphatidylinositol-3-kinase; STAT, signal transducer and activator of transcription.
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complete response rate, similar to that observed with non-
platinum agents (121). Both women with BRCA1 muta-
tions had a complete response, and breast tumors with
low BRCA1 mRNA expression or TP53 mutations were
associated with a favorable cisplatin response, suggesting
that BCRA1 dysfunction may be linked to cisplatin re-
sponse. Whether platinum agents will indeed improve
survival in TNBC will have to await the outcome of sev-
eral current clinical studies.

Synthetic lethality: a paradigm shift in
cancer therapy

One of the most exciting recent developments in trans-
lational cancer research is the concept of synthetic lethal-
ity (122). Two oncogenic pathways are in a synthetic
lethal relationship if mutation of either oncogene is well
tolerated, but mutation of both results in robust cell
death. Synthetic lethal screens have been used to identify
drugs or genes that induce cell death only in the presence
of specific oncogenic alterations. For example, drug in-
hibitors of poly(ADP) ribose polymerase (PARP), an en-
zyme involved in DNA base-excision repair, prevent the
repair of DNA single-strand breaks, which are converted
to double-strand breaks at stalled DNA replication forks.
These DNA double-strand breaks are normally repaired
by BRCA1/2-mediated homologous recombination re-
pair, and there are no untoward consequences for the cell.
However, in the presence of BRCA1 or BRCA2 muta-
tions, this repair mechanism is defective: cells accumulate
DNA double-strand breaks and ultimately undergo apop-
tosis. Hence, PARP and BRCA1/2 are in a synthetic lethal
relationship: PARP inhibitors potently induce cell death
only in cancer cells with mutations in BRCA1 or BRCA2
(123, 124). Indeed, mutations in BRCA1 or BRCA2 con-

fer 57- and 133-fold increase sensitivity to PARP inhibi-
tors compared with cells with wild-type BRCA1 or
BRCA2 (124). Preclinical studies of several PARP inhib-
itors have demonstrated impressive single-agent antitu-
mor activity in multiple BRCA1/2-deficient tumor models
and have shown robust synergy between PARP inhibitors
and DNA-damaging agents, including platinum agents
(123–125). In a small phase I clinical study, the oral PARP
inhibitor olaparib (AZD2281) was well tolerated and in-
duced partial and complete responses in some patients
with BRCA1- or BRCA2-associated-cancer (12 of 19 pa-
tients had a clinical benefit), but the drug had no activity
in nonmutation carriers (126). Preliminary analysis of
a randomized phase II study in 86 patients with meta-
static TNBC demonstrated that adding a PARP in-
hibitor (BSI-201) to chemotherapy (gemcitabine plus
carboplatin) significantly improved progression-free
(�2-fold increase) and overall survival compared with
chemotherapy alone (127). There are currently 13 clin-
ical trials listed in ClinicalTrials.gov to evaluate PARP
inhibitors alone and in combination with platinum
agents, which should provide invaluable information.
As with all cancer therapies, de novo and/or acquired
resistance to PARP inhibitors are likely to be encoun-
tered. Indeed, intragenic mutations in BRCA1/2, which
restore expression of the wild-type protein, have been
described as mechanisms of resistance to platinum
agents and PARP inhibitors (128, 129). Nevertheless,
PARP inhibitors have the potential to transform our
therapeutic approach to hereditary and sporadic
TNBC, and the pace of clinical translation in this area
is likely to be unprecedentedly rapid given the dearth of
existing options.

TABLE 2. A subset of basal-like markers associated with poor survival: candidate BLBC molecular targets

Gene Function Expression pattern Impact
�B-crystallin Antiapoptotic small heat shock protein High expression in 45% of BLBC Hazard ratio 2.23 for reduced survival

(67)
Cyclin E G1-S phase cell cycle regulation Preferentially expressed by BLBC High expression associated with

reduced survival (82, 83)
EGFR Receptor tyrosine kinase High expression in 39–54% of

TNBC
Hazard ratio 1.98 for reduced survival

(66)
LYN Src family tyrosine kinase, EMT mediator High expression in �50% of TNBC Hazard ratio 2.29 for reduced survival

(94)
PTEN Inhibits PI3K/mTOR/ AKT; loss leads to

chromosome instability
Expression lost in �1/3 of TNBC

(99)
Hazard ratio 4.63 for reduced survival

(not specific to BLBC) (144)
RB1 Tumor suppressor RB dysregulation and LOH

common in BLBC
RB LOH gene signature predictive of

pathological complete response
and poor survival (79, 80)

VEGFA Angiogenesis High expression in 34% of TNBC
(99)

VEGF 13-gene signature hazard ratio
1.54 for relapse-free survival (not
specific to BLBC) (100)

VEGFR2 Angiogenesis Preferentially expressed by 22% of
TNBC

Hazard ratio 2.6 for reduced survival
(102)
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Antiangiogenics
Given the accumulating evidence of aberrant VEGF

pathway activation in BLBC (and other neoplasms), an-
tiangiogenic therapies targeting VEGF and its receptors
have emerged as promising therapies for BLBC. Many
small-molecule multikinase inhibitors, including sunitinib
and sorafenib, have been developed as potential antian-
giogenic agents (130). Sunitinib inhibits several receptor
tyrosine kinases including VEGFR, platelet-derived
growth factor receptor, c-KIT, RET, CSF-1R, and FMS-
like tyrosine kinase 3. A phase II study of 64 women with
metastatic breast cancer previously treated with an an-
thracycline and taxane found an 11% response rate to
sunitinib as a single agent; three of 20 TNBCs had de-
monstrable response to treatment (131). In a later study
of 22 patients with newly diagnosed locally advanced or
metastatic breast cancer, the addition of sunitinib to pac-
litaxel was shown to produce an objective response in
about one third of patients, including three of nine
TNBCs (132). Other VEGFR multikinase inhibitors have
not shown as much promise. A phase II trial of sorafenib,
which has kinase specificity similar to sunitinib, failed to
demonstrate any response in 23 metastatic breast cancer
patients, 52% of whom were ER negative (133).

The anti-VEGF antibody bevacizumab has been
shown to prolong disease-free survival of breast cancer
patients, including TNBC patients also treated with pac-
litaxel by 4 months on average vs. treatment with pacli-
taxel alone; however, overall survival was not affected
(134). When combined with the small-molecule reversible
EGFR kinase inhibitor erlotinib, bevicizumab showed
limited activity in metastatic breast cancer. In this study of
38 patients, 50% of the tumors were TNBC, and 10 of 19
demonstrated EGFR expression; however, response rates
of the distinct tumor subtypes were not reported (135).
Currently, 32 active trials are listed at ClinicalTrials.gov
involving breast cancer and VEGF-based antiangiogenic
agents. To date, the response to antiangiogenic agents has
been disappointing in unselected TNBC patients. It re-
mains to be seen whether the discovery of biomarkers to
stratify patients who are likely to respond to these agents
and/or identification of synergistic combination therapies
will improve treatment response. An additional caution-
ary note is the recent observation in preclinical studies
that antiangiogenic agents may paradoxically increase
distant metastases (136).

Targeting EGFR and downstream kinases
Based on the frequent expression of EGFR in BLBC,

small-molecule and antibody-based EGFR inhibitors are
being explored as targeted therapies. In a small study of
41 previously untreated breast cancer patients, presur-

gery erolotinib reduced phospho-EGFR levels in most pa-
tients, but erolotinib inhibited cell proliferation, phos-
pho-MAPK, and phospho-Akt levels only in ER-positive
breast cancer (not in TNBC or HER2-positive tumors)
(137). Phase I and II studies of another EGFR small-mol-
ecule inhibitor (gefitinib), a humanized anti-EGFR mono-
clonal antibody (cetuximab), and a dual EGFR/HER2
dual kinase small-molecule inhibitor (lapatinib), which is
Food and Drug Administration (FDA) approved for re-
lapsed HER2-positive breast cancer, have also failed to
show efficacy of these agents as single agents or combined
with chemotherapy in patients with largely pretreated
metastatic TNBC (138–140). One potential explanation
for the limited impact of EGFR-targeted therapies in
TNBC to date is the lack of a biomarker (e.g. gene muta-
tion or amplification) to identify potential responders;
predictive biomarkers have been a cornerstone for the
successful translation of targeted therapies (141). More-
over, constitutive activation of signaling pathways down-
stream of EGFR in TNBC, such as MEK/MAPK, PI3-
kinase/Akt/mTOR, and Src family kinases (e.g. Lyn), may
confer resistance to EGFR inhibitors. Indeed, preclinical
studies suggest that TNBC cells may be particularly sen-
sitive to MEK inhibitors by virtue of high expression of
MAPK pathway genes (142). Intriguingly, MEK inhibi-
tion in TNBC cells led to activation of the PI3-kinase/Akt/
mTOR pathway, whereas combined inhibition of the
MEK and PI3-kinase/Akt/mTOR pathway resulted in
synergistic cytotoxity or growth arrest. Similarly, BLBC
cells highly express LYN, a Src family kinase, and are
exquisitely sensitive to dasatinib, an inhibitor of Src and
Abl kinases (94, 143). Collectively, these studies strongly
suggest that identification of predictive biomarkers and
targeting of multiple kinase pathways (e.g. MEK/MAPK
and PI3-kinase/Akt/mTOR) is likely to be required for
optimal therapeutic benefit in BLBC. Given the explosion
of small-molecule inhibitors of these pathways, it seems
likely that clinical data will be forthcoming shortly.

Concluding Comments

A decade has elapsed since the initial recognition of BLBC
as a distinctive molecular subtype with a basal epithelial
gene signature and an aggressive clinical course charac-
terized by early relapses and poor survival. Major patho-
genic insights include the apparent BRCA1 dysfunction
phenotype of these sporadic tumors, resulting in wide-
spread genomic instability and potentially profound vul-
nerability to PARP inhibitors due to synthetic lethality.
Preclinical and clinical studies have also identified other
signature molecular abnormalities in BLBC, including de-
regulated activation of �B-crystallin, EGFR and down-
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stream kinases, and VEGF, resulting in an invasive apop-
tosis-resistant tumor phenotype. Clinical translation of
these molecular insights is currently ongoing and will
likely require careful patient selection based on the spe-
cific molecular targets of therapeutic agents and ratio-
nally designed combinatorial regimens to counteract
treatment resistance. Although these obstacles are poten-
tially daunting, early clinical success with some agents,
particularly PARP inhibitors, suggests that targeted ther-
apies for BLBC are within our grasp in the near future.
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Vijver M, Massagué J 2007 Lung metastasis genes couple breast
tumor size and metastatic spread. Proc Natl Acad Sci USA 104:
6740–6745

47. Venkitaraman AR 2002 Cancer susceptibility and the functions of
BRCA1 and BRCA2. Cell 108:171–182

48. Wooster R, Weber BL 2003 Breast and ovarian cancer. N Engl
J Med 348:2339–2347

49. Turner N, Tutt A, Ashworth A 2004 Hallmarks of ‘BRCAness’ in
sporadic cancers. Nat Rev Cancer 4:814–819

50. Lakhani SR, Van De Vijver MJ, Jacquemier J, Anderson TJ, Osin
PP, McGuffog L, Easton DF 2002 The pathology of familial breast
cancer: predictive value of immunohistochemical markers estro-
gen receptor, progesterone receptor, HER-2, and p53 in patients
with mutations in BRCA1 and BRCA2. J Clin Oncol 20:2310–
2318

51. Consortium BCL 1997 Pathology of familial breast cancer: differ-
ences between breast cancers in carriers of BRCA1 or BRCA2 and
sporadic cases. Lancet 349:1505–1510

52. Crook T, Brooks LA, Crossland S, Osin P, Barker KT, Waller J,
Philp E, Smith PD, Yulug I, Peto J, Parker G, Allday MJ, Crompton
MR, Gusterson BA 1998 p53 mutation with frequent novel condons
but not a mutator phenotype in BRCA1- and BRCA2-associated
breast tumours. Oncogene 17:1681–1689

53. Ganesan S, Silver DP, Greenberg RA, Avni D, Drapkin R, Miron
A, Mok SC, Randrianarison V, Brodie S, Salstrom J, Rasmussen
TP, Klimke A, Marrese C, Marahrens Y, Deng CX, Feunteun J,
Livingston DM 2002 BRCA1 supports XIST RNA concentration
on the inactive X chromosome. Cell 111:393–405

54. Richardson AL, Wang ZC, De Nicolo A, Lu X, Brown M, Miron
A, Liao X, Iglehart JD, Livingston DM, Ganesan S 2006 X chro-
mosomal abnormalities in basal-like human breast cancer. Cancer
Cell 9:121–132

55. Futreal PA, Liu Q, Shattuck-Eidens D, Cochran C, Harshman K,

208 Toft and Cryns Minireview Mol Endocrinol, February 2011, 25(2):199–211

D
ow

nloaded from
 https://academ

ic.oup.com
/m

end/article/25/2/199/2623165 by guest on 20 August 2022



Tavtigian S, Bennett LM, Haugen-Strano A, Swensen J, Miki Y,
Eddington K, McClure M, Frye C, Weaver-Feldhaus J, Ding W,
Gholami Z, Soederkvist P, Terry L, Jhanwar S, Berchuck A, Igle-
hart JD, Marks J, Ballinger DG, Barrett JC, Skolnick MH, Kamb
A, Wiseman R 1994 BRCA1 mutations in primary breast and
ovarian carcinomas. Science 266:120–122

56. Catteau A, Harris WH, Xu CF, Solomon E 1999 Methylation of
the BRCA1 promoter region in sporadic breast and ovarian can-
cer: correlation with disease characteristics. Oncogene 18:1957–
1965

57. Esteller M, Silva JM, Dominguez G, Bonilla F, Matias-Guiu X,
Lerma E, Bussaglia E, Prat J, Harkes IC, Repasky EA, Gabrielson
E, Schutte M, Baylin SB, Herman JG 2000 Promoter hypermeth-
ylation and BRCA1 inactivation in sporadic breast and ovarian
tumors. J Natl Cancer Inst 92:564–569

58. Turner NC, Reis-Filho JS, Russell AM, Springall RJ, Ryder K,
Steele D, Savage K, Gillett CE, Schmitt FC, Ashworth A, Tutt AN
2007 BRCA1 dysfunction in sporadic basal-like breast cancer.
Oncogene 26:2126–2132

59. Beger C, Pierce LN, Kruger M, Marcusson EG, Robbins JM,
Welcsh P, Welch PJ, Welte K, King MC, Barber JR, Wong-Staal F
2001 Identification of Id4 as a regulator of BRCA1 expression by
using a ribozyme-library-based inverse genomics approach. Proc
Natl Acad Sci USA 98:130–135

60. Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ, Qin J 2000 BASC,
a super complex of BRCA1-associated proteins involved in the
recognition and repair of aberrant DNA structures. Genes Dev
14:927–939

61. Wang W 2007 Emergence of a DNA-damage response network
consisting of Fanconi anaemia and BRCA proteins. Nat Rev Genet
8:735–748

62. Vousden KH, Lane DP 2007 p53 in health and disease. Nat Rev
Mol Cell Biol 8:275–283

63. Xu X, Wagner KU, Larson D, Weaver Z, Li C, Ried T,
Hennighausen L, Wynshaw-Boris A, Deng CX 1999 Conditional
mutation of Brca1 in mammary epithelial cells results in blunted
ductal morphogenesis and tumour formation. Nat Genet 22:
37– 43

64. Hynes NE, Lane HA 2005 ERBB receptors and cancer: the com-
plexity of targeted inhibitors. Nat Rev Cancer 5:341–354

65. Rimawi MF, Shetty PB, Weiss HL, Schiff R, Osborne CK, Cham-
ness GC, Elledge RM 2010 Epidermal growth factor receptor ex-
pression in breast cancer association with biologic phenotype and
clinical outcomes. Cancer 116:1234–1242

66. Kamradt MC, Chen F, Cryns VL 2001 The small heat shock pro-
tein �B-crystallin negatively regulates cytochrome c- and caspase-
8-dependent activation of caspase-3 by inhibiting its autoproteo-
lytic maturation. J Biol Chem 276:16059–16063

67. Moyano JV, Evans JR, Chen F, Lu M, Werner ME, Yehiely F, Diaz
LK, Turbin D, Karaca G, Wiley E, Nielsen TO, Perou CM, Cryns
VL 2006 AlphaB-crystallin is a novel oncoprotein that predicts
poor clinical outcome in breast cancer. J Clin Invest 116:261–270

68. Ivanov O, Chen F, Wiley EL, Keswani A, Diaz LK, Memmel HC,
Rademaker A, Gradishar WJ, Morrow M, Khan SA, Cryns VL
2008 �B-Crystallin is a novel predictor of resistance to neoadju-
vant chemotherapy in breast cancer. Breast Cancer Res Treat 111:
411–417

69. Saal LH, Holm K, Maurer M, Memeo L, Su T, Wang X, Yu JS,
Malmström PO, Mansukhani M, Enoksson J, Hibshoosh H, Borg
A, Parsons R 2005 PIK3CA mutations correlate with hormone
receptors, node metastasis, and ERBB2, and are mutually exclu-
sive with PTEN loss in human breast carcinoma. Cancer Res 65:
2554–2559

70. Saal LH, Gruvberger-Saal SK, Persson C, Lövgren K, Jumppanen
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Gerald WL, Massagué J 2008 Endogenous human microRNAs
that suppress breast cancer metastasis. Nature 451:147–152

112. Natrajan R, Lambros MB, Rodrı́guez-Pinilla SM, Moreno-Bueno
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