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Over the past decade, there has been a tremendous increase
in the understanding of the molecular and neural mechanisms
that control food intake and body weight. Yet eating disorders
and cachexia are still common, and obesity cases are rising at
alarming rates. Thus, despite recent progress, an increased
understanding of the molecular and neural substrates that
control body weight homeostasis is a major public health goal.
In this review, we discuss the mechanisms by which metabolic
signals interact with key behavioral, neuroendocrine, and au-

tonomic regulatory regions of the central nervous system.
Additionally, we offer a model in which hormones such as
leptin and ghrelin interact with similar central nervous sys-
tem circuits and engage them in such a way as to maintain an
appropriate and tight regulation of body weight and food in-
take. Our model predicts that overstimulation or understimu-
lation of these central pathways can result in obesity, an-
orexia, or cachexia. (Endocrinology 144: 3749–3756, 2003)

OBESITY, EATING DISORDERS, and cachexia endanger
the lives of millions of people worldwide. Fortu-

nately, during the last decade, there has been rapid and
substantial progress toward uncovering the molecular and
neural mechanisms by which these extremes of energy bal-
ance develop. Central to this research has been the identifi-
cation and characterization of certain peripheral metabolic
signals, including leptin and ghrelin, which serve as funda-
mental indices of energy sufficiency.

Several recent reviews have discussed in detail many com-
ponents of neuroendocrine control of body weight (1–6). In
this review, we will outline examples of central mechanisms
that underlie the adaptive responses that occur in states of
energy abundance or insufficiency. We will focus much of
our attention on the hormones leptin and ghrelin, both
of which act as crucial signals at either end of the energy
spectrum. Clearly, other metabolic signals contribute to body
weight homeostasis but can only be briefly mentioned (5, 7,
8). Finally, we will offer a model in which leptin and ghrelin
interact with similar central nervous system (CNS) circuits,
including several hypothalamic and brainstem nuclei, set-
ting into motion an integrated, coordinated, and adaptive
response to the particular state of energy balance and food
availability. Our model predicts that overstimulation or un-
derstimulation of these pathways result in obesity, anorexia,
or cachexia. Such responses have undoubtedly been opera-

tional throughout evolution but are now being increasingly
elaborated in the world in which we now live.

Leptin: A Molecular Signal of
Energy Abundance

A state of energy abundance is generated when food intake
and nutrient absorption exceed total body energy expendi-
ture (3, 6). This positive energy balance is represented by
increases in several circulating factors, including glucose,
leptin, glucagon-like peptide-1 (GLP-1), and peptide YY3-36
(PYY3-36) (1, 3, 6). Among these, leptin, which is secreted by
white adipose tissue, is established as the prototypical hor-
mone released normally in an environment of nutritional
plenty. Many studies indicate that both leptin’s mRNA levels
and its circulating levels are elevated in most obese humans
and also in rodents with diet-induced obesity (4, 9, 10). Al-
though relatively little is understood regarding the actual
molecular controls of leptin production and secretion, leptin
levels in environments of energy abundance are likely in-
fluenced by insulin and glucocorticoids (11–14); see also ac-
companying review by Rajala and Scherer (15).

Following its release, leptin acts both in the brain and in
peripheral tissues (16–25). In the CNS, leptin directly acti-
vates or inhibits neurons expressing the functional long lep-
tin receptor (Ob-Rb) (22, 23). These receptors are located in
several sites, including the hypothalamic arcuate nucleus
(Arc), ventromedial hypothalamic nucleus (VMH), and dor-
sal medial hypothalamic nucleus (16–19). The leptin receptor
is a type 1 cytokine receptor, which exerts its effects by
activating the janus-kinase/signal transducer and activator
of transcription-3 (STAT-3) pathway (26, 27). Leptin admin-
istration induces STAT-3 translocation, phosphorylation of
phosphoinositide 3-kinase and the expression of several
leptin-responsive genes, including suppressor of cytokine
signaling-3 and c-fos in the hypothalamus and brainstem (20,
21, 28–36).

Abbreviations: AgRp, Agouti-related gene product; Arc, Arcuate nu-
cleus; CART, cocaine- and amphetamine-regulated transcript; CNS, cen-
tral nervous system; DVC, dorsal vagal complex; GHSR, GH secreta-
gogue receptor; GLP-1, glucagon-like peptide-1; 5-HT2CR, serotonin 2C
receptor; LHA, lateral hypothalamic area; LPS, lipopolysaccharide;
MCH, melanin-concentrating hormone; MC4R, melanocortin-4 recep-
tor; NPY, neuropeptide Y; Ob-Rb, functional long leptin receptor;
POMC, proopiomelanocortin; PVH, paraventricular hypothalamic
nucleus; PYY3-36, peptide YY3-36; UCP-1, uncoupling protein-1; VMH,
ventromedial hypothalamic nucleus.
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Despite evidence clearly linking leptin to positive energy
balance and to pathways that suppress ingestive behavior
(see below), obesity often persists despite leptin elevations
[see accompanying review by O’Rahilly et al. (37)]. This ap-
parent leptin resistance can be viewed either as detrimental,
given the morbidities associated with obesity, or as evolu-
tionarily favorable, because it permits accumulation of fur-
ther energy stores that potentially could be used during times
of low environmental availability (9). Indeed, a fall in cir-
culating leptin levels, as occurs during caloric restriction, is
likely a more effective and critical signal to the CNS, pro-
moting adaptation to a fasted state by increasing appetite,
decreasing energy expenditure and modifying neuroendo-
crine function in a direction that favors survival (9).

Ghrelin: A Long-Sought Molecular Signal
of Energy Insufficiency

Ghrelin is now established as an important indicator of
energy insufficiency. Ghrelin is released mainly from endo-
crine cells of the stomach and gastrointestinal tract (38). It
was originally identified in 1999 during a search for the
endogenous ligand of the GH secretagogue receptor (GHSR;
ghrelin receptor), which previously had been localized to
some peripheral tissues and also to several CNS sites, in-
cluding many of the same regions where Ob-Rb is found,
such as the Arc and VMH (38–45). Human studies have
found a preprandial rise and a postprandial decline in
plasma ghrelin levels, suggesting that ghrelin plays a phys-
iological role in hunger and meal initiation (46, 47). Fasting-
associated elevations in ghrelin also occur in animals, both
acutely and with chronic food deprivation (48, 49). Many
other studies also clearly demonstrate that these elevations
in ghrelin have a functional consequence aimed at reversing
the state of energy deficit in which they arise. For example,
anti-ghrelin IgG administration suppresses feeding in ro-
dents, and both central and peripheral ghrelin administra-
tion strongly stimulate feeding, suppress energy expendi-
ture, and lead to increased body weight (48, 50–53).

Adding further support to ghrelin’s role as a signal of
energy insufficiency are observations of altered ghrelin levels
in human obesity and after weight loss. Initial studies re-
vealed that fasting plasma ghrelin levels are negatively cor-
related with percentage of body fat and body weight (54).
Following diet-induced weight loss, plasma ghrelin levels
increase significantly, suggesting a mechanism for the re-
bound weight gain following dieting (47). Conversely, gas-
tric bypass markedly suppresses ghrelin levels, which likely
contributes to the weight-reducing effect of and the main-
tenance of the reduced weight associated with the procedure
(47). Furthermore, in patients with Prader-Willi syndrome,
high ghrelin levels are present and are thought to directly
contribute to the voracious appetite, hyperphagia, and obe-
sity that characterize this syndrome (55, 56).

Leptin and Ghrelin Activate
Overlapping Pathways

As noted above, several hypothalamic cell groups express
leptin and/or ghrelin receptors, and evidence is now accu-
mulating to suggest that some of these nuclei, such as the Arc,

are critical sites of integration for leptin-responsive and
ghrelin-activated pathways. Within the Arc, two distinct lep-
tin- and ghrelin-responsive cell groups exist. The first is
identified by the coexpression of POMC (proopiomelano-
cortin) and CART (cocaine- and amphetamine-regulated
transcript) and is often referred to as an anorexigenic pop-
ulation (32). The second distinct population of neurons is
orexigenic and coexpresses the peptides NPY (neuropeptide
Y) and AgRP (agouti-related gene product) (3, 57–60). The
leptin and ghrelin receptors are expressed in both Arc sub-
populations (61, 62). Leptin activates POMC/CART neurons
at the level of gene transcription and also by direct depo-
larization, presumably initiating the release of the two potent
anorexigenic neuropeptides �-MSH (a melanocortin receptor
agonist) and CART (21, 22, 63–66). In parallel, leptin directly
inhibits NPY and AgRP transcription and hyperpolarizes the
NPY/AgRP neurons, thus preventing the release of the po-
tent orexigenic neuropeptides NPY and AgRP (the endoge-
nous melanocortin receptor antagonist) (21, 23, 57, 66–68).

Consistent with ghrelin action in the Arc, ablation of the
Arc with monosodium glutamate significantly blunts the
ingestive behaviors normally stimulated by central delivery
of ghrelin (69). In contrast to leptin, ghrelin activates arcuate
NPY/AgRP neurons. This has been demonstrated by ghrelin-
and/or GHSR agonist-stimulated c-fos induction and augmen-
tation of NPY and AgRP transcription in NPY/AgRP neurons
(50, 52, 70–73).

Evidence of an overlap of ghrelin- and leptin-responsive
pathways in the Arc includes the ability of ghrelin to depo-
larize the majority of Arc neurons that are inhibited by leptin
(74). Recent work by Cowley et al. (75) has demonstrated that
ghrelin also directly depolarizes arcuate NPY/AgRP neu-
rons. Additionally, administration of a GHSR agonist to
obese, leptin-resistant fa/fa rats results in double the amount
of arcuate c-fos induction normally seen (in lean animals),
whereas conversely, chronic central infusion of leptin to nor-
mal, fasted animals suppresses this GHSR agonist-induced
c-fos response (76). This suggests that lack of a functional
leptin signaling pathway increases sensitivity to ghrelin. Fur-
thermore, antibodies and antagonists of both NPY and AgRP
abolish ghrelin-induced feeding, whereas NPY antagonists
also block ghrelin’s inhibitory effects on oxygen consump-
tion (50, 51). Interestingly, administration of a GHSR agonist
to NPY-deficient mice still stimulates food intake and body
weight increases; these responses are blocked upon exposure
to a melanocortin receptor agonist (77).

Yet another level of control of these circuits exists, in ad-
dition to the above-described direct actions of leptin and
ghrelin on neurons in the Arc. Specifically, NPY/AgRP neu-
rons provide a local (collateral) input to their neighboring
arcuate POMC/CART cells (7, 22, 75). These NPY collaterals
release the inhibitory neurotransmitter �-aminobutyric acid,
resulting in a tonic inhibition of the POMC/CART neurons
(78). Importantly, leptin and ghrelin (as well as other signals,
such as PYY3-36) modulate this local circuit. For example as
noted above, leptin directly depolarizes POMC neurons
while simultaneously hyperpolarizing NPY/AgRP neurons.
The inhibition of NPY/AgRP neurons results in a loss of
inhibitory (�-aminobutyric acidergic) input to POMC neu-
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rons and a net increase in POMC activity (disinhibition). In
contrast, ghrelin directly depolarizes the NPY/AgRP neu-
rons and simultaneously increases inhibitory input to the
POMC cells (75). This local circuit increases the ability to fine
tune responses to changing energy availability.

Taken together, these observations support the hypothesis
that inverse changes in leptin and ghrelin levels likely are
critical to the maintenance of energy homeostasis, and it is
intriguing to speculate on the effects of manipulating specific
components of the abovementioned leptin- and ghrelin-
responsive circuit. For example, specific deletion of either
leptin receptors in POMC neurons or ghrelin receptors in
NPY/AgRP arcuate neurons would be predicted to have
effects on food intake and body weight. Moreover, manip-
ulations in the NPY/AgRP neurons also would be predicted
to affect both the tonic firing of POMC neurons and the
indirect responses following changes in leptin or ghrelin
levels. Obviously, these and other questions need to be ad-
dressed directly and need to be assessed in mice with cell-
specific genetic deletions or lesions in various components of
the aforementioned circuits. Undoubtedly, these types of
studies represent where the field will move in the ensuing
years. Despite the lack of definitive data currently, this local
circuitry within the Arc is likely an important modifier of the
responses to changes in key metabolic hormones including
leptin, ghrelin, insulin, and PYY3-36 (7, 22, 23, 75, 79).

Direct Leptin and Ghrelin Action in
the Brainstem

Although we have concentrated on the actions of met-
abolic signals in the hypothalamus, a growing body of
evidence suggests that direct interactions by leptin and
ghrelin with neural circuits originating in the caudal brain-
stem also are important for maintenance of energy bal-
ance. For example, Ob-Rb mRNA is found in many brain-
stem nuclei involved in food intake, including the dorsal
vagal complex (DVC) (19, 80). We have used similar tech-
niques to demonstrate GHSR expression in many of the
same brainstem nuclei (our unpublished observations).
The presence of ghrelin and leptin receptors in the brain-
stem likely contributes to the c-fos induction in the brain-
stem following ghrelin or leptin administration (29, 31, 50,
71, 81). Phosphorylation of STAT-3, which occurs follow-
ing activation of Ob-Rb, occurs in several brainstem nuclei
following peripheral administration of leptin (35). Deliv-
ery of leptin to the caudal brainstem reduces food intake
and body weight (80). Furthermore, injection of leptin
directly into the DVC reduces food intake and body
weight, whereas ghrelin injection into the DVC causes
hyperphagia [Ref. 80; and Faulconbridge, L. F., and
H. J. Grill (University of Pennsylvania, Philadelphia, PA),
personal communication].

Downstream Targets of Arcuate Neurons: Effector
Arms of the Circuit

The aforementioned data support the model that many
of the effects of metabolic cues, such as those of leptin and
ghrelin, are mediated by POMC/CART and NPY/AgRP
neurons in the Arc. However, the downstream sites that

are targeted by these Arc neurons and that mediate the
behavioral, endocrine and autonomic effects of changes
in energy status are less understood. Numerous neuro-
anatomical and physiologic studies have suggested that
leptin-responsive Arc neurons influence the activity of
neurons in key effector central sites. These include the
paraventricular hypothalamic nucleus (PVH), the lateral
hypothalamic area (LHA), the VMH, and autonomic
preganglionic neurons in the interomediolateral nucleus
of the spinal cord and the DVC (1, 21, 32, 59, 82– 84). As
outlined in Fig. 1, these putative second-order neurons
also contain orexigenic and anorexigenic neuropeptides,
such as orexin (hypocretin)-A and -B, cholecystokinin,
melanin-concentrating hormone (MCH), and GLP-1. Sev-
eral of these sites can be linked to the behavioral, hypo-
physiotropic, and autonomic responses responsible for
adapting to changes in energy status. In what follows in
this section, we will present briefly three examples of
putative circuits through which leptin acts. Each serves
as an example of hypothalamic integration of endocrine,
autonomic, and behavioral responses.

The TRH Neuroendocrine Response
to Fasting

Falls in leptin initiate many neuroendocrine responses to
starvation (85). Prominent among these is the inhibition of
thyroid hormone secretion, which is thought to be adaptive
because of the ensuing drop in the metabolic rate and pres-
ervation of energy stores (85, 86). Some examples of leptin’s
effects on the hypothalamic-pituitary-thyroid axis include
blunting of the starvation-induced falls in circulating T4 lev-
els and TRH mRNA levels in the PVH by administration of
leptin to fasted animals (85, 87). This occurs at least in part
via projections of leptin-responsive Arc neurons to TRH neu-
rons because monosodium glutamate-induced ablation of
the Arc blunts the ability of leptin to prevent fasting-induced
falls in TRH gene expression (87–89). More specifically, leptin’s
effects on the TRH neurons in the PVH are mediated in part
through the melanocortin system. Centrally-administered
�-MSH or �-MSH analogs can prevent or minimize the fasting-
induced suppression of TRH gene expression and drop in
thyroid hormone levels, can raise plasma TSH in fasted an-
imals and can increase TRH release from hypothalamic ex-
plants (90, 91). Furthermore, central AgRP administration
decreases plasma TSH levels in fed animals, produces long-
lasting suppression of plasma TSH and circulating T4 (when
injected directly into the PVH), and blocks �-MSH- and
leptin-induced TRH release from hypothalamic explants
(90). Neuroanatomic support includes the innervation of
TRH neurons by �-MSH and AgRP-containing neurons and
the coexpression of melanocortin-4 receptor (MC4R) mRNA
within TRH-containing PVH neurons (91–93). Leptin also
directly interacts with TRH-containing PVH neurons, as ev-
idenced by Ob-Rb mRNA expression within PVH neurons,
leptin-induced expression of suppressor of cytokine signal-
ing-3 mRNA in TRH neurons, and leptin activation of the
TRH promoter, in vitro (19, 92).
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Leptin, the Autonomic Nervous System, and
Energy Expenditure

In an attempt to maintain adequate energy stores, mam-
mals reduce energy expenditure during periods of reduced
food intake. Several lines of evidence support a role for
reduced sympathetic activity mediating decreased energy
expenditure during periods of hypoleptinemia. For example,
absence of leptin signaling (ob/ob and db/db mice) results in
decreased energy expenditure and contributes to the obesity
in those animals (94). In addition, leptin increases uncou-

pling protein-1 mRNA levels in brown adipose tissue of
fasted animals, suggesting that thermogenesis is decreased
(95, 96). Furthermore, central leptin administration attenu-
ates the reductions in heart rate, blood pressure, and energy
expenditure normally observed during periods of negative
energy balance (97–103).

The neuroanatomical substrate for leptin to regulate sym-
pathetic outflow remains to be characterized; however, sev-
eral studies have suggested a role for the melanocortin sys-
tem. MC4R antagonists block leptin-stimulated uncoupling

FIG. 1. Pathways involved in energy balance. 1) Increased food intake, decreased energy expenditure and altered neuroendocrine output lead
to a relative increase in energy stores. 2) In response, leptin is released from white adipose tissue. 3) Leptin travels to the Arc, where it stimulates
POMC/CART neurons and inhibits NPY/AgRP neurons, via interactions with its receptor, Ob-Rb. 4) �-MSH and CART are released at key
behavioral, autonomic, and neuroendocrine regulatory regions. 5) These regulatory regions also have direct input from leptin. 6) �-MSH, CART,
and leptin influence the release of various neuropeptides and neurotransmitters from these regulatory regions. 7) These substances lead to
decreased food intake, increased energy expenditure and altered neuroendocrine output which, in turn, 8) result in a relative decrease in energy
stores. 9) In response, ghrelin is released from the GI tract. 10) Ghrelin travels to the Arc, where it activates NPY/AgRP neurons and likely
inhibits POMC/CART neurons, via interactions with its receptor, GHSR. 11) NPY and AgRP are released at key behavioral, autonomic, and
neuroendocrine regulatory regions. 12) These regulatory regions also have direct input from ghrelin. 13) NPY, AgRP, and ghrelin influence the
release of various neuropeptides and neurotransmitters from these regulatory regions. 14) These substances effect responses that lead back
to step 1. 15) Dysregulated stimulation of ghrelin-activated pathways and/or blockade of leptin-activated pathways cause obesity. 16) Dys-
regulated stimulation of leptin-activated pathways and/or blockade of ghrelin-activated pathways cause cachexia.
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protein-1 gene expression in brown adipose tissue (104). In
addition, MC4R mRNA is expressed not only in several CNS
sites that provide direct inputs to autonomic preganglionic
neurons, but also in those same sympathetic and parasym-
pathetic preganglionic neurons (82, 84). Moreover, leptin-
activated arcuate POMC/CART neurons directly innervate
sympathetic preganglionic neurons, including the regions of
the IML known to innervate brown adipose tissue (32, 105).
While the functional significance of this simple circuit re-
mains to be characterized, the aforementioned data suggest
that leptin-responsive POMC/CART neurons in the Arc di-
rectly target and affect the activity of parasympathetic and
sympathetic preganglionic neurons that are critical for reg-
ulating coordinated autonomic responses including energy
expenditure.

Linking Changes in Leptin and Ghrelin to
Ingestive Behavior

Many studies indicate that leptin and its downstream central
pathways affect food intake (94, 106–111); see also accompa-
nying review by O’Rahilly et al. (37). As discussed above, leptin
mediates these effects via leptin action in the CNS. Indeed,
selective deletion of neuronal leptin receptors produces obesity
(24). Several pieces of evidence suggest that two sites may
mediate the effects of leptin to regulate feeding. The first can-
didate is the PVH, which, as noted above, receives innervation
from leptin- and ghrelin-responsive neurons in the Arc (59, 83).
The PVH neurons that contribute to food intake modulation
include those that innervate autonomic preganglionic neurons
and express MC4R mRNA (1, 82, 84). The second candidate
population is the LHA. The LHA has been known to play a key
role in the regulation of ingestive behavior since early lesion
studies (1, 59). In recent years, two peptides were discovered
that are expressed in the brain only by neurons in this area:
MCH and the orexins (112–114). Notably, the MCH and orexin
neurons have widespread projections, including several CNS
sites that may be involved in controlling ingestive behavior (1).
The receptors for both peptides are similarly widespread and
very similar in their distribution (115–117). Central injections of
MCH increases food intake in the rat and MCH mRNA levels
are increased by food deprivation (118). MCH �/� mice are
hypophagic and lean and mice that overexpress MCH are
obese and hyperleptinemic (119, 120). The role of orexins in
regulating food intake is less well defined, but icv injections
of orexin increase feeding behavior, whereas food restriction
increases orexin mRNA (113, 121). Interestingly, leptin-
responsive POMC/CART and NPY/AgRP neurons inner-
vate MCH and orexin neurons (21, 58, 122). Thus, several
pieces of data suggest that MCH and orexin cells in the LHA
are downstream of leptin- and ghrelin-responsive neurons in
the Arc. These projections may play a key role in regulating
feeding behavior during periods of changing energy
availability.

Key CNS Pathways Serve as the Battleground for the
Control of Energy Balance

As mentioned above, there are many examples whereby
dysregulation of leptin- and ghrelin-responsive central path-
ways result in obesity. In contrast, the CNS circuits underlying

responses at the opposite end of the energy spectrum, and
which contribute to cachexia and eating disorders such as an-
orexia nervosa, are less understood but also involve parallel
signaling defects in these same leptin- and ghrelin-responsive
circuits. Regarding anorexia nervosa, recent data have tied the
actions of the central serotoninergic pathway to melanocortin
pathways (123). This is relevant in that dysregulation of the
central serotoninergic system has long been implicated in the
pathogenesis of eating disorders such as anorexia nervosa and
in that serotoninergic agents inhibit food intake and body
weight, even in humans (124). Indeed, one of the most effective
drugs used to treat human obesity was fenfluramine used in
combination with phentermine (Fen/Phen). Although not com-
pletely understood, fenfluramine is thought to mediate its ef-
fects by increasing serotonin release and inhibiting serotonin
reuptake (125). Other evidence supporting a critical role of
serotoninergic receptors in regulating body weight homeostasis
stems from the observation that deletion of serotonin receptors
results in obesity. Specifically, deletion of the serotonin 2C re-
ceptor (5-HT2CR) induces hyperphagia, obesity, and diabetes
(126). Moreover, these mice are insensitive to the anorectic ac-
tions of fenfluramine, suggesting that 5-HT2CR is required to
mediate the anorectic actions of serotonin (127). However, the
neural mechanisms underlying this response have remained
unclear.

Recently, Heisler et al. (123) found that arcuate POMC
neurons express 5-HT2CR mRNA. In addition, threshold
doses of fenfluramine to decrease food intake induce c-fos
expression and directly depolarize POMC neurons. These
findings lead to the hypothesis that POMC neurons are
downstream mediators of serotoninergic pathways to affect
food intake and body weight. Supportive of this, genetic or
pharmacological blockade of melanocortin receptors blunted
the ability of fenfluramine to induce anorexia (123). Linking
the anorectic actions of fenfluramine to the melanocortin
pathway is a long way from unraveling the complex patho-
physiology of eating disorders. Nonetheless, extensions of
these findings may shed light on the neuroanatomical sub-
strate underlying anorexia nervosa.

Relatively more evidence has recently accumulated to sug-
gest that the melanocortin pathway is important in mediat-
ing the cachectic responses that often accompany chronic
infections or neoplastic syndromes (reviewed in Refs. 128
and 129). For example, central administration of AgRP or
other melanocortin receptor antagonists suppresses cachexia
induced by both lipopolysaccharide (LPS) and tumor growth
(49). Moreover, the responses to LPS or chronic tumor load
are blunted in MC4R �/� mice (130). In addition, central
�-MSH has potent antipyretic effects as it blunts the febrile
responses elicited by LPS administration and prevents LPS-
induced anorexia in rats (131, 132). However, lesions of the
Arc are not sufficient to block IL-1 induced anorexia and may
even enhance the response (133). Interestingly, cytokine ad-
ministration increases the levels of leptin (134, 135).

Ghrelin levels also are elevated in many types of cachexia,
including tumor-bearing rats, humans with cardiac cachexia,
and humans with anorexia nervosa (49, 136–138). Ghrelin
also has greatly reduced orexigenic potency in tumor-bear-
ing rats compared with control animals (49). These findings
suggest that, just as leptin resistance is associated with many
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forms of obesity, ghrelin resistance may be associated with
cachexia. Although inherently difficult to support with ex-
perimental data, it is intriguing to speculate that, similar to
leptin resistance, ghrelin resistance may have had evolution-
ary benefit. This apparently paradoxical resistance to ghrelin
could prevent sick individuals, before recovery, from spread-
ing illness to others or from transmitting cancer-promoting
or disease-promoting genes that result in death to further
generations. Obviously, in our current environment of rel-
atively effective infectious disease and cancer treatments,
ghrelin resistance may not be of major evolutionary conse-
quence. However, it certainly may have implications in the
medical management of patients with cachexia and anorexia.

Summary

Accumulating evidence supports the model that stimula-
tion of leptin- and ghrelin-responsive pathways, including
the central melanocortin system, contributes to the mainte-
nance of body weight. As outlined above and as illustrated
in Fig. 1, dysregulation of these pathways leads to patho-
logical weight loss that is comprised of both chronic anorexia
and inappropriate energy expenditure. On the other end of
the energy balance spectrum, dysregulation of these path-
ways results in a net weight gain and subsequently obesity.
Whereas this model is unavoidably oversimplified, it is sup-
ported by accumulating evidence that overlapping CNS
pathways are operational at either end of the spectrum of
energy balance. Moreover, chronic alterations in the system
inherently leads to biased responses resulting in pathological
weight loss or obesity.
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