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Gut peptides exert diverse effects regulating satiety, gastro-
intestinal motility and acid secretion, epithelial integrity, and
both nutrient absorption and disposal. These actions are ini-
tiated by activation of specific G protein-coupled receptors
and may be mediated by direct or indirect effects on target
cells. More recent evidence demonstrates that gut peptides,
exemplified by glucagon-like peptides-1 and 2 (GLP-1 and
GLP-2), directly regulate signaling pathways coupled to cell
proliferation and apoptosis. GLP-1 receptor activation en-
hances �-cell proliferation and promotes islet neogenesis via
activation of pdx-1 expression. The proliferative effects of
GLP-1 appear to involve multiple intracellular pathways, in-
cluding stimulation of Akt, activation of protein kinase C�,
and transactivation of the epidermal growth factor receptor
through the c-src kinase. GLP-1 receptor activation also pro-
motes cell survival in �-cells and neurons via increased levels

of cAMP leading to cAMP response element binding protein
activation, enhanced insulin receptor substrate-2 activity
and, ultimately, activation of Akt. These actions of GLP-1 are
reflected by expansion of �-cell mass and enhanced resistance
to �-cell injury in experimental models of diabetes in vivo.
GLP-2 also promotes intestinal cell proliferation and confers
resistance to cellular injury in a variety of cell types. Admin-
istration of GLP-2 to animals with experimental intestinal
injury promotes regeneration of the gastrointestinal epithe-
lial mucosa and confers resistance to apoptosis in an indirect
manner via yet-to-be identified GLP-2 receptor-dependent
regulators of mucosal growth and cell survival. These prolif-
erative and antiapoptotic actions of GLP-1 and GLP-2 may
contribute to protective and regenerative actions of these
peptides in human subjects with diabetes and intestinal dis-
orders, respectively. (Endocrinology 145: 2653–2659, 2004)

A NUMBER OF gut peptide hormones exhibit diverse
biological actions that include not only the acute reg-

ulation of metabolism, but also the growth and survival of
cells in the gastro-enteropancreatic-brain axis. The dual pro-
liferative and antiapoptotic action of several of these hor-
mones has focused attention on understanding how a single
peptide regulates distinct pathways coupled to either growth
or cytoprotection. The focus of this review is on two related
intestinal hormones, glucagon-like peptide-1 (GLP-1) and
GLP-2, that play key roles in the regulation of nutrient ho-
meostasis, as well in the proliferative and antiapoptotic re-
sponses of the pancreatic �-cell and the intestinal epithelial
cell, respectively.

GLP-1

Glucose-dependent insulinotropic peptide (GIP) and
GLP-1 are the major physiological incretins, intestinal hor-
mones released in response to nutrient ingestion that stim-
ulate glucose-dependent insulin secretion (1). GIP is a 42-
amino acid peptide released from K cells that are localized
predominantly in the duodenum. Although early reports

demonstrated an inhibitory effect of this hormone on acid
secretion, subsequent studies established a predominant role
for GIP as an incretin. The structurally related hormone,
GLP-17–36NH2, is released from L cells in the distal ileum and
colon and also serves important roles as an incretin; GLP-1
not only stimulates insulin secretion, but also inhibits gastric
emptying and glucagon secretion (2). Based upon studies
with antagonists in both humans and rodents, GLP-1 and
GIP are believed to account for almost the entire incretin
effect that facilitates disposal of ingested nutrients. Consis-
tent with these findings, mice with null mutations in either
the GLP-1 or GIP receptor genes exhibit impaired glucose
tolerance (3, 4). Similarly, experiments preventing GLP-1 and
GIP degradation through the use of dipeptidyl peptidase IV
(DPP-IV) inhibitors, studies of degradation-resistant peptide
analogs or analysis of rodents with null mutations in the
DPP-IV gene, have demonstrated that improved glucose tol-
erance is consistently observed in association with increased
levels GLP-1 or GIP (2, 5). Accordingly both GLP-1 and GIP
have been proposed for the treatment of patients with type
2 diabetes (T2DM) (2). However, T2DM is associated with
resistance to the actions of GIP (6); hence, current clinical
trials are focused on examining the therapeutic potential of
degradation-resistant GLP-1 analogs, or DPP-IV inhibitors
for the treatment of T2DM (2). Indeed, these approaches have
been shown to reduce glycemia acutely, as well as to lower
HbA1c levels in 4- to 12-wk clinical studies (7–9). Notwith-
standing these emerging clinical results, experimental stud-
ies have elucidated additional biological actions for GLP-1
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and GIP, as trophic factors for the �-cell. As �-cell mass is
reduced by up to 60% in patients with T2DM (10, 11), there
exists great interest in the potential for new therapeutic
agents simultaneously capable of lowering HbA1c and ex-
panding functional �-cell mass.

GLP-1 and the regulation of �-cell mass: in vivo studies

Acute or chronic administration of either GLP-1 or of its
degradation-resistant analogs increases �-cell mass by up to
2-fold in normal or diabetic mice (Table 1) (12–14). Similar
studies have demonstrated that GLP-1 receptor (GLP-1R)
agonists enhance �-cell mass in aged, glucose-intolerant rats
(15), although the extent to which GLP-1R agonists increase
islet mass may be dependent, in some but not all animal
models, on the concurrent metabolic milieu and pre-existing
�-cell mass (14, 16, 17). Furthermore, GLP-1R agonists such
as exendin-4 also prevent or delay the development of dia-
betes in db/db mice and Goto-Kakizaki rats and reduce the
severity of diabetes in rats following partial pancreatectomy
or neonatal administration of streptozotocin; all of these
changes occur in association with enhancement of �-cell
mass (17–20). Similarly, administration of exendin-4 in the
neonatal period to rats following induction of experimental
intrauterine growth retardation is associated with a reduced
incidence of diabetes, increased �-cell proliferation, and ex-
pansion of �-cell mass in adult animals (21). However, it is
noted that persistent transgenic expression of the potent
GLP-1 receptor agonist, exendin-4, is not associated with
perturbations in �-cell mass in mice (22), consistent with the
likelihood that multiple factors influence the GLP-1R-depen-
dent regulation of �-cell mass (23).

In contrast with data obtained with GLP-1, much less is
known about the importance of GIP for preservation or ex-
pansion of �-cell mass. Although administration of DPP-IV
inhibitors increases the levels of both GLP-1 and GIP in
association with expansion of �-cell mass (24), and DPP-IV-
deficient mice exhibit resistance to streptozotocin-induced
�-cell damage (25), the relative contributions of GIP vs.
GLP-1 to islet growth remain unclear. GIPR�/� mice exhibit
a paradoxical increase in �-cell mass (26); however, whether
GIP analogs stimulate expansion of �-cell mass in diabetic
rodents has not yet been determined.

Analysis of whether GLP-1 action is essential for one or
more aspects of physiological �-cell growth has also been
examined, through experiments employing mice with an
inactivating mutation in the GLP-1R gene. GLP-1R�/� mice
exhibit normal �-cell mass yet display a shift toward more
medium and small islets, and a significant reduction in the
numbers of large islets (27). The importance of endogenous

GLP-1R action for the �-cell response to insulin resistance has
also been studied, in double transgenic ob/ob:GLP-1R�/�
mice. Marked �-cell hyperplasia and increased insulin bio-
synthesis accompanies the development of diabetes in leptin-
deficient ob/ob mice. Remarkably, ob/ob:GLP-1R�/� mice
exhibit the same degree of islet hyperplasia and compensa-
tory increases in proinsulin gene expression compared with
ob/ob mice with intact GLP-1R signaling (28). In contrast,
GLP-1R�/� mice exhibit more marked hyperglycemia and
a reduced capacity for �-cell regeneration following exper-
imental pancreatectomy (23). Hence, the relative importance
of GLP-1R action for �-cell growth and regeneration appears
dependent upon the specific experimental setting.

Mechanism of action of GLP-1 in the regulation of
�-cell mass

The mechanism(s) by which GLP-1 modulates �-cell mass
is currently a topic of intensive investigation, with a partic-
ular focus on three potential pathways: 1) enhancement of
�-cell proliferation, 2) inhibition of apoptosis of �-cells, and
3) differentiation of putative stem cells in the ductal epithe-
lium via islet neogenesis. GLP-1 exerts its actions through a
prototypic seven-transmembrane-spanning, G protein-cou-
pled receptor (GPCR) linked to activation of protein kinase
A signaling (29, 30). Furthermore, considerable evidence
supports coupling of the GLP-1R to multiple G proteins (31).
Analyses of pancreata from rodents treated acutely or chron-
ically with GLP-1R agonists generally demonstrates an in-
crease in the number of proliferating �-cells (13–15, 17, 23,
32–34) (Table 1). Similarly, treatment of �-cell lines with
GLP-1 increases proliferation in vitro (35–38). Similar studies
have shown that GIP also stimulates proliferation of INS-1
cells (39). The proliferative effects of both GLP-1 and GIP
involve multiple signaling pathways (Fig. 1) including phos-
phatidylinositol-3 kinase, Akt, MAPK and protein kinase C�
(35–37, 39–41). The importance of specific signaling mole-
cules as downstream mediators of the proliferative effects
of GLP-1 has also been demonstrated using selective expres-
sion of dominant-negative cDNAs. Increased expression of a
kinase-dead protein kinase C� as a functional dominant-
negative protein suppressed GLP-1-induced proliferation in
INS(832/13) cells (36). Similarly, overexpression of kinase-
dead Akt1 completely abrogated GLP-1-induced prolifera-
tion in INS-1 cells (42). Consistent with these findings,
exendin-4-treated db/db mice exhibited increased levels of
pancreatic Akt and enhanced immunostaining for activated-
Akt in �-cells (20).

More recent studies have implicated the src kinase, the
EGFR [epidermal growth factor (EGF) receptor], and insulin

TABLE 1. Islet and �-cell growth promoting actions of GLP-1R agonists

Experimental model GLP-1R agonist

Normal mice GLP-1 (32)
db/db Mice Exendin-4 (20), liraglutide (13), CJC-1131 (14)
Partially pancreatectomized rats Exendin-4 (17, 23)
Zucker diabetic fatty rats GLP-1 (34), liraglutide (16)
Goto-Kakizaki rat GLP-1/exendin-4 (19)
Aging Wistar rats GLP-1 (15)
Streptozotocin-treated newborn rats GLP-1/exendin-4 (18)
Intrauterine growth retardation in rats Exendin-4 (21)
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receptor substrate-2 as additional determinants of GLP-1
action in the �-cell. Activation of GLP-1R signaling increased
cell proliferation in INS(832/13) cells, whereas the src in-
hibitor PP1 and the EGFR-specific inhibitor AG1478 blocked
GLP-1-induced cell proliferation in these cells, as well as in
isolated rat islets (37). Consistent with these findings, GLP-1
stimulated EGFR phosphorylation, whereas overexpression
of a dominant-negative EGFR significantly diminished GLP-
1-induced �-cell proliferation in INS(832/13) cells. Further-
more, both the metalloproteinase inhibitor GM6001 and a
neutralizing antibody against the EGFR ligand, betacellulin,
suppressed the proliferative effect of GLP-1 (37). Taken to-
gether, these findings, together with parallel findings that the
src family kinase inhibitor (PP1) and the EGFR inhibitor
(AG1478) prevent inhibition of voltage-dependent K� (Kv)
channels by exendin-4 (43), imply an emerging role for src-
and EGFR-dependent pathways in transduction of down-
stream signals activated by the GLP-1R.

More recent studies have demonstrated that GLP-1 ad-
ministration also inhibits �-cell apoptosis in both rats and
mice (Table 2) (20, 34, 44). Both GLP-1 and GIP increase cell
survival in immortalized rodent �-cell lines when challenged
with various apoptotic stimulators, including cytokines, per-
oxide, fatty acids, and streptozotocin (40, 41, 44–46). Impor-
tantly, the antiapoptotic actions of GLP-1 have also been
demonstrated in freshly isolated human islets (47). Although
the signaling pathways mediating the antiapoptotic actions
of GLP-1 have not been fully elucidated (Fig. 1), evidence

supports a role for phosphatidylinositol 3-kinase, Akt and
MAPK, likely through modulation of both proapoptotic [e.g.
caspase-3, poly(ADP-ribose) polymerase] and antiapoptotic
(e.g. Bcl-2, Bcl-xL) proteins (40, 41, 44, 45, 47). Consistent with
data from cell lines, administration of either GLP-1 or a
degradation-resistant GLP-1R agonist to rodents decreases
�-cell apoptosis and reduces activation of caspase-3 in the
pancreas (20, 34). Furthermore, reduction of Akt activity in
vitro prevents the antiapoptotic effect of GLP-1 (42). More
recent evidence implicates a role for the transcription factor
cAMP response element binding protein as a downstream
mediator of the antiapoptotic actions of GLP-1, through a
pathway involving cAMP response element binding protein-
mediated induction of Akt via the insulin signaling protein,
insulin receptor substrate-2 (48). These findings suggest a
novel mechanism through which activation of protein kinase

TABLE 2. Antiapoptotic actions of GLP-1R agonists

Experimental model GLP-1R agonist

db/db Mice Exendin-4 (20)
Normal and GLP-1R�/� mice

(streptozotocin)
Exendin-4 (44)

Zucker diabetic fatty rats GLP-1 (34)
Human islet cells GLP-1 (47)
Rat islet cells (cytokines) Exendin-4 (44)
RINm5F islet cells (palmitate) GLP-1/exendin-4 (46)
Min6 islet cells (hydrogen peroxide) GLP-1 (41)
INS-1 islet cells (staurosporine) Exendin-4 (42)

FIG. 1. GLP-1 promotes expansion of
�-cell mass via indirect control of blood
glucose and via direct regulation of
�-cell proliferation and apoptosis. The
signal transduction pathways and in-
termediary signaling molecules de-
picted in this schematic representation
represent an integrated model for
GLP-1 action compiled from studies of
rodent and human islet cells, and im-
mortalized islet cell lines. CREB, cAMP
response element binding protein; IRS,
insulin receptor substrate; PDX, pan-
creas duodenum homeobox; PI3-K,
phosphatidylinositol 3-kinase; PKA,
protein kinase A; PKC, protein ki-
nase C.
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A signaling by GLP-1 may be linked to the Akt cell survival
pathway.

Studies in rodents have suggested that GLP-1 also stim-
ulates islet neogenesis, with increased numbers of small islets
noted following chronic administration of GLP-1R agonists
(15, 17–20). Furthermore, GLP-1 induces the expression of
pdx-1 in small ducts, a common site for islet neogenic pre-
cursors (12). Similarly, treatment of pluripotential pancreatic
AR42J cells, fetal pig islet-like clusters, or undifferentiated
human pancreatic progenitor or ductal cells with GLP-1R
agonists induces differentiation toward a �-cell- or islet-like
phenotype (49–54). The precise mechanisms linking GLP-1R
activation to islet neogenesis remain to be elucidated; how-
ever, GLP-1 consistently induces the homeobox protein,
pdx-1 in both �-cells and in undifferentiated precursor cells
(15, 33, 35, 51, 54, 55). As pdx-1 is essential for the embryonic
development of the endocrine pancreas and preservation of
�-cell mass, these findings strongly implicate pdx-1 as a
genetic component important for the effects of GLP-1 on islet
neogenesis.

The cytotrophic and antiapoptotic actions of GLP-1 have
also been demonstrated in neuronal cell lineages. GLP-1 is
synthesized in selected neurons in the brain stem and hy-
pothalamus, and the GLP-1R is widely expressed in the cen-
tral nervous system. GLP-1 treatment facilitates differentia-
tion and induces neurite outgrowth in PC12 cells, and
protects rat hippocampal neurons from apoptosis (56–58).
Furthermore, mice deficient in GLP-1R signaling demon-
strate learning deficits and manifest enhanced neural injury
after kainite administration, whereas GLP-1R agonist ad-
ministration to normal animals prevents kainite-induced
apoptosis (59). These findings have led to the suggestion that
GLP-1 may potentially be useful for the treatment of Alz-
heimer’s and other neurodegenerative diseases (60). In con-
trast, a single study has suggested that antagonism of GLP-1
action may actually enhance � amyloid-induced apoptosis in
the rat (61). Further studies aimed at elucidating the role and
mechanisms of action of GLP-1 in specific regions of the
central nervous system are clearly warranted.

GLP-2

GLP-2, a 33-amino acid peptide, is cosecreted together
with GLP-1 from gut endocrine cells in response to nutrient
ingestion. Like GLP-1, GLP-2 contains an alanine at position
2 and is therefore also a substrate for N-terminal inactivation
by DPP-IV (62). However, relative to GLP-1, GLP-2 exhibits
a slightly longer circulating t1/2 of several minutes in vivo.
The initial biological action described for GLP-2 was the
stimulation of adenylate cyclase activity in hypothalamic
and pituitary membranes (63). Subsequent experiments

demonstrated that GLP-2 was a potent growth factor for
the small bowel epithelium in both mice and rats (62,
64–66). GLP-2 expands the villous epithelium predomi-
nantly through stimulation of crypt cell proliferation. Al-
though the small bowel appears to be highly sensitive to the
trophic effects of exogenous GLP-2, the colonic epithelium
also exhibits a modest trophic response following GLP-2
administration (67).

The proliferative and regenerative actions of GLP-2 are
most evident following the induction of experimental bowel
injury. GLP-2 administration significantly improves morbid-
ity and enhances epithelial repair in a diverse number of
injury models, including enteritis and mucositis (68–78) as
summarized in Table 3. The protective effect of GLP-2 on the
gut may be related in part to its actions that enhance epi-
thelial barrier function and reduce gut permeability (68, 69,
79, 80).

Although GLP-2 also reduces enterocyte and crypt apo-
ptosis in the uninjured gastrointestinal epithelium (66, 81),
the antiapoptotic actions of GLP-2 are more readily evident
in the setting of epithelial injury (Table 3). Administration of
nonsteroidal anti-inflammatory agents or chemotherapy ac-
tivates mucosal apoptosis, whereas concomitant GLP-2 ad-
ministration significantly reduces crypt apoptosis in the gut
epithelium (69, 70). Interestingly, the beneficial effects of
GLP-2 in a murine model of colitis were shown to be further
enhanced by concomitant administration of sulfasalazine, a
drug that is commonly used to reduce inflammation in pa-
tients with ulcerative colitis (78).

Elucidation of the molecular and cellular biology of the
GLP-2 receptor (GLP-2R) has provided considerable insight
into the diverse mechanisms activated following GLP-2 ad-
ministration. The GLP-2R exhibits considerable amino acid
identity with other members of the glucagon-secretin GPCR
super family, including the GLP-1R (82, 83), and has been
localized to rodent enteric neurons and human enteroendo-
crine cells (84, 85). These findings imply an indirect model for
GLP-2 action whereby GLP-2R activation liberates down-
stream mediators which act on as yet unidentified pathways
to promote crypt cell proliferation and inhibition of apopto-
sis (86). A number of GLP-2-regulated genes have been iden-
tified (87, 88); however, the principal downstream targets for
GLP-2 action in the gut remain unknown. Although GLP-2
activates immediate early gene expression and reduces ap-
optosis in heterologous cells expressing a transfected GLP-2
receptor (89–91), whether the endogenous intestinal GLP-2R
is coupled to identical signal transduction pathways remains
to be determined. Similarly, GLP-2 and GLP-2R are found in
the brain (92) and GLP-2 stimulates the proliferation of rat
astrocytes in vitro (93), and reduces the extent of glutamate-

TABLE 3. Regenerative and cytoprotective actions of GLP-2 in the gastrointestinal tract

Intestinal injury Model Species

Short bowel syndrome Massive small bowel resection Rats (71, 72)
Small bowel enteritis NSAIDs, genetic Mice, rats (69, 73)
Intestinal mucositis Chemotherapy Mice, rats (70, 74)
Allergic enteritis Immune sensitivity Mice (68)
Ischemic enteritis Superior mesenteric artery occlusion Rats (75, 76)
Colitis Dextran sulfate Mice (77, 78)

NSAIDs, Nonsteroidal anti-inflammatory drugs.
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induced cytotoxicity in cultured murine hippocampal cells
(Lovshin, J., and D. Drucker, unpublished data). However,
little is known about how GLP-2 exerts proliferative or an-
tiapoptotic actions in the brain.

Other Gut Hormones

In addition to GLP-1, GIP, and GLP-2, a considerable num-
ber of other gut peptides exert similar trophic and antiapo-
ptotic actions in the pancreas, small and large bowel, as
reviewed in Refs. 86 and 94. Gastrin, produced in antral G
cells, circulates in multiple molecular forms that exert pro-
liferative actions in the gut. Gastrin-deficient mice exhibit
reduced parietal cell mass and decreased colonocyte prolif-
eration (95), yet have normal islet mass (96), whereas over-
expression of amidated gastrin, glycine-extended gastrin, or
of progastrin produces increased proliferation in the oxyntic
mucosa or colon, respectively (97). Furthermore, both gastrin
and progastrin exert antiapoptotic effects on cell lines in vitro
(98, 99). Although gastrin modulates the growth of pancre-
atic cell lines, it does not appear to be trophic for the normal
exocrine or endocrine pancreas. However, transgenic coex-
pression of gastrin and EGFR agonists (100), or infusion of
gastrin following pancreatic transdifferentiation (101) is as-
sociated with activation of �-cell neogenesis and increased
�-cell mass. Furthermore, coadministration of gastrin and
EGF significantly ameliorates diabetes and induces islet re-
generation in alloxan-treated mice (102). In contrast, al-
though exogenous cholecystokinin (CCK) is trophic to the
exocrine pancreas in vivo, disruption of CCK receptor sig-
naling does not impair pancreatic growth in mice (103), and
CCK does not appear to be an important modulator of ep-
ithelial growth in the small or large intestine. Finally, neu-
rotensin, a tridecapeptide produced in enteroendocrine N
cells predominantly in the small bowel, exerts trophic effects
on the stomach, small and large intestine, and pancreas (104,
105). Although targeted inactivation of the neurotensin-1
receptor gene produces abnormalities in food intake and gut
motility, whether neurotensin is essential for normal growth
in the pancreas or gut has yet to be determined. Similarly,
although peptide YY exerts a trophic effect on the small and
large bowel mucosa (106), the physiological importance of
peptide YY for gut growth remains uncertain. Hence, acti-
vation of pathways leading to cell proliferation and/or cell
survival represent increasingly common actions ascribed to
gut peptides (86, 94).

Gut Peptides, Growth and Apoptosis—
Unanswered Questions

Accumulating evidence suggests that an increasing num-
ber of GPCRs activate signal transduction pathways coupled
to cell proliferation or cell survival (86, 94, 107). Alterna-
tively, GPCRs coupled to inhibition of cell growth, as exem-
plified by the somatostatin receptor family, may provide
important therapeutic targets for the treatment of neoplastic
disease. As many receptors for gut peptides are also ex-
pressed in neoplastic cells, there is considerable interest in
examining whether antagonists of gastrin, gastrin-releasing
peptide, ghrelin, neurotensin, or related peptides will atten-
uate the growth of human cancer cells. Furthermore, the

proliferative and antiapoptotic actions of GLP-1, GLP-2 and
gastrin observed in selected preclinical disease models will
merit ongoing scrutiny if one or more of these agents will be
used chronically in human subjects. More recent data sug-
gesting that GLP-1R agonists activate antiapoptotic (47) and
differentiation pathways (53) in human islet cells may have
direct clinical relevance for efforts to preserve or expand the
number of human islet �-cells. Equally intriguing are reports
that GLP-1 (1–37) activates a pancreatic endocrine differen-
tiation pathway in cultured intestinal epithelial cells (108).
The therapeutic potential of regenerative medicine has
sparked intense interest in understanding the molecular
mechanisms controlling cell growth and cytoprotection. Ac-
cordingly, a detailed delineation of the signaling pathways
activated by gut peptide GPCRs, as exemplified by GLP-1
and GLP-2, may provide new therapeutic targets for the
treatment of human disorders such as diabetes and intestinal
disease, respectively.
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