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GNAS is a complex imprinted gene that uses multiple pro-
moters to generate several gene products, including the G
protein �-subunit (Gs�) that couples seven-transmembrane
receptors to the cAMP-generating enzyme adenylyl cyclase.
Somatic activating Gs� mutations, which alter key residues
required for the GTPase turn-off reaction, are present in var-
ious endocrine tumors and fibrous dysplasia of bone, and in a
more widespread distribution in patients with McCune-
Albright syndrome. Heterozygous inactivating Gs� mutations
lead to Albright hereditary osteodystrophy. Gs� is imprinted
in a tissue-specific manner, being primarily expressed from
the maternal allele in renal proximal tubules, thyroid, pitu-
itary, and ovary. Maternally inherited mutations lead to Al-
bright hereditary osteodystrophy (AHO) plus PTH, TSH, and
gonadotropin resistance (pseudohypoparathyroidism type
1A), whereas paternally inherited mutations lead to AHO

alone. Pseudohypoparathyroidism type 1B, in which patients
develop PTH resistance without AHO, is almost always asso-
ciated with a GNAS imprinting defect in which both alleles
have a paternal-specific imprinting pattern on both parental
alleles. Familial forms of the disease are associated with a
mutation within a closely linked gene that deletes a region
that is presumably required for establishing the maternal im-
print, and therefore maternal inheritance of the mutation
results in the GNAS imprinting defect. Imprinting of one dif-
ferentially methylated region within GNAS is virtually always
lost in pseudohypoparathyroidism type 1B, and this region is
probably responsible for tissue-specific Gs� imprinting.
Mouse knockout models show that Gs� and the alternative Gs�
isoform XL�s that is expressed from the paternal GNAS
allele may have opposite effects on energy metabolism in
mice. (Endocrinology 145: 5459–5464, 2004)

GNAS: Normal Function

GNAS IS A COMPLEX imprinted gene that generates
multiple gene products through the use of multiple

promoters and first exons that splice onto a common set of
downstream exons (exons 2–13; see Fig. 1) (1, 2). The major
GNAS gene product, which is generated by the most down-
stream promoter (exon 1), is the ubiquitously expressed G
protein �-subunit (Gs�) that couples numerous hormonal
and other seven-transmembrane receptors to adenylyl cy-
clase and is required for the receptor-stimulated intracellular
cAMP production. The most upstream GNAS promoter gen-
erates transcripts for the chromogranin-like protein NESP55,
which is structurally and functionally unrelated to Gs�. The
NESP55 coding region is limited to its specific first exon, and
Gs� exons 2–13 form the majority of its 3�-untranslated re-
gion (3, 4). The next promoter generates transcripts encoding
the neuroendocrine-specific Gs� isoform XL�s, which struc-
turally is identical to Gs�, except for the presence of an
extra-long amino-terminal extension encoded by its specific
first exon (5). NESP55 and XL�s are oppositely imprinted
(6–8). NESP55 is only expressed from the maternally inher-
ited allele, and its promoter is DNA methylated at CpG
dinucleotides on the paternally inherited allele. In contrast,
XL�s is only expressed from the paternal allele, and its pro-
moter is methylated on the maternal allele. Both XL�s and
NESP55 are expressed primarily in neuroendocrine tissues
(9–12). Although the biological functions of these two gene

products have not been fully established, it seems likely that
NESP55 and XL�s deficiency have little effect in humans, but
that XL�s deficiency leads to a severe phenotype in mice (see
below). The XL�s promoter region probably contains a pri-
mary imprinting center in which maternal-specific methyl-
ation is established during gametogenesis and maintained
throughout development (13). This region also generates pa-
ternally expressed antisense transcripts that may be important
for NESP55 imprinting (14, 15), which is a secondary event that
occurs during postimplantation development (16, 17).

The Gs� promoter lies 35 kb downstream of the XL�s
promoter. The Gs� promoter is within a CpG island and is
unmethylated on both parental alleles (16) despite the fact
that Gs� is imprinted in a tissue-specific manner, being ex-
pressed primarily from the maternal allele in specific hor-
mone target tissues (e.g. renal proximal tubules, thyroid,
pituitary, and ovaries) (18–22). Tissue-specific Gs� imprint-
ing in mice is associated with tissue-specific differences in the
extent of histone H3 lysine 4 methylation in Gs� exon 1, an
epigenetic modification that has been shown to be associated
with transcriptional activity in lower species (23). Just up-
stream of the Gs� promoter is another differentially meth-
ylated region (DMR) that is methylated only on the maternal
allele and contains a promoter and first exon (exon 1A or
A/B) that generates paternally expressed untranslated
mRNA transcripts (16, 24). The exon 1A DMR also appears
to be a primary imprint mark, because its methylation is
established during gametogenesis and is maintained
throughout development (16). The exon 1A DMR can be
deleted without affecting NESP55-XL�s imprinting (25)
(Weinstein, L. S., and J. Liu, unpublished observations), in-
dicating that the GNAS locus contains two independent im-
printing domains (NESP55/XL�s and exon 1A DMR/ Gs�).
Both the human gene, located at 20q13, and the mouse or-
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tholog Gnas, which is located within a syntenic region in
distal chromosome 2, have similar overall structure and im-
printing patterns.

The most well characterized function of Gs� is as a signal
transducer between seven-transmembrane receptors and
generation of cAMP by adenylyl cyclase. cAMP is known to
mediate many of its effects by stimulating protein kinase A
(PKA), but more recently cAMP has been shown to have
other effectors in certain cell types, such as cAMP-regulated
guanine nucleotide exchange factors for Rap1 (26) and cal-
cium channels (27). These diverse effectors lead to mitogenic
and antimitogenic effects in different cell types (2). There is
also evidence that Gs� itself may have other effectors, such
as Src kinase (28) and calcium channels (29), and that Gs�
may be activated by growth factor receptors (30, 31). In
addition to residing on the inner leaf of cell membranes, Gs�
is localized to intracellular membranes and therefore may
have a role in membrane trafficking (32).

Gs�, like all G protein �-subunits, consists of two domains:
a GTPase domain that includes the sites for guanine nucle-
otide binding and receptor and effector interaction and a
helical domain that may be important to maintain guanine
nucleotide binding (33, 34). Long and short forms of Gs�
result from alternative splicing of exon 3. In the inactive state,
Gs� exists as a Gs�-�� heterotrimer with GDP bound to its
binding pocket. Ligand-bound receptors promote GDP re-
lease and binding of ambient GTP, which results in a switch
to an active conformation and dissociation from ��. GTP-Gs�
directly activates adenylyl cyclase and its other effectors. The
turn-off mechanism is an intrinsic GTPase that hydrolyzes
bound GTP to GDP. The GTPase cycle may also be regulated
by RGS proteins and effectors (35, 36). Unlike Gs�, XL�s has
a more limited tissue distribution, being primarily expressed
in the pars intermedia of the pituitary, brain, adrenal, heart,
and pancreatic islets (12). XL�s is able to bind to ��-subunits
and mediate receptor-stimulated cAMP production (37, 38).

GNAS-Activating Mutations

GNAS-activating mutations (also known as gsp mutations)
are missense mutations that lead to amino acid substitution
of either residue Arg201 or Gln227 within the long form of Gs�

(39). These two residues are catalytically important for
GTPase activity; therefore, these mutations cause constitu-
tive activation by disrupting the turn-off mechanism. The
exotoxin secreted by Vibrio cholera catalyzes a posttransla-
tional modification (ADP ribosylation) of Gs� Arg201, and the
resulting increased cAMP in intestinal lining cells leads to
severe secretory diarrhea. Gsp mutations are dominant act-
ing, and such somatic mutations were originally found in
approximately 40% of GH-secreting pituitary tumors, a small
number of thyroid tumors, and rarely in other endocrine
tumors (2, 40). Growth and hormone release in many endo-
crine glands are stimulated by trophic hormones that activate
Gs�-cAMP pathways. The GHRH-Gs�-cAMP-PKA pathway
stimulates growth and hormone release in somatotrophs via
phosphorylation of cAMP response element-binding protein
and induction of the somatotroph-specific transcription fac-
tor GH factor-1 (41, 42). The glycoprotein hormones TSH,
ACTH, and gonadotropins stimulate growth and hormone
release in their target tissues by both PKA-dependent and
-independent mechanisms (2).

More widespread distribution of cells bearing Arg201 mu-
tations, presumably due to somatic mutation occurring dur-
ing early prenatal development, leads to the McCune-
Albright syndrome (MAS). MAS is classically defined as the
triad of gonadotropin-independent sexual precocity, café-
au-lait skin lesions, and fibrous dysplasia (FD) of bone (43–
45). Some MAS patients do not develop all three features of
the triad, whereas others develop other characteristic endo-
crine and nonendocrine features, such as TSH-independent
functional thyroid nodules, ACTH-independent adrenal hy-
perplasia with hypercortisolism, acromegaly, hypophos-
phatemia, cardiomyopathy, sudden death, and effects on
other nonendocrine tissues (46). Somatic gsp mutations are
also present in FD lesions from patients with or without other
features of MAS (47, 48). MAS is virtually never inherited,
and germline gsp mutations are considered lethal (49), although
a possible germline Arg201 to Gly mutation was reported in one
patient with severe manifestations (50). In the vast majority of
patients with sporadic acromegaly or acromegaly associated
with MAS, the mutation is present on the active maternal allele,

FIG. 1. General organization and imprinting patterns of the human GNAS (and mouse Gnas) locus. The maternal (Mat) and paternal (Pat)
alleles of GNAS are depicted with alternative first exons for NESP55 (NESP), XL�s, untranslated (exon 1A), and Gs� (exon 1) mRNAs splicing
to a common exon (exon 2). Common downstream exons 3–13 in the sense direction are not shown. Differentially methylated regions (METH)
are shown above, and splicing patterns are shown below each panel. Transcriptionally active promoters are indicated by horizontal arrows in
the direction of transcription. Transcription from the paternal Gs� (exon 1) promoter is suppressed in some tissues, which is indicated with
a dashed arrow. The XL�s promoter also generates paternally expressed antisense transcripts, and the first antisense exon is shown (NESPAS).
The diagram is not drawn to scale.
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although there does not appear to be a parental allele bias in
patients with MAS who do not have acromegaly (19, 51).

The hyperpigmentary lesions in MAS results from in-
creased cAMP in melanocytes (52). cAMP production is nor-
mally stimulated in melanocytes by MSH, and cAMP induces
the expression of tyrosinase, the rate-limiting enzyme for
melanin production. FD results from hyperproliferation and
incomplete differentiation of marrow stromal cells to osteo-
blasts, which is the direct result of excess cAMP in these cells
(44, 53–56). cAMP stimulates the expression of Fos by PKA-
dependent phosphorylation and activation of cAMP re-
sponse element-binding protein. Fos overexpression in FD
cells (57) inhibits the expression of osteoblast-specific genes
and stimulates the expression of cytokines such as IL-6,
which promotes bone resorption by osteoclasts (58). Recent
studies show that hypophosphatemia in FD/MAS results
from excess secretion of the phosphatonin fibroblast growth
factor 23 from FD lesions (59).

GNAS-Inactivating Mutations

Heterozygous inactivating Gs� mutations result in Al-
bright hereditary osteodystrophy (AHO), a congenital syn-
drome in which patients develop obesity, short stature,
brachydactyly, subcutaneous ossifications, and neurobehav-
ioral deficits (1, 60, 61). The severity of manifestations varies
greatly, and some patients with mutations have minimal or
no clinical features (62). Mutations that disrupt Gs� mRNA
expression (e.g. premature stop codons and splice junction
mutations) or missense mutations have been identified in all
13 Gs� coding exons, except exon 3, probably because splic-
ing out this exon still produces a functional protein (63).
Some missense mutations produce specific biochemical Gs�
defects (1). These mutations result in Gs� haploinsufficiency
(50% loss of expression or function) in many tissues, and this
is the most likely molecular defect underlying the AHO
phenotype. If NESP55 or XL�s deficiency were the under-
lying cause of AHO, one would expect different phenotypes
resulting from mutations on the maternal and paternal al-
leles, respectively. Moreover, mutations in Gs� exon 1, which
disrupt expression of Gs�, but not XL�s or NESP55, also lead
to AHO. Some patients with identical Gs� mutations develop
a severe form of ectopic ossification known as progressive
osseous heteroplasia, possibly resulting from inappropriate
expression of the osteoblast-specific transcription factor
Cbfa1/RUNX2 in ectopic locations (64, 65). The opposite
skeletal effects of activating and inactivating Gs� mutations
in FD and AHO strongly implicate Gs�/cAMP as an impor-
tant regulator of osteoblast differentiation.

AHO patients who inherit Gs� mutations from their
mother also develop resistance to PTH, TSH, and gonado-
tropins [pseudohypoparathyroidism type 1A (PHP1A)],
whereas patients who inherit mutations from their father
inherit their mutations only develop AHO (also known as
pseudopseudohypoparathyroidism) (1, 66). This is due to the
fact that Gs� is primarily expressed from the maternal allele
in the target tissues of these respective hormones (renal prox-
imal tubules, thyroid, and ovaries) (18–22). Mutations in the
active maternal allele lead to Gs� deficiency and hormone
resistance, whereas mutation in the inactive paternal allele
have little or no effect on Gs� expression or hormonal sig-
naling (Fig. 2). Recent studies show these patients to also

have GH deficiency due to GHRH resistance, although the
short stature in these patients is probably the result of a
primary skeletal growth plate defect rather than GH defi-
ciency (67, 68). Olfactory defects and prolactin deficiency
have also been reported in PHP1A patients (69, 70). Lack of
Gs� imprinting in other hormone target tissues is one ex-
planation for why PHP1A patients fail to develop resistance
to other hormones that stimulate Gs�/cAMP pathways (e.g.
ACTH and vasopressin) (18).

GNAS Imprinting Defects

PHP1B patients have renal PTH resistance similar to that
in PHP1A, but lack the AHO phenotype. In PHPIB, Gs�
expression in tissues such as blood cells is normal, ruling out
the presence of typical Gs�-inactivating mutations. PHPIB
results from a GNAS imprinting defect in which maternal-
specific imprinting (methylation) of the exon 1A DMR is lost,
with both alleles having a paternal imprinting pattern or
epigenotype in this region (24). Presumably this leads to Gs�

FIG. 2. Tissue-specific Gs� imprinting and the effects of heterozygous
inactivating Gs� mutations. Gs� is paternally imprinted (denoted
with X) in renal proximal tubules (upper panels). Mutation (Mut) on
the active maternal allele (left panel) leads to Gs� deficiency and PTH
resistance, whereas mutation on the imprinted paternal allele (right
panel) has little effect on Gs� expression or PTH sensitivity. Immu-
noblots of renal cortical membranes isolated from mice with disrup-
tion of the Gnas maternal (m�/�) and paternal (�/p�) alleles, re-
spectively, as well as their wild-type mice (WT) littermates confirm
the predicted Gs� expression patterns (18). In most other tissues
(lower panels), Gs� is not imprinted, and therefore, both maternal and
paternal mutations lead to an approximately 50% loss of Gs� expres-
sion (haploinsufficiency), as shown in immunoblots of renal inner
medulla membranes from the same mice. Gs� haploinsufficiency is
probably the underlying molecular defect that leads to the AHO phe-
notype in patients with heterozygous Gs� mutations Figure adapted
from Weinstein et al. (1).
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deficiency in renal proximal tubules due to the lack of an
active maternal allele, but has no effect on Gs� expression in
the majority of other tissues, where Gs� is normally ex-
pressed equally from both parental alleles. This is consistent
with the fact that PHPIB patients have PTH resistance, but
lack the AHO phenotype. Although TSH resistance was not
considered to be a feature of PHPIB, it was recently shown
that borderline to mild TSH resistance is present in almost
half the patients with the imprinting defect (22).

In familial PHPIB, patients almost always have a deletion
mutation within the closely linked STX16 gene located up-
stream of GNAS, which has no effect when inherited pater-
nally, but leads to the exon 1A DMR imprinting defect and
PTH resistance when inherited maternally (71). Imprinting of
NESP55/XL�s is unaffected in these patients. Presumably
the deleted region contains cis-acting elements that are re-
quired to establish or maintain exon 1A DMR imprinting, but
is not necessary for imprinting of the intervening NESP55/
XL�s domain. Sporadic forms of PHPIB can be associated
with loss of the maternal epigenotype within the exon 1A
DMR alone or may also involve loss of the maternal epi-
genotype within the NESP55/XL�s imprinting domain as
well (24, 72). Whether these imprinting defects in sporadic
PHPIB are caused by underlying mutations or result from a
random failure of the imprinting process is unknown.
NESP55 expression in patients with the more global GNAS
imprinting defect is absent due to methylation of the NESP55
promoter on both parental alleles (24). This subset of patients
does not have a more severe phenotype, suggesting that
NESP55 expression is dispensable in humans. PTH resistance
has also been described in a patient with paternal uniparental
disomy of 20q, which leads to a similar GNAS imprinting
defect (73). In one family a PHPIB phenotype was caused by
maternal inheritance of a Gs� missense mutation (deletion of
Ile382) that generates a Gs� protein, which is selectively un-
coupled to the PTH/PTH-releasing peptide receptor (74).

We have proposed a model to explain how tissue-specific
Gs� imprinting is controlled by the exon 1A DMR and how
loss of exon 1A DMR imprinting leads to PHPIB (24). The fact
that exon 1A-specific and Gs� mRNA transcripts have sim-
ilar tissue distributions makes it unlikely that the exon 1A
DMR controls Gs� by promoter competition or by a direct
action of exon 1A-specific transcripts (16). Rather, the exon
1A DMR may contain a cis-acting, negative regulatory ele-
ment (silencer or insulator) that is both methylation sensitive
and tissue specific. In the example shown in Fig. 3, the exon
1A DMR has a silencer that binds a tissue-specific repressor
protein. In proximal tubules, the repressor binds to the pa-
ternal allele and suppresses Gs� expression, but is unable to
bind to the maternal allele because its site is methylated and
heterochromatic (23), allowing Gs� to be maternally ex-
pressed. In most other tissues, the exon 1A DMR is meth-
ylated, but the repressor is not expressed; therefore, Gs� is
biallelically expressed. In PHPIB, exon 1A DMR methylation
is absent, allowing the repressor to bind to and suppress Gs�
expression from both alleles in proximal tubules, leading to
Gs� deficiency and PTH resistance. However, the methyl-
ation defect has no effect on Gs� expression in most other
tissues because the repressor is absent. Support from this
model comes from recent findings showing that paternal, but
not maternal, deletion of the exon 1A DMR in mice leads to
Gs� overexpression in renal proximal tubules and lower

serum PTH levels, a sign of increased PTH sensitivity (25)
(Weinstein, L. S., and J. Liu, unpublished observations).

Gnas Knockout Models

Mice with heterozygous disruption of Gnas exon 2 on the
maternal (m�/�) or paternal (�/p�) allele have distinct
early phenotypes similar to mice with paternal uniparental
disomy/maternal deletion and maternal uniparental dis-
omy/paternal deletion of the distal chromosome 2 region
including Gnas, respectively (18). These distinct phenotypes
are consistent with the fact that Gnas has distinct maternally
and paternally expressed gene products. Interestingly,
m�/� and �/p� mice have opposite metabolic phenotypes
(18, 75–77). �/� mice are obese, hypometabolic, and hypo-
active, whereas �/p� mice are very lean, hypermetabolic,
and hypoactive. Measurements of urinary norepinephrine
suggest that the m�/� and �/p� metabolic phenotypes
may be secondary to decreased and increased sympathetic
nerve activity, respectively (75). Interestingly, both groups of
mice have increased whole body insulin sensitivity, although
to a much greater extent in �/p� mice (76). Mice with
paternal deletion of Gs� exon 1, a mutation that specifically
disrupts expression of Gs�, but not other Gnas gene products,
lack the �/p� exon 2 phenotype and, in fact, have the
opposite metabolic phenotype (obesity and insulin resis-
tance) (Weinstein, L. S., and M. Chen, unpublished obser-
vations). Recently, XL�s knockout mice were shown to have
a phenotype similar to that of �/p� exon 2 mice (78). These
findings suggest that Gs� and XL�s have opposite effects on
whole body metabolism, and that the �/p� exon 2 pheno-
type is primarily caused by XL�s deficiency. One possibility
is that XL�s normally acts as a negative regulator of sym-
pathetic nerve activity, and therefore, XL�s deficiency in
�/p� mice leads to a hyperadrenergic state (77). The bio-

FIG. 3. Proposed model for the role of the exon 1A DMR in tissue-
specific Gs� imprinting and the pathogenesis of PHP1B. Maternal
(Mat) and paternal (Pat) alleles of the exon 1A DMR-Gs� exon 1 region
are depicted. The exon 1A DMR is normally methylated on the ma-
ternal allele (Meth) and contains a cis-acting silencer (S; upper pan-
els). In proximal tubules (left panel) a tissue-specific trans-acting
repressor (R) binds to the silencer and suppresses Gs� expression on
the paternal allele, but is unable to bind to the maternal allele due to
methylation, allowing Gs� to be expressed from the maternal allele.
In most other tissues (right panel) the repressor is not expressed, and
therefore, Gs� is biallelically expressed. In PHP1B (lower panels),
methylation is absent, allowing the repressor to bind to both alleles
in proximal tubules, resulting in Gs� deficiency and PTH resistance.
Gs� expression is unaffected in most other tissues because the re-
pressor is absent.
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logical importance of XL�s may be species specific, because
loss of XL�s expression in pseudopseudohypoparathyroid-
ism patients does not result in a similar phenotype.

Conclusions

GNAS is a complex imprinted locus whose major product
is Gs�. Somatic Gs�-activating mutations produce MAS, en-
docrine tumors, and/or fibrous dysplasia of bone primarily
through the effects of increased cAMP levels, which in some
cell types can lead to proliferation. Inactivating Gs� muta-
tions leads to AHO and in some cases progressive osseous
heteroplasia. The opposite effects of activating and inacti-
vating Gs� mutations on osteoblast differentiation in these
disorders suggest that Gs�/cAMP pathways play a major
role in regulating osteoblastogenesis. The AHO phenotype is
most likely due to Gs� haploinsufficiency resulting from
heterozygous Gs� mutations. Gs� is imprinted and ex-
pressed primarily from the maternal allele in various hor-
mone target tissues, and therefore, maternal inheritance of
Gs� mutations also leads to multihormone resistance
(PHPIA). Hormone resistance in PHPIB can also result from
loss of maternal imprinting of the exon 1A DMR region, a
region within the GNAS locus that appears to contain ele-
ments important for establishing tissue-specific imprinting
of Gs�. However, these patients do not develop AHO, be-
cause the imprinting defect has no effect on Gs� expression
in the vast majority of tissues where Gs� is normally ex-
pressed biallelically. Gnas knockout mouse models demon-
strate that both Gs� and XL�s, a neuroendocrine-specific Gs�
isoform expressed only from the paternal allele, have im-
portant roles in the regulation of energy metabolism.
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