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Lipid and carbohydrate homeostasis in higher organisms is
under the control of an integrated system that has the capac-
ity to rapidly respond to metabolic changes. The peroxisome
proliferator-activated receptors (PPARs) are nuclear fatty
acid receptors that have been implicated to play an important
role in obesity-related metabolic diseases such as hyperlipid-
emia, insulin resistance, and coronary artery disease. The
three PPAR subtypes, �, �, and �, have distinct expression
patterns and evolved to sense components of different li-
poproteins and regulate lipid homeostasis based on the need
of a specific tissue. Recent advances in identifying selective
ligands in conjunction with microarray analyses and gene
targeting studies have helped delineate the subtype-specific

functions and the therapeutic potential of these receptors.
PPAR� potentiates fatty acid catabolism in the liver and is the
molecular target of the lipid-lowering fibrates (e.g. fenofi-
brate and gemfibrozil), whereas PPAR� is essential for
adipocyte differentiation and mediates the activity of the in-
sulin-sensitizing thiazolidinediones (e.g. rosiglitazone and
pioglitazone). Recent evidence suggests that PPAR� may be
important in controlling triglyceride levels by sensing very
low-density lipoprotein. Thus, uncovering the regulatory
mechanisms and transcriptional targets of the PPARs will
continue to provide insight into the pathogenesis of metabolic
diseases and, at the same time, offer valuable information for
rational drug design. (Endocrinology 144: 2201–2207, 2003)

LIPIDS ARE ESSENTIAL for energy homeostasis, repro-
ductive and organ physiology, and numerous aspects

of cellular biology. They are also linked to many pathological
processes, such as obesity, diabetes, heart disease, and in-
flammation. To meet the different demands from a variety of
tissues, the human body has evolved a sophisticated lipopro-
tein transport system to deliver cholesterol and fatty acids to
the periphery (Fig. 1). Lipoproteins are composed of triglyc-
erides (TG), cholesterol esters, phospholipids, and apoli-
poproteins, which modulate lipoprotein catabolism. In the
forward transport system, TG-rich very low-density lipopro-
tein (VLDL) released by the liver delivers fatty acids to adi-
pocytes for storage and to cardiac and skeletal muscle for
energy consumption. Lipoprotein lipase (LPL), secreted by
the adipocyte, muscle, and macrophage, plays an important
role in VLDL fatty acid release, and its subsequent conver-
sion to low-density lipoprotein (LDL). Cholesterol ester-rich
LDL, on the other hand, delivers cholesterol to peripheral
tissues for steroidogenesis and maintaining cell membrane
integrity. Conversely, in the reverse transport system, high-
density lipoprotein (HDL) transports excess cholesterol from
extrahepatic cells, such as macrophages at the vessel wall, to
liver, where it can be recycled or catabolized to bile acid (1).
Disturbances in this system are integral components of life-
threatening diseases, best exemplified by the metabolic syn-

drome, or syndrome X, which refers to patients who are
insulin-resistant (hyperinsulinemic), dyslipidemic (elevated
TG and decreased HDL-cholesterol levels), frequently hy-
pertensive and at high risk for developing coronary artery
disease (CAD) (2).

The identification of fatty acids as endogenous ligands for
peroxisome proliferator-activated receptors (PPARs) has
provided a unique approach to study lipid homeostasis at the
molecular level (3–7). PPARs are members of the nuclear
receptor superfamily, which contains a signature type II zinc
finger DNA binding motif and a hydrophobic ligand binding
pocket (8). Three subtypes, PPAR� (NR1C1), PPAR�/�
(NR1C2), and PPAR� (NR1C3), have been identified with
distinct tissue distributions and biological activities. PPAR�
is expressed in liver, heart, muscle, and kidney where it
regulates fatty acid catabolism (9, 10). PPAR� is highly en-
riched in adipocyte and macrophage and is involved in adi-
pocyte differentiation, lipid storage, and glucose homeosta-
sis (11–13). PPAR� is expressed ubiquitously with a less
defined function. It has been implicated in keratinocyte dif-
ferentiation and wound healing and, more recently, in me-
diating VLDL signaling of the macrophage (14–17).

The fact that dietary fatty acids are natural activators of
this subfamily implies that lipoproteins serve as ligand car-
riers for PPARs, which, in turn, modulate lipid homeostasis
of the body. Consistent with this, the activities of the fibrate
class of lipid-lowering drugs and the thiazolidinedione
(TZD) class of insulin-sensitizing drugs are believed to be
mediated by PPAR� and PPAR�, respectively (18, 19). In
addition, these PPAR agonists have all been reported to
exhibit antiinflammatory activity in macrophages and en-
dothelial cells, which is beyond the scope of this review.
Here, we will discuss how these receptors coordinately mod-
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ulate lipid homeostasis in metabolically active sites, includ-
ing the liver, adipocytes, muscle, and macrophage, and their
roles as lipid sensors in metabolic diseases.

PPAR�

Liver is the key site of metabolic integration where fatty
acids are mobilized and, depending on the body’s needs,
either stored or used as an energy source. In the fasting state,
the fuel sources of the body shift from carbohydrates and fats
to mostly fats, and fatty acids that were stored during feeding
are released from the adipocyte and taken up by liver. There
they are either reesterified to TGs and assembled into VLDL
or broken down through �-oxidation and used to generate
ketone bodies. Earlier studies have demonstrated that in the
liver, PPAR� directly regulates genes involved in fatty acid
uptake [fatty acid binding protein (FATP)], �-oxidation
(acyl-CoA oxidase) and �-oxidation (cytochrome P450).
Gene targeting studies confirmed that PPAR� is essential for
the up-regulation of these genes caused by fasting (20, 21) or
by pharmacological stimulation with synthetic ligands such
as the fibrates (10, 18, 22). Although PPAR� null mice have

no obvious phenotype on a normal diet, these animals ac-
cumulate massive amounts of lipid in their livers when
fasted or fed a high-fat diet. Fasting also results in severe
hypoglycemia, hypoketonemia, and elevated plasma levels
of nonesterified fatty acid, indicating a defect in fatty acid
uptake and oxidation caused by dysregulation of these genes
(20, 21). In line with these observations, the fibrate class of
drugs including fenofibrate and gemfibrozil, which are syn-
thetic ligands for PPAR�, lower serum TGs and slightly
increase HDL cholesterol levels in patients with hyperlipid-
emia (23), most likely due to induction of fatty acid oxidation
through activation of PPAR�. PPAR� has also been shown
to down-regulate apolipoprotein C-III, a protein which in-
hibits TG hydrolysis by LPL. This activity of PPAR� ligands
further contributes to the lipid-lowering effect.

Unlike its function in the adaptive response to fasting, the
role of PPAR� in cardiovascular pathogenesis appears to be
detrimental. Cardiac-specific PPAR� overexpression in-
creases fatty acid oxidation and concomitantly decreases glu-
cose transport and use, a phenotype similar to that of the
diabetic heart. When these animals are made diabetic

FIG. 1. Circulating lipoproteins deliver both energy substrates and endogenous activators for PPARs. In humans, TG-rich VLDL particles,
released by liver, deliver fatty acids to adipocytes for storage and to muscle for energy consumption. Lipoprotein lipase, a PPAR� target gene
in the adipocyte, promotes fatty acid release through its TG hydrolysis activity and conversion of VLDL to cholesterol-rich LDL. Activation of
PPAR� and PPAR� induces fatty acid (FA) catabolism in metabolically active tissues such as liver and muscle, whereas PPAR� is essential
for lipid storage and differentiation of fat cells. Macrophages at the vessel wall also actively take up lipids such as VLDL and ox-LDL, and excess
cholesterol is fluxed out through the HDL pathway. PPAR� plays an important role in the balance between lipid influx and efflux, whereas
PPAR� is the major sensor for VLDL in the mouse macrophage. CE, Cholesterol esters.
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through streptozocin treatment, they develop more severe
cardiomyopathy than wild-type controls, whereas PPAR�
null mice do not exhibit this phenotype (24, 25). Similarly,
PPAR� and apoE double knockout animals are protected
from high cholesterol and high-fat diet-induced insulin re-
sistance and develop less atherosclerotic lesions (26). These
results strongly indicate that PPAR� senses fatty acids and
induces their use, and thus plays a causative role in cardio-
myopathy. The net effect, however, of fibrate intervention in
cardiovascular disease is likely beneficial because systemic
TG reduction should result in less fat accumulation in the
heart and at the vessel wall.

PPAR �

Adipocytes are the main site for lipid storage and mod-
ulate the levels of lipids in the blood stream in response to
hormonal signals. PPAR� has high expression in this tissue
and has been shown to potentiate adipocyte differentiation
from fibroblasts (27). In humans with type II diabetes, phar-
macologic activators of this receptor, such as TZDs, signif-

icantly improve insulin sensitivity (28); however, the mech-
anism of how these compounds work remains elusive.
Considering the fact that muscle is the major tissue account-
ing for up to 80% of insulin-stimulated glucose disposal, one
of the main issues yet to be resolved is how does a receptor
that has high expression in fat, low expression in liver, and
very low expression in muscle improve insulin sensitivity?
Attempts to answer this question have proven difficult.
PPAR� null embryos die at gestation d 10 due to a defect in
the placenta, and tetraploid rescue only proves that PPAR�
is essential for adipogenesis (11). Gene expression profiling
by microarray suggests that the detectable changes in ex-
pression by TZDs are mostly in the adipocyte (29). These
include genes involved in glucose uptake [c-Cbl-associated
protein (CAP) and glucose transporter 4 (GLUT4)], lipid
uptake and storage (CD36, aP2, LPL, FATP, and acyl-CoA
synthetase), and energy expenditure [glycerol kinase (GyK),
uncoupling protein (UCP) 2 and UCP 3; Refs. 29–37]. From
these transcriptional changes, several plausible insulin-
sensitizing mechanisms emerge (Fig. 2). The increase in CAP

FIG. 2. Effects of TZDs on the three primary insulin-responsive tissues. Changes listed in red are mediated directly through the nuclear fatty
acid receptor, PPAR�. This receptor is most abundantly expressed in adipose tissue where the largest transcriptional effect is seen. Direct effects
have also been observed in liver; however, it is unclear whether or not PPAR� is activated in muscle. Alterations in adipocyte physiology as
well as modulation of adipokines results in secondary effects denoted in green in other tissues. These include decreased gluconeogenesis in the
liver through the down-regulation of PEPCK and increased glucose oxidation in muscle due, in part, to the down-regulation of PDK4. ACS,
Acyl-CoA synthetase.
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and GLUT4 may alleviate some of the hyperglycemia, how-
ever, because adipose tissue is responsible for only a very
small percentage (�5%) of total glucose disposal; this alone
cannot explain the profound drug activity. On the other
hand, sequestering lipids into fat stores through the induc-
tion of CD36, LPL, and aP2 should reduce the metabolic
burden on liver and muscle and promote glucose use. Free
fatty acids (FFA), in particular, cause insulin resistance in
muscle, so lowering this metabolite is likely beneficial (38).
GyK up-regulation also results in decreased FFA release by
adipocytes, while at the same time increasing energy expen-
diture. In the fasting state, TG hydrolysis is stimulated, yield-
ing FFAs and glycerol. These molecules normally enter the
blood stream to be taken up by the liver, but GyK converts
glycerol into glycerol-phosphate. The presence of glycerol-
phosphate allows FFA recently hydrolyzed from TGs to be
reincorporated back into TGs at an energetic cost. Similarly,
UCPs allow protons to cross the mitochondrial membrane
bypassing the ATPase, thus diverting potential energy into
heat instead of ATP formation. Increased energy expenditure
should be therapeutically beneficial in diabetic patients, es-
pecially in those with obesity. Other than genes that are
directly involved in lipid and glucose homeostasis, TZDs
also modulate the expression of secreted signaling mole-
cules, or adipokines in fat. This includes down-regulation of
leptin (39, 40) and TNF-� (41, 42) and up-regulation of
Acrp30 (43–45). TNF� induces insulin resistance, whereas
low levels of Acrp30 have been correlated with insulin re-
sistance in mice, and injection of this protein improves in-
sulin sensitivity.

In addition to the actions of PPAR� ligands on adipose
tissue, these compounds exert some of their effects, either
directly or indirectly, on other tissues. This has been shown
in principle by the administration of TZDs to fatless mice.
These mice develop hyperglycemia, hyperinsulinemia, and
hyperlipidemia that is relieved, to varying extents, by TZD
treatment (46, 47). Furthermore, the expression of PPAR� is
up-regulated in the liver of genetically obese mice, and TZDs
induce several PPAR� target genes involved in lipid uptake
and storage in liver (48). PPAR� activation also appears to
increase glucose oxidation in the muscle and decrease glu-
coneogenesis in the liver, in part, by down-regulating pyru-
vate dehydrogenase 4 (PDK4) and phosphoenolpyruvate
carboxykinase (PEPCK), respectively (29). However,
whether this is a direct TZD activity or secondary effect from
changes in adipocyte physiology requires further studies
using tissue-specific knockout animals.

Because diabetic patients are often at high risk for cardio-
vascular disease, the activity of PPAR� in lipid-laden mac-
rophages has also been extensively studied. Earlier findings
suggested that activation of PPAR� by modified fatty acids
9-hydroxyoctadecadienoic acid (9-HODE) and 13-HODE,
components of oxidized-LDL (ox-LDL), might increase lipid
accumulation through the induction of the scavenger recep-
tor CD36 (49, 50). This observation raised the question as to
whether TZDs exhibit a similar activity. However, a fol-
low-up study demonstrated that PPAR� also promotes cho-
lesterol efflux through the induction of a transcriptional cas-
cade involving the nuclear sterol receptor LXR� and its
downstream target ABCA1, a membrane transporter that is

important for HDL-mediated reverse cholesterol transport
(51–54). In this view, one would predict that in the absence
of proportionately increased ox-LDL, pharmacological acti-
vation of PPAR� should shift the balance from lipid loading
to lipid efflux and improve the status of the atherosclerotic
lesion. Indeed, a decrease in lesion formation has been ob-
served with drug intervention in several mouse models of
atherosclerosis (55–59). Reciprocally, macrophages lacking
PPAR� are defective in their efflux program and display an
accelerated lesion progression (51). In aggregate, these re-
sults suggest that therapeutic intervention is beneficial in
treating CAD.

PPAR�

Muscle is one of the most metabolically demanding tissues
and relies heavily on fatty acids as an energy source. PPAR�
is the most abundant receptor in the muscle among the
PPARs (60). It was first implicated in fatty acid metabolism
from studies using the knockout animals. Most PPAR� null
embryos die at an early stage due to a placental defect. The
small percentage of PPAR� null mice that survive exhibit a
reduction in fat mass (61, 62). However, this phenotype is
absent in adipocyte-specific knockout animals suggesting
that PPAR� may regulate systemic lipid metabolism rather
than adipocyte functions (61). This idea is further strength-
ened by the observation that treatment with the synthetic
compound GW501516 in insulin-resistant rhesus monkeys
dramatically improves their serum lipid profile. The effects
include a decrease in fasting TG and insulin and an increase
in HDL cholesterol, while lowering the levels of small dense
LDL (63). Although it is unclear which tissue is the major
target for this activity, the identification of PPAR� as a VLDL
sensor (see below) suggests that muscle could be one of the
potential candidates. In support of this, a selective PPAR�
ligand is capable of regulating genes important for fatty acid
catabolism such as malonyl-CoA decarboxylase, CPT1, and
UCP3, and increasing the fatty acid oxidation rate in muscle
cells (Ref. 60; Wang, Y., and R. M. Evans, unpublished data).
Furthermore, exercise- or starvation-induced up-regulation
of these genes in muscle, but not in heart or liver, remains
intact in the PPAR� null mice. Thus, PPAR� activity appears
to be more relevant than PPAR� in the adaptive response of
the muscle.

As mentioned earlier, PPAR� has recently been shown to
mediate VLDL signaling in the macrophage (17). VLDL treat-
ment in cultured macrophages results in lipid accumulation
and up-regulation of adipose differentiation-related protein,
a lipid droplet-coating protein that has been implicated in
lipid storage (64). Adipose differentiation-related protein
was subsequently identified as a direct PPAR� target gene,
and components of VLDL released by LPL serve as ligands
for the receptor. Accordingly, VLDL induction of this gene
is abolished in the PPAR� null macrophage, whereas this
regulation remains unchanged in the PPAR� null cells. This
intriguing result has raised the question as to how receptor
activation affects atherosclerotic lesion progression, because
it is becoming clear now that high TG and VLDL levels may
be independent risk factors for CAD (65). With regard to
foam cell formation, in vitro cholesterol-loading studies using
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structurally distinct synthetic PPAR� activators have gener-
ated inconclusive results. In one study, PPAR� activation
potentiated cholesterol efflux through induction of the
ABCA1 pathway, whereas the other demonstrated enhanced
lipid accumulation using a different agonist (63, 66). This
discrepancy is likely due to differences in the experimental
system, or the fact that PPAR� activates both lipid uptake and
oxidation, a scenario similar to the cholesterol influx and
efflux activities of PPAR�. Future studies in mouse models
of atherosclerosis with either drug treatment or PPAR�-
deficient bone marrow transplantation will help clarify the
role of this receptor in CAD.

Conclusion

The use of loss-of-function mutants and high-affinity li-
gands for the PPARs has provided a unique opportunity to
identify genes regulated by these receptors and correlate
these regulatory events in the nucleus to the physiology of
the animal. It is now evident that PPARs, which are activated
by various lipid molecules, function in distinct target tissues
and coordinately regulate different metabolic pathways.
PPAR� and PPAR� potentiate fatty acid use in liver and
muscle, respectively, whereas PPAR� promotes lipid storage
in adipocytes. In this dynamic system, lipids are shuttled
between these tissues according to the needs of the body by
lipoproteins. In this view, lipoproteins not only deliver en-
ergy substrates but also carry endogenous activators for
these receptors.

Given the intimate relationship between the activity of the
PPARs and lipid homeostasis, continuing the study of the
regulatory mechanisms mediated by PPARs will provide
valuable information for designing drugs that target these
receptors in metabolic diseases. Three major challenges re-
main to be addressed. The first will be to define metabolic
pathways regulated by these receptors and which tissues
they are activated in. The apparent task will be to decipher
the actual site of action for TZDs. Future experiments with
tissue-specific knockout of PPAR� should shed light on
where the drug works and, importantly, whether loss of
receptor in a specific tissue is sufficient to cause insulin
resistance. PPAR� is another promising candidate as a lipid
and insulin modulator due to its potential role in muscle.
Given the wide tissue distribution of this receptor, research
focusing on its activity in other metabolically active tissues
will grow exponentially, and its therapeutic value will be
unmasked in the near future. The next challenge will be to
identify ligands that retain their effectiveness without ad-
verse side effects. Substantial progress has already been
made in designing selective PPAR modulators and dual ago-
nists that modulate receptor activity. For example, several
reported PPAR� partial agonists or PPAR�/� dual agonists
retain insulin-sensitizing activity without causing weight
gain (67–71). Finally, the role of PPAR� and PPAR� (or/and
PPAR�) as lipid sensors (ox-LDL verses VLDL) in the reg-
ulation of macrophage function deserves thorough investi-
gation. It is known that macrophages at the vessel wall ac-
tively take up lipids, and this process is essential for the
formation of atherogenic foam cells. Understanding these
mechanisms in conjunction with the identification of selec-

tive modulators will extend the therapeutic value of PPARs
to other metabolic diseases such as CAD.
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