
Minireview: Role of the Growth Hormone/Insulin-Like
Growth Factor System in Mammalian Aging

Andrzej Bartke

Departments of Physiology and Internal Medicine, Southern Illinois University School of Medicine, Springfield,
Illinois 62794

The important role of IGF and insulin-related signaling path-
ways in the control of longevity of worms and insects is very
well documented. In the mouse, several spontaneous or ex-
perimentally induced mutations that interfere with GH bio-
synthesis, GH actions, or sensitivity to IGF-I lead to extended
longevity. Increases in the average life span in these mutants
range from approximately 20–70% depending on the nature of
the endocrine defect, gender, diet, and/or genetic background.
Extended longevity of hypopituitary and GH-resistant mice

appears to be due to multiple mechanisms including reduced
insulin levels, enhanced insulin sensitivity, alterations in car-
bohydrate and lipid metabolism, reduced generation of reac-
tive oxygen species, enhanced resistance to stress, reduced
oxidative damage, and delayed onset of age-related disease.
There is considerable evidence to suggest that the genetic and
endocrine mechanisms that influence aging and longevity in
mice may play a similar role in other mammalian species,
including the human. (Endocrinology 146: 3718–3723, 2005)

THE SOMATOTROPIC AXIS, consisting of pituitary-
derived GH and IGF-I, the main mediator of GH ac-

tions, is the key determinant of somatic growth and adult body
size. Moreover, the GH/IGF-I system is involved in the regu-
lation of puberty and gonadal function and influences body
composition as well as structural and functional maintenance
of adult tissues. Loss of skeletal muscle mass, increased adi-
posity, and other unwelcome accompaniments of aging have
been linked to age-related decline in pituitary GH secretion (1)
and some of these changes can be ameliorated by GH treatment
of elderly individuals (1, 2). On this basis, administration of GH
is often advocated as an “anti-aging” therapy (3). In sharp
contrast to these findings, GH deficiency, GH resistance, and
reduced IGF-I signaling in mice are associated with symptoms
of delayed aging and markedly extended longevity (4–7). Al-
though most normal mice die at approximately 2 yr of age,
hypopituitary and GH-resistant mutants often survive beyond
the age of 3 yr and occasionally past the age of 4 yr, i.e. outside
the range encountered in various laboratory strains of this spe-
cies. In this brief review, we will list the key characteristics of
long-lived GH-deficient, GH-resistant, and IGF-I-resistant
mice, discuss mechanisms that are believed to link reduced
somatotropic signaling with prolonged longevity, and specu-
late on the possible relevance of findings obtained in genetically
altered mice to the physiological control of aging in normal mice
and in other mammalian species including the human.

Long-Lived Mutant Mice

Primary defects in somatotropic signaling and some of the
secondary endocrine changes in different types of long-lived

mutant mice are listed in Table 1. In three of these mutants
[Ames dwarf, Snell dwarf, and GH receptor knockout
(GHRKO)], robust increases in longevity were reproducibly
observed in both genders (4–6, 9, 13–15). In addition, increased
longevity of GHRKO mice was observed in different labora-
tories (5, 13, 14) and in stocks with different genetic back-
grounds (13). In “little” (GHRHRlit) mice, significant extension
of longevity was detected only when the animals were fed a
low-fat diet to prevent obesity (6). In IGFIR�/� mice, extension
of average life span was significant only in females (7). How-
ever, it should also be mentioned that IGFIR�/� mice are
unique among these long-lived mutants by having near-normal
growth and adult body size and no detectable alterations in
reproductive development and function (7). Preliminary find-
ings from ongoing studies in mice expressing a hypomorphic
IGF-I mutation support the conclusion that reduction of IGF-I
signaling in mice leads to increased longevity (C. Sell, personal
communication). Surprisingly, life span is not altered in trans-
genic mice expressing an antagonistic analog of GH (13). We
suspect that this may be due to a very modest reduction in
circulating IGF-I levels in these animals (13). Moreover, in con-
trast to GH-deficient and GH-resistant mutants, GH antagonist
transgenic mice exhibit no reduction in insulin and only very
minor, age-dependent suppression of glucose levels (13), with
some of these characteristics likely being related to conspicuous
obesity of these animals.

With the exception of IGFIR�/� animals, mice with mu-
tations affecting somatotropic signaling exhibit a series of
phenotypic characteristics consistent with GH deficiency or
resistance including reduced postnatal (and particularly,
postweaning) growth, diminutive adult body size, delayed
puberty, and reduced fertility. In addition, Ames and Snell
dwarf as well as GHRKO mice have reduced plasma insulin
and glucose levels (16–19). Snell and Ames dwarf mice have
primary endocrine defects unrelated to the somatotropic
axis. Both of these mutants lack thyroid stimulating hormone
and, therefore, are hypothyroid and are also prolactin (PRL)-
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deficient. Reduction of body temperature in dwarf mice (20)
is presumably related to hypothyroidism, although lack of
GH and reduced levels of insulin are likely to contribute to
this characteristic. PRL deficiency leads to female sterility,
because in the mouse, PRL is absolutely required for luteal
function, implantation, and maintenance of pregnancy (21).

In hypopituitary Ames and Snell dwarf mice as well as in
GH-resistant GHRKO mice, a significant increase in life span
is associated with various symptoms of delayed aging (Table
2). These findings suggest that the biological process of aging
is altered in these animals and their increased life expectancy
is not due to removing causes of early mortality.

Suspected Mechanisms of Prolonged Longevity

Association of reduced somatotropic signaling with ex-
tended longevity in laboratory stocks of house mice (Mus
musculus) is robust, reproducible, and consistent across sev-

eral mutants, genetic backgrounds, and diets (4 –7, 13–15,
22). However, at this point, we can only speculate which
of the seemingly endless list of direct and indirect conse-
quences of GH deficiency or resistance are causally related
to prolonged longevity. In Snell and Ames dwarf mice, the
situation is further complicated by concomitant PRL and
thyroid stimulating hormone deficiency, the likely impor-
tance of hypothyroidism, and possible interactions be-
tween the consequences of different hormonal deficits.
Despite these limitations, studies conducted to date and
comparisons with data obtained in genetically normal an-
imals in which life span was extended by reducing the
amount of food they are allowed to consume (the so called
“caloric restriction”) suggest several potential mecha-
nisms that may link reduced GH/IGF-I signaling with
delayed aging.

Metabolic rate and oxidative damage

Reduced levels of GH, IGF-I, insulin, and thyroid hormone
would be expected to lead to reduced oxidative metabolism
and reduced generation of reactive oxygen species (ROS),
two very plausible mechanisms of delayed aging. Reduced
oxygen consumption (28), body core temperature (20, 29) and
mitochondrial ROS production (30), combined with in-
creased expression and/or activity of enzymes involved in
antioxidant defenses (31–34) in hypopituitary and/or GH-
resistant mice are consistent with the suspected importance
of these mechanisms. In further support of the role of re-
duced ROS production and enhanced antioxidant defenses
as potential mechanisms of delayed aging, oxidative damage
of proteins, lipids, and mitochondrial DNA are reduced in
Ames dwarf mice (30, 35).

TABLE 1. Mutations that alter somatotropic signaling and increase longevity in the mouse

Name and frequently
used symbols Origin and first description Primary effect Kay phenotypic

characteristics Increase of average longevity

Ames dwarf; df; Prop1df Spontaneous mutation;
Schaible and Gowen,
1961 (8) Failure of differentiation

of somatotrophs,
lactotrophs, and
thyrotrophs; primary
deficiency of GH, PRL,
and TSH

Reduced growth and adult
body weight;
undetectable plasma GH,
PRL, TSH, and IGF-I;
reduced plasma levels of
thyroid hormones,
insulin, and glucose;
female sterility due to
luteal failure; reduced
oxidative damage

35–70% depending on
gender and diet (4, 9)

Snell dwarf; dw, Pit1dw Spontaneous mutation;
Snell, 1929 (10)

�42% (6)

Little lit; GHRHRlit Spontaneous mutation;
Eicher and Beamer,
1976 (11)

GHRH resistance;
suppression of GH
release

Reduced growth and body
weight of young adults;
progressive increase in
adiposity

24% (only if fed low-fat
diet) (6)

GHR/GHBP knockout;
Laron Dwarf;
GHR/GHBP-KO;
GHR-KO

Targeted gene disruption;
Zhou et al., 1997 (12)

Absence of GH receptor
and binding protein; GH
resistance

Reduced growth and adult
body size; reduced
plasma IGF-I, insulin,
and glucose; increased
plasma GH; increased
adiposity; quantitative
reduction of fertility
parameters

40–55% on heterogeneous
genetic background;
26% in males on
C57BL/6 background (5,
13)

IGFIR heterozygous
Knockout; IGFIR�/�

Targeted gene disruption;
Holzenberger et al.,
2003 (7)

Reduced number of IGF-I
receptors; partial IGF-I
resistance

Normal fertility; slight
reduction in body weight;
increased resistance to
oxidative stress

33% in females and a
suggestive increase in
males (7)

TABLE 2. Evidence for delayed aging of hypopituitary and GH-
resistant mice

Symptoms Mutants Refs.

Increased maximal life span Ames dwarf 4, 22
Snell dwarf 6
GHRKO 13, 14

Increased mortality rate doubling time Snell dwarf 6, 23
GHRKO 23

Delayed/reduced neoplasms and other
age-related disease

Ames dwarf 24
Snell dwarf 15
GHRKO a

Maintenance of cognitive function Ames dwarf 25
GHRKO 26

Delayed cartilage aging and arthrosis Snell dwarf 27
Delayed collagen aging Snell dwarf 6
Delayed immune aging Snell dwarf 6

a Ikeno, Y., and A. Bartke, unpublished observation
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Stress resistance

It was recently shown that skin fibroblasts isolated from
either Snell dwarf, Ames dwarf, or GHRKO mice survive
significantly longer than fibroblasts isolated from normal
mice when exposed to various forms of cytotoxic stress in
vitro (36, 37). Association of increased stress resistance with
delayed aging and extended longevity was described pre-
viously in long-lived invertebrate mutants (38) and in mam-
mals subjected to caloric restriction (39).

Insulin signaling

Hypoinsulinemia combined with enhanced sensitivity to
insulin and reduced or “low normal” glucose levels repre-
sent another likely mechanism of extended longevity of GH-
deficient and GH-resistant mice (Fig. 1). Reduced mass of
pancreatic islets (17, 40), absence of “anti-insulinemic” ac-
tions of GH, enhanced secretion of adiponectin (41), and
altered expression of genes related to insulin sensitivity in-
cluding peroxisome proliferators activated receptor � and its
coactivator PGC1� (41–43, 78) are among likely mechanisms
of reduced insulin release and enhanced insulin sensitivity in
these animals. It is well documented that reduced function
of homologous (IGF/insulin-like) signaling pathways leads
to major extension of life span in worms and flies (reviewed
in Refs. 44 and 45). In the human, centenarians were reported
to be exceptionally insulin sensitive (46) and to have reduced
incidence of diabetes (47). These characteristics of exception-
ally long-lived people are remarkable, because human aging
is normally associated with a progressive increase in insulin
resistance and a significant age-related reduction in insulin
sensitivity was evident in normal individuals from the same
population (46). Moreover, insulin resistance and “metabolic
syndrome” (a condition roughly opposite to the character-

istics of insulin signaling in dwarf and GHRKO mice) is a
major risk factor for age-associated diseases (48).

Recent findings raise an interesting possibility that in the
absence of GH signaling, the actions of lactogenic hormones
during early development may set the stage for enhanced
insulin sensitivity in adult life. Fleenor et al. (49) reported that
mice with combined GH deficiency and PRL resistance (cre-
ated by crossing little GHRHRlit and PRL receptor knockout
animals) develop insulin resistance and characteristics of
metabolic syndrome. This contrasts sharply with the situa-
tion described previously in Ames dwarf mice in which
combined GH and PRL deficiency is associated with en-
hanced rather than reduced sensitivity to insulin (18). It is
tempting to ascribe this difference to the inability of PRL
receptor knockout mice to respond to placental lactogens and
maternal PRL (including PRL present in the milk) during
prenatal and early postnatal development. However, in adult
mice, lactogenic (PRL receptor-mediated) signaling presum-
ably plays little role in regulating sensitivity to insulin since
enhanced responses to insulin are present in both Ames
dwarfs that are PRL deficient (18, 21) and GHRKO mice (17)
that are mildly hyperprolactinemic (50).

Body size: data from normal mice and other species

Diminutive body size is a striking characteristic of most
long-lived mouse mutants. Association of small stature with
prolonged longevity applies also to genetically normal mice
and is supported by meta-analysis of multiple studies (51)
and by the recent demonstration that small body size is a
significant predictor of longer lifespan in individual animals
from a genetically heterogeneous population of normal mice
(52). Negative correlation of body size and longevity is well
documented in domestic dogs (53, 54) and in laboratory
stocks of rats (51) and was reported also in other species
including the human (55). Presumably, small stature is a
phenotypic marker of some developmental and/or meta-
bolic characteristics that predispose to increased life expect-
ancy. However, reduced body size per se is unlikely to lead
to delayed aging. Vergara et al. (15) recently reported that 7
wk of treatment of young Snell dwarf mice with GH or GH
plus thyroxine failed to shorten their lifespan even though it
significantly increased their adult size.

Gonadal function

Important interactions between the somatotropic and the
hypothalamic-pituitary-gonadal axes and numerous exam-
ples of trade-offs between longevity and fecundity (56) sug-
gest that delayed reproductive development and reduced
fertility of long-lived mutant mice could be contributing to
their extended survival. Existence of such a relationship
would be consistent with a concept of antagonistic pleiot-
ropy. Thus, high levels of GH and IGF-I would be favored by
natural selection because of their positive impact on sexual
maturation and reproductive competence, but would exert
negative impacts (e.g. promoting tumorigenesis or acceler-
ating the rate of aging) later in life when the force of natural
selection is diminished. However, the potential impact of
reduced reproductive competence on aging in hypopituitary
and GH-resistant mice appears to be very minor. Compara-

FIG. 1. Proposed mechanisms of prolonged longevity of hypopitu-
itary, GH-deficient, and GH-resistant mice.
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ble life extension and similar maximal life spans were re-
corded among Snell dwarf mice from a stock in which dwarfs
are sterile (6), Snell dwarfs rendered fertile by hormone ther-
apy (15), Ames dwarf mice from a stock in which many
females cycle and most males are fertile (4), and in GHRKO
mice, in which both sexes can reproduce (12).

Alterations at the Level of Gene Expression

Microarray analysis of wide profiles of gene expression
(43, 57, 58) and real-time PCR studies of genes related to
insulin and IGF-I signaling in various organs (41, 42, 79)
strengthen the evidence for reduced IGF-I/insulin signaling
in long-lived mutant mice, and demonstrate alternations in
gene expression that are consistent with enhanced insulin
sensitivity and oxidative stress resistance in these animals.
Results of these studies also suggest a possible role of en-
hanced gluconeogenesis and �-oxidation of fatty acids and
reduced glycolysis and lipogenesis in the liver, as well as
increased expression of Foxo family forkhead transcription
factors, peroxisome proliferators-activated receptor �, and
PGC1� in extending longevity of GH-deficient or GH-resis-
tant mice. Reduced lipogenesis in long-lived mutant mice is
strongly supported by elegant studies of various steps of
cholesterol biosynthesis in the liver of Snell dwarf mice (59).
Interestingly, adiposity as measured by percent of body fat
is increased rather than decreased in GHRKO and in young
adult Ames dwarf mice (60, 61). We suspect that coexistence
of adiposity and enhanced insulin sensitivity in long-lived
mouse mutants is due to altered secretion of adiponectin,
TNF�, and IL-6 by fat cells of these animals (41, 80).

Brain IGF-I and cognitive function

Demonstration of enhanced IGF-I expression in the hip-
pocampus of Ames dwarf mice (62, 63) raised an intriguing
possibility that preservation and/or compensatory increases
in the local production and paracrine/autocrine actions of
IGF-I may account for some unexpected phenotypic charac-
teristics of long-lived GH-deficient mutants. Ames dwarf
and GHRKO mice do not differ from normal animals in
performance of tasks designed to measure learning and
memory (25, 26). Moreover these animals maintain youthful
levels of cognitive function into a very advanced age (25, 26,
64) despite deficiency of GH signaling and reduction of cir-
culating IGF-I below the level of detectability. Both GH and
IGF-I are well documented to exert important neurostimu-
latory and neuroprotective effects (65, 66). We suspect that
the paradox of apparently normal cognitive function and its
preservation during aging in animals with deficient soma-
totropic signaling may be due to normal or enhanced IGF-I
biosynthesis and actions in brain regions providing neural
substrate for learning and memory.

Somatotropic Axis and Longevity of Rats

Although results obtained in rats are in general agreement
with the data concerning the effects of GH and IGF-I on
aging, some important differences also exist. Heterozygous
transgenic rats expressing antisense GH live longer than
normal rats, but animals homozygous for the expression of

the same transgene have a reduced rather than extended life
span (67). Longevity is not affected in dwarf rats which are
GH deficient and have plasma IGF-I levels reduced to ap-
proximately 50% of normal values (68). Intriguingly, adult
onset GH deficiency produced in dwarf rats by GH replace-
ment therapy between 4 and 14 wk of age increased longevity
of males significantly above the values measured in either
mutated dwarf rats or their normal siblings (68). In the Lou
C/Jall rats which are long-lived, lean, and were described as
a model of healthy aging, pulsatile GH secretion is main-
tained during aging, but IGF-I levels are reduced and exhibit
a pronounced age-related decrease, implying partial GH re-
sistance (69). Results of meta-analysis of data from over 400
groups of rats revealed significant negative correlation of
maximal body size with maximal longevity in this species
(51) resembling data obtained in mice.

Relevance to the Human

Can the findings in mice summarized above be extrapo-
lated to the human? This question is not easy to answer.
Because mutations affecting IGF-I/insulin or homologous
signaling pathways exert major effects on longevity in or-
ganisms ranging from unicellular yeast, through worms and
insects, to rodents, it seems entirely reasonable to expect that
the involvement of these signaling pathways in the control
of aging is universal and includes humans. In the human,
some individuals with hypopituitarism due to Prop1 muta-
tions (homologous to Ames dwarfism in mice), or with Laron
dwarfism (GH resistance, equivalent to the phenotype of
GHRKO mice) can survive into very advanced age (70, 71),
but dwarfs with isolated GH deficiency were reported to
have reduced life span (72). Pathologically elevated levels of
GH are associated with reduced life expectancy in both ac-
romegalic humans (73, 74) and transgenic mice (reviewed in
Ref. 75). However, increased mortality rate of acromegalics
is due mostly to greater incidence of cardiovascular disease,
diabetes, and cancer and thus it could be debated whether the
biological process of aging per se is altered in these individ-
uals. As was mentioned earlier in this Minireview, there is also
evidence that a negative correlation of body size and lon-
gevity, which is very robust in mice and dogs, may apply to
the human (55). Association of greater height with shorter
lifespan was very striking in some of the examined cohorts,
for example in professional baseball players (55). Height can
be assumed to represent a biomarker of the activity of the
somatotropic axis, including circulating IGF-I levels and re-
sponsiveness of target tissues to IGF-I.

Studies of polymorphic variants of genes related to GH
biosynthesis, IGF-I signaling and insulin action (47, 76, 77),
provided evidence for altered frequency of several of these
variants in exceptionally long-lived people. For example,
Kojimra et al. (47) recently reported that one insulin receptor
haplotype comprised of two SNPs in linkage disequilibrium
was significantly more frequent in semisuper centenarians
(individuals who were 105 yr old or older) than in healthy
younger controls. A study by van Heemst et al. (76) examined
frequency of variants of five genes related to GH and insulin
signaling in relation to height and longevity in humans.
Based on the expected effects of these genetic variants on
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hormonal signaling, these authors concluded that a compos-
ite score reflecting low activity of this pathway was signif-
icantly associated with lower height and improved old age
survival in women. Carriers of a SNP variant of the GH1 gene
were shorter by 2 cm and had 0.80-fold reduced mortality
compared with carriers of a wild-type allele (76). Increased
insulin sensitivity in centenarians (46) and detrimental ef-
fects of insulin resistance (48) mentioned earlier in this re-
view provide additional indications that at least some of the
suspected mechanisms of delayed aging in mice with re-
duced somatotropic signaling may apply broadly, including
humans.
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