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All cells must maintain a high ratio of cellular ATP:ADP to
survive. Because of the adenylate kinase reaction (2ADP ↔
ATP � AMP), AMP rises whenever the ATP:ADP ratio falls,
and a high cellular ratio of AMP:ATP is a signal that the energy
status of the cell is compromised. The AMP-activated protein
kinase (AMPK) is the downstream component of a protein
kinase cascade that is switched on by a rise in the AMP:ATP
ratio, via a complex mechanism that results in an exquisitely
sensitive system. AMPK is switched on by cellular stresses
that either interfere with ATP production (e.g. hypoxia, glu-
cose deprivation, or ischemia) or by stresses that increase
ATP consumption (e.g. muscle contraction). It is also activated

by hormones that act via Gq-coupled receptors, and by leptin
and adiponectin, via mechanisms that remain unclear. Once
activated, the system switches on catabolic pathways that
generate ATP, while switching off ATP-consuming processes
that are not essential for short-term cell survival, such as the
synthesis of lipids, carbohydrates, and proteins. The AMPK
cascade is the probable target for the antidiabetic drug met-
formin, and current indications are that it is responsible for
many of the beneficial effects of exercise in the treatment and
prevention of type 2 diabetes and the metabolic syndrome.
(Endocrinology 144: 5179–5183, 2003)

ALL LIVING CELLS must continuously maintain a high,
nonequilibrium ratio of ATP to ADP (which are anal-

ogous to the chemicals in an electrical cell or battery) to
survive. Catabolism charges up the battery by converting
ADP and phosphate to ATP, whereas almost all other cellular
processes tend to discharge the battery by directly or indi-
rectly converting ATP to ADP and phosphate (or AMP and
pyrophosphate). The fact that the ATP:ADP ratio in cells
usually remains almost constant indicates that the mecha-
nisms that maintain these processes in balance are very ef-
ficient. What is more surprising is that the identity of the key
player in this process, the AMP-activated protein kinase
(AMPK), has become apparent only in the last few years.
With hindsight, its discovery can be traced back to two in-
dependent observations first reported in 1973. Gibson and
co-workers (1) reported that a crude preparation of 3-
hydroxy-3-methyl-CoA reductase, the key regulatory en-
zyme of cholesterol synthesis, became inactivated in a time-
dependent manner upon incubation with MgATP, while
Carlson and Kim (2) reported similar observations with
acetyl-CoA carboxylase. Both groups correctly surmised that
this was due to the action of a protein kinase, but it was to
be another 14 yr before the current author provided evidence
that these were both functions of the same protein kinase (3),
which we renamed AMPK (4, 5).

Regulation of AMPK

AMPK is a heterotrimeric complex comprising a catalytic
�-subunit and regulatory �- and �-subunits (6). Each subunit
exists as alternate isoforms encoded by two or three genes

(�1, �2, �1, �2, �1, �2, �3), and all twelve different combi-
nations of isoforms appear to be able to form complexes. The
predominant isoforms in most cells are �1, �1, and �1, but
liver cells also significantly express �2 (7), whereas skeletal
and cardiac muscles also express �2, �2, �2, and �3 (8–10).
Although much remains to be learned, differences in func-
tion between the isoforms are already known. First, the de-
gree of AMP dependence depends on the identity of both the
�- and �-subunits, with stimulation varying from only 50%
for the �1�3 combination to more than 5-fold for the �2�2
combination (10). Second, �2 complexes appear to be en-
riched in the nucleus, whereas �1 complexes are largely
cytoplasmic and appear to be largely excluded from the
nucleus (11–14).

As its name suggests, AMPK is allosterically activated by
AMP, but, more importantly, it is also activated by phos-
phorylation by one or more upstream kinases at a threonine
residue within the activation loop of the �-subunit kinase
domain, without which there is no detectable activity (15, 16).
This phosphorylation is promoted by AMP both by stimu-
lating phosphorylation by the upstream kinase (17) and by
inhibiting dephosphorylation by protein phosphatases (18).
This complex mechanism renders the cascade ultrasensitive,
i.e. over the critical range of concentrations, a small rise in
AMP produces a large increase in the final output (19). The
effects of AMP are also antagonized by high concentrations
of ATP, so that the system responds to rises in the AMP:ATP
ratio rather than to rises in AMP alone. If the function of the
AMPK system is indeed to monitor cellular energy status, a
pertinent question is why it should respond to the AMP:ATP
ratio rather than the ADP:ATP ratio. The likely answer is that
all eukaryotic cells contain a very active adenylate kinase
enzyme that maintains the reaction catalyzed (2ADP ↔ ATP
� AMP) close to equilibrium at all times. This means that the
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AMP:ATP ratio varies approximately as the square of the
ADP:ATP ratio (20), and the former is therefore a much more
sensitive indicator of cellular energy status than the latter.

Regulation of the AMPK in Vivo

The AMPK system is therefore activated by any stress that
causes a rise in the cellular AMP:ATP ratio, either by inter-
fering with ATP production or by increasing ATP consump-
tion. Stresses of the former type include heat shock and
metabolic poisoning in isolated hepatocytes (21), and hyp-
oxia and ischemia in perfused heart muscle (22, 23). These are
all pathological stresses, but the kinase is also regulated by
more physiological stimuli. In pancreatic �-cells, low glucose
activates AMPK in the same range of concentrations over
which it inhibits insulin release (13, 24). Finally, a physio-
logical metabolic stress that activates AMPK by increasing
ATP consumption is exercise in skeletal muscle, the original
finding of which (25) triggered a greatly increased interest in
the system. AMPK is activated by exercise or contraction in
rodent (25–27) and human (28, 29) muscle, and activation is
dependent on both the duration and the intensity of exercise
(30, 31).

AMPK is also allosterically inhibited by physiological con-
centrations of phosphocreatine (32), consistent with the pro-
posed physiological role of the kinase as a sensor of cellular
energy status. Another rapidly mobilized store of energy in
many tissues is glycogen. The �-subunits of AMPK contain
a central conserved domain that has recently been recog-
nized as a glycogen-binding domain (GBD) (33, 34). In both
rat (35) and human (36) muscle, a high glycogen content
represses AMPK activation, suggesting that the AMPK sys-
tem may monitor the availability of this longer term store of
energy as well as that of ATP and phosphocreatine. It is
tempting to suggest that the GBD is responsible for this,
although there is no direct evidence for this at present. An
alternative role for the GBD, which is not necessarily mu-
tually exclusive, is that it localizes the kinase with one of its
substrates, i.e. glycogen synthase. Consistent with this, over-
expression of AMPK in cultured cells has been found to cause
the accumulation of AMPK in unusually large glycogen
granules that also contain glycogen synthase (33).

Homologs of the �-, �-, and �-subunits of AMPK are
present even in the most primitive, unicellular eukaryotes
such as Giardia lamblia (6), and it seems likely that the system
primarily evolved to regulate cellular function in response to
fluctuations in energy status, rather than to hormonal stim-
uli. Nevertheless, it has recently been found that some hor-
mones do regulate the system. AMPK is activated by recep-
tors coupled to phospholipase C via the G protein Gq (37),
and by the adipocytokines leptin (38) and adiponectin (39).
The mechanism for AMPK activation by these hormones
remains unclear, and in particular, it is not known whether
they act by increasing the AMP:ATP ratio or via some more
novel mechanism.

Downstream Targets for AMPK Activation

Much of what has been learned about the downstream
targets for AMPK in intact cells and in vivo has come from the
use of the compound 5-aminoimidazole-4-carboxamide

(AICA) riboside. This adenosine analog is taken up into cells
and converted by adenosine kinase to the monophosphory-
lated nucleotide 5-aminoimidazole-4-carboxamide-1-d-
ribofuranosyl-5�-monophosphate (ZMP). ZMP mimics all of
the activating effects of AMP on the AMPK system, although
it is much less potent than AMP itself (40). Nevertheless, in
most cells, it accumulates to sufficiently high concentrations
that it activates AMPK without disturbing cellular levels of
AMP, ADP, or ATP (40, 41). An important caveat in the use
of AICA riboside is that ZMP does affect certain other AMP-
regulated enzymes (42, 43). Recently, it has been found that
the antidiabetic drug metformin activates AMPK (44) by a
mechanism that involves phosphorylation by the upstream
kinase but with no alteration in the cellular AMP:ATP ratio
(45, 46). Because AICA riboside and metformin activate
AMPK by different mechanisms, if both agents produce the
same physiological effect, one can have more confidence that
it is mediated by AMPK activation. For a complete analysis
of the effects of AMPK on a physiological process, it is also
necessary to identify the actual target protein for AMPK
phosphorylation, identify the sites phosphorylated, and
show that these are phosphorylated in intact cells or in vivo
in response to AMPK activation. At present, this level of
analysis has been achieved only in a few cases.

In general, activation of AMPK switches on catabolic path-
ways that generate ATP, while switching off anabolic path-
ways and any other nonessential processes that consume
ATP. It achieves this both by direct phosphorylation of reg-
ulatory proteins involved in the process, and by indirect
effects on gene expression. A full discussion of the targets for
AMPK is beyond the scope of this minireview, but a sum-
mary of those that are reasonably well established is shown
in Fig. 1. The interested reader should consult earlier reviews
for detailed citations (6, 20, 47), and only a few more recently
established examples are discussed below.

As well as inhibiting biosynthetic pathways such as fatty
acid and cholesterol synthesis, it has been found that acti-
vation of AMPK inhibits protein synthesis (48, 49). Although
the direct targets for phosphorylation by AMPK responsible
for the inhibition of translation remain unclear, there seem to
be two mechanisms involved. First, AMPK activation causes
activation of elongation factor-2 kinase and increased phos-
phorylation of elongation factor-2, leading to inhibition of the
elongation step of translation (48, 50). Second, AMPK acti-
vation also appears to down-regulate the mammalian target
of rapamycin pathway, which can activate translation both
through phosphorylation and activation of p70 S6 kinase,
and through increased phosphorylation of 4E-binding pro-
tein 1, which relieves inhibition of initiation of translation (49,
51, 52). Another recently discovered target for AMPK is the
cystic fibrosis transmembrane regulator protein (53–55),
which is involved in regulating transepithelial transport of
ions and, as a consequence, secretion of fluid into the airways
and the gut. The overall process of fluid secretion requires
not only direct hydrolysis of ATP by the cystic fibrosis trans-
membrane regulator protein itself, but also ATP turnover
catalyzed by the plasma membrane Na�/K� ATPase. As an
energetically expensive process, it makes sense for it to be
switched off in response to AMPK activation. Finally, the
expression of numerous genes is regulated by AMPK (e.g.
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Fig. 1). In a recent microarray study of mice expressing a
dominant-negative mutant AMPK in muscle (where AMPK
activity was undetectable), a total of 234 genes were up-
regulated, and 130 were down-regulated by more than 2-fold
compared with control mice (56). Intriguingly, the genes that
are up-regulated by AMPK in muscle are similar to those
induced by endurance exercise training, including glucose
transporter GLUT4, and oxidative enzymes of mitochondria
(57). Thus, activation of AMPK during exercise may help to
prepare the muscle for subsequent exercise bouts by increasing
the capacity of muscle to rapidly take up and oxidize glucose.

In most cases, the direct target proteins for AMPK respon-
sible for the effects on gene expression are not known. How-
ever, AMPK phosphorylates the carbohydrate response el-
ement binding protein at Ser568, which inhibits its DNA
binding activity and may be involved in the regulation of
expression of the liver pyruvate kinase gene (58). It also
phosphorylates the transcriptional coactivator p300 at Ser89,
and this reduces its interaction with nuclear hormone recep-
tors such as peroxisome proliferator-activated receptor-�
(59). Moreover, AMPK activation has been shown to reduce
the expression of several important transcription factors, in-
cluding sterol regulatory element binding protein-1c (44),
hepatocyte nuclear factor-4� (60), CCAAT/enhancer bind-
ing protein-�, and peroxisome proliferator-activated recep-
tor-� (61). AMPK directly phosphorylates hepatocyte nuclear
factor-4�, and this seems to have a 2-fold effect, both reduc-
ing its ability to form homodimers and bind DNA, and stim-
ulating its degradation (62).

Relevance to Type 2 Diabetes and the
Metabolic Syndrome

Via mechanisms indicated in Fig. 1, AMPK activation
causes many metabolic changes that would be beneficial in

subjects with type 2 diabetes and the metabolic syndrome,
such as increased glucose uptake and metabolism by muscle
and other tissues, decreased glucose production by the liver,
and decreased synthesis and increased oxidation of fatty
acids. Indeed, experiments with animal models of type 2
diabetes and the metabolic syndrome show that activation
of AMPK using 5-aminoimidazole-4-carboxamide 1-�-d-
ribofuranoside riboside can reverse many of the metabolic
defects of these animals in vivo (63–66). The AMPK system
is the probable target of the major antidiabetic drug metformin
(44–46) and may even be one target for another antidiabetic
drug, rosiglitazone (45). It is responsible for the increased fat
oxidation in response to the adipocyte-derived hormones, lep-
tin (38) and adiponectin (39), thus promoting their action to
prevent fat accumulation in other tissues. It is also activated by
exercise, which is known to have beneficial effects in the treat-
ment and prevention of type 2 diabetes. Given the inexorable
rise in the incidence of type 2 diabetes and the metabolic syn-
drome in modern society, these recent findings help to explain
the intense current interest in the AMPK system.
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