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Abstract. There is no standard modelling language for constraint pro-
gramming (CP) problems. Most solvers have their own modelling lan-
guage. This makes it difficult for modellers to experiment with different
solvers for a problem.
In this paper we present MiniZinc, a simple but expressive CP mod-
elling language which is suitable for modelling problems for a range of
solvers and provides a reasonable compromise between many design pos-
sibilities. Equally importantly, we also propose a low-level solver-input
language called FlatZinc, and a straightforward translation from MiniZ-
inc to FlatZinc that preserves all solver-supported global constraints.
This lets a solver writer support MiniZinc with a minimum of effort—
they only need to provide a simple FlatZinc front-end to their solver, and
then combine it with an existing MiniZinc-to-FlatZinc translator. Such
a front-end may then serve as a stepping stone towards a full MiniZinc
implementation that is more tailored to the particular solver.
A standard language for modelling CP problems will encourage exper-
imentation with and comparisons between different solvers. Although
MiniZinc is not perfect—no standard modelling language will be—we
believe its simplicity, expressiveness, and ease of implementation make
it a practical choice for a standard language.

1 Introduction

Many constraint satisfaction and optimisation problems can be solved by CP
solvers that use finite domain (FD) and linear programming (LP) techniques.
There are many different solving techniques, and so there are many solvers.
Examples include Gecode [1], ECLiPSe [2], ILOG Solver [3], Minion [4], and
Choco [5].

However, these solvers use different, incompatible modelling languages that
express problems at varying levels of abstraction. This makes life difficult for
modellers—if they wish to experiment with different solvers, they must learn
new modelling languages and rewrite their models. A standard CP modelling
language supported by multiple solvers would mitigate this problem.

A standard CP modelling language could also make solver benchmarking
simpler. For example, if the CSPlib benchmark library problems [6] had their



natural language specifications augmented with standard machine-readable de-
scriptions, it could stimulate competition between solver writers and lead to
improvements in solver technology.

For these reasons, we believe a standard CP modelling language is desirable.
The main challenges in proposing such a language are (a) finding a reasonable
middle ground when different solvers have such a wide range of capabilities—
particularly different levels of support for global constraints—and (b) encourag-
ing people to use the language. In this paper we make the following two contri-
butions that we believe solve these two problems.

A CP modelling language suitable as a standard. Section 2 introduces
MiniZinc, a medium-level declarative modelling language.3 MiniZinc is high-level
enough to express most CP problems easily and in a largely solver-independent
way; for example, it supports sets, arrays, and user-defined predicates, some over-
loading, and some automatic coercions. However, MiniZinc is low-level enough
that it can be mapped easily onto many solvers. For example, it is first-order,
and it only supports decision variable types that are supported by most existing
CP solvers: integers, floats, Booleans and sets of integers. Other MiniZinc fea-
tures include: it allows separation of a model from its data; it provides a library
containing declarative definitions of many global constraints; and it also has a
system of annotations which allows non-declarative information (such as search
strategies) and solver-specific information (such as variable representations) to
be layered on top of declarative models.

A simple way to implement MiniZinc. Solver writers (who may not
have language implementation skills) will not want to do a large amount of work
to support a modelling language. Therefore we provide a way for solver writers
to provide reasonable MiniZinc support with a minimum of effort. Section 3
introduces FlatZinc, a low-level solver input language that is the target language
for MiniZinc. FlatZinc is designed to be easy to translate into the form required
by a CP solver. Section 4 then defines a standard translation from MiniZinc to
FlatZinc, which involves only well-understood transformations such as predicate
inlining and reification. Importantly it allows a solver to use native definitions
of any global constraints it supports, while decomposing unsupported ones into
lower-level constraints. Even though this transformation will not be ideal for all
solvers, it provides an excellent starting point for an implementation.

At the paper’s end, Section 5 describes our supporting tool set and presents
some experimental results, Section 6 presents related work, and Section 7 dis-
cusses future work and concludes.

The core MiniZinc language is not particularly novel, as is appropriate for
a standard language—it incorporates ideas from many existing modelling lan-
guages. The novel features are: (a) the use of predicates to allow more extensible

3 Modelling is sometimes divided into “conceptual” and “design” modelling. But these
are just two points on a spectrum of “how many modelling decisions have been
made” that spans from the highest level (e.g. natural language) to the lowest level
(e.g. solver input formats). For this reason we follow the simpler programming lan-
guage terminology and talk about high-, medium- and low-level languages.



modelling, (b) the use of annotations to provide non-declarative and solver-
specific information, (c) the use of a lower-level language and a standard trans-
lation to make it easy to connect the language to existing solvers, and (d) the
preservation of calls to supported global constraints in that translation.

We believe that MiniZinc’s characteristics—simplicity, expressiveness, and
ease of initial support—make it a practical choice for a standard language.

2 MiniZinc

2.1 Specifying a Problem

A MiniZinc problem specification has two parts: (a) the model, which describes
the structure of a class of problems; and (b) the data, which specifies one par-
ticular problem within this class. The pairing of a model with a particular data
set is a model instance (sometimes abbreviated to instance).

The model and data may be in separate files. Data files can only contain
assignments to parameters declared in the model. A user specifies data files on
the command line, rather than naming them in the model file, so that the model
file is not tied to any particular data file.

2.2 A MiniZinc Example

Each MiniZinc model is a sequence of items, which may appear in any order.
Consider the MiniZinc model and example data for a restricted job shop schedul-
ing problem in Figures 1 and 2.

Line 0 is a comment, introduced by the ‘%’ character.
Lines 1–5 are variable declaration items. Line 1 declares size to be an integer

parameter, i.e. a variable that is fixed in the model. Line 20 (in the data file)
is an assignment item that defines the value of size for this instance. Variable
declaration items can include assignments, as in line 3. Line 4 declares s to be
a 2D array of decision variables. Line 5 is an integer variable with a restricted
range. Decision variables are distinguished by the var prefix.

Lines 7–8 show a user-defined predicate item, no_overlap, which constrains
two tasks given by start time and duration so that they do not overlap in time.

Lines 10–17 show a constraint item. It uses the built-in forall to loop over
each job, and ensure that: (line 12) the tasks are in order; (line 13) they finish
before end; and (lines 14–16) that no two tasks in the same column overlap in
time. Multiple constraint items are allowed, they are implicitly conjoined.

Line 19 shows a solve item. Every model must include exactly one solve
item. Here we are interested in minimising the end time. We can also maximise
a variable or just look for any solution (“solve satisfy”).

There is one kind of MiniZinc item not shown by this example: include items.
They facilitate the creation of multi-file models and the use of library files.

There is currently no way to control the output produced at run-time. We
plan to add such control in the near future (see Section 7).



0 % (square) job shop scheduling in MiniZinc

1 int: size; % size of problem

2 array [1..size,1..size] of int: d; % task durations

3 int: total = sum(i,j in 1..size) (d[i,j]); % total duration

4 array [1..size,1..size] of var 0..total: s; % start times

5 var 0..total: end; % total end time

6

7 predicate no_overlap(var int:s1, int:d1, var int:s2, int:d2) =

8 s1 + d1 <= s2 \/ s2 + d2 <= s1;

9

10 constraint

11 forall(i in 1..size) (

12 forall(j in 1..size-1) (s[i,j] + d[i,j] <= s[i,j+1]) /\

13 s[i,size] + d[i,size] <= end /\

14 forall(j,k in 1..size where j < k) (

15 no_overlap(s[j,i], d[j,i], s[k,i], d[k,i])

16 )

17 );

18

19 solve minimize end;

Fig. 1. MiniZinc model (jobshop.mzn) for the job shop problem.

20 size = 2;

21 d = [ 2,5,

22 3,4 ];

Fig. 2. MiniZinc data (jobshop2x2.data) for the job shop problem.

2.3 Types and Insts

MiniZinc provides three scalar types: Booleans, integers, and floats; and two
compound types: sets, and arrays. There are no user-defined types, however we
will see shortly that restricted types such as integer and float ranges are allowed.
Scalars and sets have a built-in (lexicographical) ordering.

As well as having a type, each variable has an instantiation (often abbreviated
to inst), which indicates if it is fixed in the model to a known value (a parameter,
shortened to par) or not (a decision variable, shortened to var). A pairing of a
type and an inst is called a type-inst.

Booleans, integers and floats may be parameters or decision variables. Ex-
ample syntax for scalars: par bool, var int, float; if the inst is omitted it
defaults to par. There is no automatic coercion of integers to floats.

Sets can only contain par scalars. Sets of integers can be par or var, but all
other sets must be par. For example: var set of int is legal, but var set of

bool and set of var int are illegal.

Arrays must be par, i.e. of fixed length. They can be multi-dimensional. Each
dimension’s index set is a contiguous range of integers. Arrays may contain par



or var scalars or sets of integers. For example, array[0..9,5..10] of var int

is a 2D array of integer decision variables.

The following set expressions can be used as types: set ranges, set literals,
and par set variables. Float ranges can also be used as types. The meaning is as
if the type was declared as a normal type and then constrained, for example:

0..3: v1; % int: v1; constraint v1 in 0..3;

var {1,3,5}: v2; % var int: v2; constraint v2 in {1,3,5};

var 0.1 .. 9.5: v4; % var float: v4;

% constraint 0.1 <= v4 /\ v4 <= 9.5;

MiniZinc has some polymorphism: some operations are overloaded to work
with multiple type-insts (see Section 2.5); certain arrays are automatically co-
erced, and the type of each anonymous variable ‘_’ (see Section 2.4) is inferred;
and par values are automatically coerced to var values as necessary.

2.4 Expressions

MiniZinc has several kinds of expression.

Variable names can serve as expressions. Also, there is a special identifier ‘_’
that represents an unconstrained, anonymous decision variable (of any type). It
is particularly useful when partially initialising arrays, e.g. in a Sudoku puzzle.

Scalar literals are written in standard ways, for example: true, false, 23,
-44.5, 2.3e-05.

Sets are written using set literals or set comprehensions. For example: {1,2,3}
or { i * j | i,j in 1..10 where i != j }. Comprehensions can have mul-
tiple variables per generator, multiple generators, and each generator can have
a filtering where clause.

Arrays are written similarly, using array literals or array comprehensions. For
example: [2,_,3,_] or [ 2*i | i in 1..5 ]. Array literals are automatically
coerced to different index ranges so long as the element type and lengths match;
lines 21 and 22 of the job shop model shows an example with a 2D array.

If-then-else expressions (e.g. if C1 then A else B endif) and let expres-
sions (e.g. let { int: x = 1, int: y = 2 } in x + y) are supported; the
latter are used within predicates to declare local variables (see Section 2.6).
The condition of an if-then-else must be par.

Most predicate and function calls use the usual syntax, e.g. even(n). Some
built-in functions, such as ‘+’, are operators—their names are non-alphanumeric,
and calls to them are written using infix or prefix notation. There is also spe-
cial syntax for combining an array comprehension with a call—a generator call

P(Gs)(E) is equivalent to P([E | Gs]); the parentheses around the E are manda-
tory so as to avoid possible ambiguity when the generator call is part of a larger
expression. Figure 1 includes an example, sum(i,j in 1..size)(d[i,j]), which
is syntactic sugar for sum([d[i,j] | i,j in 1..size]).



2.5 Built-in Operations

MiniZinc has many useful built-in operators, predicates and functions. They
include: comparisons (e.g. <, ==), arithmetic operations (e.g. +, *, sum, min),
logical operations (e.g. /\, xor, forall), set operations (e.g. union, subset,
in, card), array operations (e.g. length, index_set), coercions (e.g. round,
int2float, bool2int), and bounds operations (ub, lb, dom).

Most are overloaded to work with parameters and decision variables. Some
are overloaded to work with multiple types, e.g. arithmetic operations work with
both integers and floats, and comparisons support all types.

2.6 Predicates

Users can define their own predicates in MiniZinc. The job shop model shows
an example, no_overlap. Predicates may not be recursive, but can call other
predicates. Predicates implicitly return a Boolean value. Predicates may have
local variables; they are introduced via let expressions. For example:

predicate even(var int:x) = let { var int: y } in x == 2 * y;

Any predicate containing a non-par local variable cannot be called in a possibly-
negated context (e.g. inside a not, or <->), because the local variable(s) would
be effectively universally quantified, which most solvers do not support.

2.7 Global Constraints

MiniZinc has a global constraints library. It can be used in models via an in-
clude item: include "globals.mzn". The default version of this library con-
tains predicate definitions of many global constraints, such as all_different,
cumulative, etc.

Crucially, this library can be tailored by solver writers for use with individual
solvers. All global constraints that are not supported by the solver should be
left untouched, so calls to them can be inlined during the MiniZinc-to-FlatZinc
translation. For example:

predicate disjoint(var set of int:S, var set of int:T) =

S intersect T == {};

In contrast, global constraints that are supported by a solver can have their
definition removed (but not their declaration). Calls to these global constraints
will be left untouched by the MiniZinc-to-FlatZinc conversion.

Type-overloaded global constraints that are supported by the solver can be
defined separately for each type. For example, the overloaded all_different

might be defined as:

predicate all_different(array[int] of var float:x) =

forall(i,j in index_set(x) where i < j)(x[i] != x[j]);

predicate all_different(array[int] of var int:x) =

gecode_all_different(x); % native Gecode version for ints



30 array [1..size,1..size] of var 0..total: a :: bounds;

31 constraint all_different(a) :: domain :: priority(length(a));

32 solve :: int_search([end],"input_order","indomain_min","complete")

33 :: int_search(a,"smallest","indomain_min","lds(3)")

34 minimize end;

Fig. 3. Example annotations on variables, constraints and solve items.

Finally, although MiniZinc provides a standard definition for each global con-
straint, a solver writer can arbitrarily replace each definition with an alternative
definition in MiniZinc that may suit their solver better, if that is easier than
providing a native implementation.

2.8 Modelling Techniques

MiniZinc is deliberately small to make it easier to translate. Some common CP
modelling techniques need to be indirectly modelled in MiniZinc.

Enumerated types can be modelled using named sets of integers, for example:

set of int: Colour = 1..3;

Colour: Red = 1; Colour: Green = 2; Colour: Blue = 3;

array[Colour,Colour] of var int: clashing;

Extensional relations can be modelled using multiple arrays with the same in-
dices, e.g. (x, y) ∈ {(1, 2.0), (−2, 3.4), (6,−1000.0)} is modelled as:

array[1..3] of int: r1 = [1, -2, 6];

array[1..3] of float: r2 = [2.0, 3.4, -1000.0];

var 1..3: i; var int: x; var int: y;

constraint x == r1[i] /\ y == r2[i];

However this does not allow negatively defined relations such as (x, y) 6∈ {(5, 6), (8, 9)}.

2.9 Adding Non-declarative and Solver-specific Information

MiniZinc (as described so far) includes no information about how models should
be solved. In practice we need a way to attach such non-declarative and solver-
specific information to the model to support efficient solving.

Our solution is to use annotations. MiniZinc defines some standard annota-
tions that should be supported by most solvers. Also, because a solver is free to
ignore annotation information, more solver-specific annotations can be used.

Annotations consist of an identifier, with optional arguments appearing in
parentheses. We use string literals for many annotation arguments. Annotations
are attached to variable declarations, expressions, and solve items using the
(left-associative) operator :: which binds tighter than all other operators, as
illustrated by the examples in Figure 3.

Line 30 shows a variable annotations. Here we assume that bounds instructs
the solver to use a special implementation that only maintains bounds.



Line 31 shows two constraint annotations: the first (domain) instructs the
solver to use a domain-consistent (GAC) version of the all_different con-
straint; the second (priority) assigns the constraint a priority equal to the size
of its argument array. Another constraint annotation is bounds, which indicates
that bounds propagation should be used for the constraint.

Lines 32–34 give an example of an annotated solve item, where the search
strategy is specified for an FD solver. Solve annotations are based on the search
predicate of ECLiPSe. The parameters to the int_search annotation indicate:
(a) the variables being fixed via the strategy, (b) the variable selection strategy,
(c) the value choice method, and (d) the exploration strategy. Combinations of
strategies can be specified in order. The strategy in the example is: first set end
to its least value and then try setting start times by setting the variable with
the smallest possible value to this value, and only consider limited discrepancy
search with a limit of 3 discrepancies.

3 FlatZinc

FlatZinc is mostly a subset of MiniZinc. We wait until Section 4 before giving a
FlatZinc example, in order to show how MiniZinc-to-FlatZinc translation works.

Model structure. Unlike MiniZinc, FlatZinc has no model/data separation,
nor multi-file models—a FlatZinc model instance must be in a single file.

Items. Some of the MiniZinc items are supported: constraint items, variable
declarations (with optional assignments) and solve items. The rest are not: in-
clude items, stand-alone assignment items, and user-defined predicates. Unlike
MiniZinc, in FlatZinc variables must be defined before they are used.

Types and type-insts. Some MiniZinc types (and their insts) are supported:
Booleans, integers and floats (including range-restricted ones), and sets. Arrays
are supported but must be one-dimensional, and they are always indexed from
0..length − 1. Also, there is no type or type-inst polymorphism—for example,
the built-in int_plus is distinct from float_plus. Implicit par -to-var coercions
are supported, as in MiniZinc.

Expressions. Some of MiniZinc’s expressions are supported: identifiers,
scalar literals, set literals, array literals, predicate calls, and array accesses with
a par index. Expressions not supported are: anonymous variables, set and array
comprehensions, if-then-else expressions, let expressions, generator calls, and ar-
ray accesses with a var index (which must be done via element constraints).
Also, no operators are supported (but negative numbers such as -1 are allowed—
the ‘-’ is considered part of the numeric literal.)

Built-ins. The main way in which FlatZinc is not a subset of MiniZinc is
that it has different built-in operations. These are operations that a CP solver
is expected to support natively. Most of them correspond directly to a MiniZinc
operation, although the names are different because FlatZinc has no operators
or overloading. They include: comparison constraints (e.g. int_eq, float_gt),
linear (in)equalities (e.g. int_lin_eq), arithmetic constraints (e.g. int_plus),



40 array[0..3] of var 0..14: s;

41 var 0..14: end;

42 var bool: b1;

43 var bool: b2;

44 var bool: b3;

45 var bool: b4;

46 constraint int_lin_le ([1,-1], [s[0], s[1]], -2);

47 constraint int_lin_le ([1,-1], [s[2], s[3]], -3);

48 constraint int_lin_le ([1,-1], [s[1], end ], -5);

49 constraint int_lin_le ([1,-1], [s[3], end ], -4);

50 constraint int_lin_le_reif([1,-1], [s[0], s[2]], -2, b1);

51 constraint int_lin_le_reif([1,-1], [s[2], s[0]], -3, b2);

52 constraint bool_or(b1, b2, true);

53 constraint int_lin_le_reif([1,-1], [s[1], s[3]], -5, b3);

54 constraint int_lin_le_reif([1,-1], [s[3], s[1]], -4, b4);

55 constraint bool_or(b3, b4, true);

56 solve minimize end;

Fig. 4. FlatZinc translation of the MiniZinc job shop model.

logical constraints (e.g. bool_or, bool_not), set constraints (e.g. set_subset,
set_card), element constraints (e.g. array_int_element), and coercion con-
straints (e.g. bool2int). There are also reified versions of many constraints which
take an additional Boolean argument, e.g. int_eq_reif, set_subset_reif.

Also, a FlatZinc model instance may include calls to any global constraints
that the target solver supports natively, as Section 2.7 explained.

Annotations. FlatZinc’s annotations are the same as MiniZinc’s, although
any expressions within them must of course be valid FlatZinc expressions.

Writing a FlatZinc front-end. A FlatZinc front-end for a solver must
parse the FlatZinc, and translate declarations and constraints into whatever
form the solver requires. The grammar can be expressed in a way that most type
and inst errors manifest as syntax errors, which reduces the work that must be
done by the FlatZinc front-ends. Any FlatZinc constraints not handled by the
solver can be converted into run-time aborts. These steps are easy by language
implementation standards, because FlatZinc is so simple. Section 5 describes
how our existing tools help further with this task. A solver writer must also
specialise globals.mzn, which is a trivial exercise in removing predicate bodies.

4 Translating MiniZinc to FlatZinc

The translation from MiniZinc to FlatZinc has two parts: flattening, and the rest.
We use the FlatZinc translation in Figure 4 of the MiniZinc model instance from
Section 2.2 as an example. Line 40 is the original 2D array of decision variables,
mapped to a zero-indexed 1D array. Line 41 is the original end variable. Lines
42–45 are variables introduced by Boolean decomposition. Lines 46–55 are the



constraints. Lines 46 and 47 result from line 12, lines 48 and 49 result from line
13, and lines 50–55 result from lines 14–15 and 7–8.

4.1 Flattening

Flattening involves the following simple steps that statically reduce the model
and data as much as possible. There is no fixed order to the steps because some
enable others, which can then enable further application of previously applied
steps. Therefore, they must be repeated, e.g. by iterating until a fixpoint is
reached, or by re-flattening child nodes of expressions that have been flattened.

Parameter substitution. This step substitutes any atomic literal value
assigned to a global or let-local scalar parameter throughout the model, and
removes the declaration and assignment. For example, with size = 2 we substi-
tute 2 for size, but size = 2 + y would not be substituted until fully reduced.

Built-ins evaluation. This step evaluates all calls to built-ins that have
fixed, atomic literal arguments. For example, 2-1 (from size-1, after parameter
substitution) in the jobshops example becomes 1.

Comprehension unrolling. This step unrolls all set and array comprehen-
sions, once the generator ranges are fully reduced.

Compound built-in unrolling. This step unrolls compound built-ins (those
that involve the folding of an operation over an array of elements, such as sum

and forall) by replacing them with multiple lower-level operations.
We will use lines 11, 14 and 15 of Figure 1 as the starting point of a running

example. They unroll to give the following conjunction (the first conjunct has
i=1, j=1 and k=2; the second has i=2, j=1 and k=2).

no_overlap(s[1,1], d[1,1], s[2,1], d[2,1]) /\

no_overlap(s[1,2], d[1,2], s[2,2], d[2,2])

Fixed array access replacement. This step replaces all array accesses
involving fixed indices and fixed elements with the appropriate value. Once all
the accesses of an array have been replaced, its declaration and assignment can
be removed. For example, our running example becomes:

no_overlap(s[1,1], 2, s[2,1], 3) /\

no_overlap(s[1,2], 5, s[2,2], 4)

If-then-else evaluation. This step evaluates each if-then-else expression,
once its condition is fully reduced. This is always possible because if-then-else
conditions must be fixed.

Predicate inlining. This step replaces each call to a defined predicate with
its body, substituting actual arguments for formal arguments. This is easy be-
cause predicates cannot be recursive, either directly or mutually. Calls to predi-
cates lacking a definition (such as those in the MiniZinc globals library) are left
as-is. For example, the first conjunct from our running example becomes:

s[1,1] + 2 <= s[2,1] \/ s[2,1] + 3 <= s[1,1]



4.2 Post-flattening

After flattening, we apply the following steps once each, in the given order.

Stand-alone assignment removal. This step removes each stand-alone
assignment by merging it with the appropriate variable declaration.

Let floating. This step moves let-local decision variables to the top-level
and renames them appropriately.

Boolean decomposition. This step decomposes all Boolean expressions
that are not top-level conjunctions. It replaces each sub-expression with a new
Boolean variable (also adding a declaration for each variable), and adds con-
juncts equating these new variables with the sub-expressions they replaced. This
facilitates the later introduction of reified constraints. For example, our running
example becomes:

((b1 \/ b2) <-> true) /\

((s[1,1] + 2 <= s[2,1]) <-> b1) /\

((s[2,1] + 3 <= s[1,1]) <-> b2)

Declarations are also added for the new Boolean variables b1 and b2.

Numeric decomposition. This step decomposes numeric equations or in-
equations in a manner similar to Boolean decomposition, by renaming each non-
linear sub-expression with a new variable.

Set decomposition. This step decomposes compound set expressions into
primitive set constraints in a manner similar to Boolean/numeric decomposition.

(In)equality normalisation. This step normalises (in)equations, e.g. it
converts >= into <=, moves sub-expressions so the right-hand side is constant,
and replaces negations with multiplications by −1. This facilitates the later
introduction of linear (in)equality constraints. For example, the second conjunct
from our running example becomes:

(s[1,1] + (-1)*s[2,1] <= -2) <-> b1

Array simplification. This step simplifies all arrays to one-dimensional,
zero-indexed arrays. It also updates any remaining array accesses accordingly.
For example, our running example becomes:

(s[0] + (-1)*s[2] <= -2) <-> b1

Anonymous variable naming. This step replaces each anonymous vari-
able (‘_’) with a newly introduced variable of the appropriate type.

Conversion to FlatZinc built-ins. This step converts the remaining MiniZ-
inc built-ins and array accesses (which all must have at least one non-par ar-
gument) into FlatZinc built-ins. The FlatZinc built-ins may be type-specialised,
and will be reified if the MiniZinc built-in occurs inside a Boolean expression
(other than conjunction).

The most complex case involves linear (in)equalities. Each one is replaced
with a (type-specific, possibly reified) linear predicate, unless it can be replaced
with a simpler arithmetic constraint. For example, our running example becomes:



int_lin_le_reif([1,-1], [s[0], s[2]], -2, b1)

The next case is that array accesses involving non-fixed indices are replaced
with FlatZinc element constraints such as array_int_element.

The remaining cases are simpler, as each remaining MiniZinc operation has a
corresponding FlatZinc operation. For example, (b1 \/ b2) <-> true becomes
bool_or(b1, b2, true), and x * y = z becomes int_times(x, y, z).

Top-level conjunction splitting. This step splits top-level conjunctions
into multiple constraint items, e.g. constraint a /\ b; becomes two items.

4.3 Annotations

Most annotations are maintained during the translation. Fixed expressions within
annotations are evaluated like other expressions. When annotated expressions
are unrolled, the annotation is copied to the resulting operations. When expres-
sions are reified, their annotations are lost.

4.4 Summary

The translation above provides much of what a solver writer would want. But it
is clearly not ideal for every underlying solver. For example, solvers may be more
efficient on the undecomposed versions of Boolean constraints [7] or non-linear
constraints. We plan to investigate methods to control which transformations
should be applied for a particular solver when we have more experience.

5 Tool Set and Experiments

We have a MiniZinc front-end that parses, checks types and instantiations, and
converts to FlatZinc. It has two different MiniZinc-to-FlatZinc converters: one
written using the term-rewriting system Cadmium [8] (which produced Figure 4
as shown, modulo some variable renaming and item reordering), and the other
written in Mercury. The Cadmium implementation allows us to omit various
steps of the translation.

Our MiniZinc global constraints library includes around a dozen global con-
straints, all less than 20 lines of code. Clearly there are many more to be included.

We have several FlatZinc front-ends. The first one, FlatZinc/G12, is a FlatZ-
inc interpreter for the G12 constraint platform. It uses FD and FD set solvers
written in Mercury, and one of several LP solvers such as CPLEX and GLPK.
The second front-end, FlatZinc/Gecode, is a FlatZinc interpreter for Gecode [1].
It was implemented from scratch in less than one week by one of the authors
(a Gecode developer) with no prior knowledge of FlatZinc. Reuse of the lex
and yacc parser he developed should further reduce development time for other
solver writers. The third front-end, FlatZinc/Eclipse, is a prototype front-end
for ECLiPSe that plugs into FlatZinc/G12; it was written in one afternoon us-
ing Cadmium. Finally, we also have a translator from FlatZinc to the Minion



Size (LOC) Trans. time (s) Solve time (s)
Benchmark MZ FZ Ge Merc Cd Ge FZ/Ge FZ/G12 FZ/Ecl

alpha 54 55 65 0.05 0.70 0.22 0.23 0.35 0.67
eq20 66 82 61 0.12 0.68 0.00 0.00 0.01 0.02
packing2 41 1145 138 0.12 0.73 0.02 0.14 0.15 0.52
warehouses 47 517 100 0.14 0.98 0.00 0.02 0.79 0.04

Fig. 5. Experimental Results. Column 1 gives the benchmark names. Columns 2–4
give the code sizes of the MiniZinc, FlatZinc and native-Gecode versions. Column
5–6 give the translation times for the Mercury and Cadmium MiniZinc-to-FlatZinc
translators. Columns 7–10 give the solve times for the native Gecode, FlatZinc/Gecode,
FlatZinc/G12 and FlatZinc/Eclipse versions.

format [4], but we do not present results for it. Although Minion’s file format
appears similar to FlatZinc, the conversion is non-trivial: Minion offers various
tuning options (notably a choice of operationally different variable types and
constraint propagators), and it allows only basic control over search.

Figure 5 shows some results comparing native Gecode (v1.3.1) to FlatZ-
inc/Gecode and FlatZinc/G12. The benchmarks were taken from the Gecode
examples suite and ported to MiniZinc. All implementations use the same search
strategy for each benchmark. The test machine was a 2.0 GHz Pentium M with
2GB of RAM and 2MB L2 cache running Fedora Core 4 (Linux kernel 2.6.15).
All Mercury code was compiled with Mercury rotd-2007-02-05, and C and C++
code was compiled with GCC 4.0.2. All timings are the best of five runs.

The code sizes show that MiniZinc models are compact, much more so than
native Gecode programs—Gecode is not a modelling language, its constraints
are written as low-level C++ calls to the Gecode library, and a Gecode model
is thus a C++ program. The code sizes also show that FlatZinc models are
(unsurprisingly) bigger than MiniZinc models, sometimes greatly so; this is due
to FlatZinc’s lack of looping constructs.

The translation times show that the MiniZinc-to-FlatZinc translation is fast
in Mercury, but slower in Cadmium. Note that the translation step itself only
accounts for part of the time taken—these numbers include the overhead of
parsing, topological sorting and type-checking of the MiniZinc code, as well as
printing of the FlatZinc. Also, these programs have not been tuned and so there
is scope for further speed improvement.

The FlatZinc/Gecode solve time results show that FlatZinc models are com-
petitive with the native Gecode models, and thus that the MiniZinc-to-FlatZinc
translation is reasonable.

Although there is clearly more work to be done with other benchmarks and
other front-ends, these results provide some evidence that MiniZinc and FlatZinc
provide a way to write reasonably efficient models. It was difficult to ensure that
the native Gecode versions were equivalent to the MiniZinc versions, because
Gecode’s search specifications are subtly different to MiniZinc’s. This is more
evidence that having a standard language would help with benchmarking.



The Gecode front-end is available at www.gecode.org/flatzinc.html. The
other tools, the MiniZinc benchmarks, and a full specification of MiniZinc and
FlatZinc are available at www.g12.csse.unimelb.edu.au/minizinc/.

6 Related Work

MiniZinc is (mostly) a subset of Zinc [9], a solver-independent modelling lan-
guage designed to allow very high-level modelling and user-controlled translation
of each high-level model to an appropriate solver-level model. Although we be-
lieve Zinc would be an excellent standard CP modelling language, the language is
large enough that implementing it is a serious challenge. MiniZinc removes much
of the complexity of Zinc—particularly user-defined types, various coercions, and
user-defined functions—in order to make compilation simpler. Essence [10] and
ESRA [11] are two other high-level, solver-independent modelling languages.
MiniZinc should provide a good target language for them (as well as for Zinc).

MiniZinc is closely related to OPL [12]. Indeed, a cut-down version of OPL
was proposed some time ago as a basis for a standard CP modelling language [13].
Compared to OPL, MiniZinc lacks complex types, resources, and programmable
search specifications, among other things. The advantages of MiniZinc over OPL
are its simplicity, the independence of models from global constraints supported
by the solver, and the ease with which solver writers can utilise it (thanks to
FlatZinc). Thus it should be easier to support as a proposed standard.

FlatZinc is similar to several low-level solver formats. The most significant
of these is the verbose, XML format used by the CSP solver competitions [14].
Important differences with MiniZinc are: it has no separation of model and data,
it is restricted to integers, it lacks arrays and looping constructs, and it has no
solution to the problem of varied global constraints. Compared to this format,
MiniZinc is more expressive and concise, and FlatZinc allows a similarly easy
implementation for solver writers.

7 Conclusion and Future Work

Our main goal with MiniZinc was to define a language that is not too big but
expressive enough to succinctly capture most CP problems. Our hope is that
by providing simple-to-use tools for manipulating MiniZinc and FlatZinc it will
be easy for solver writers to support this proposed standard, which will lead to
benefits for both solver users and solver writers.

There are some obvious ways to extend MiniZinc which could be contem-
plated. Some of these are features of Zinc, for example: more type and instance
polymorphism, user-defined functions, tuple types, and output items that al-
low control of the output from the solver. All involve a trade-off between mod-
elling ease and implementation complexity. Other possible extensions include: a
module system; a way of selectively applying parts of the MiniZinc-to-FlatZinc
translation (e.g. omitting Boolean decomposition for solvers that handle Boolean



constraints more directly); and the application of common sub-expression elimi-
nation to the MiniZinc-to-FlatZinc translation. Experience will guide the intro-
duction of such extensions.

Finally, we intend to write FlatZinc translators to SAT and MIP solver input
languages to further ease comparisons between different solving technologies.
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