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Abstract

The paper presents a learning-based method for com-

puting a discriminative 3D point cloud descriptor for place

recognition purposes. Existing methods, such as Point-

NetVLAD, are based on unordered point cloud representa-

tion. They use PointNet as the first processing step to extract

local features, which are later aggregated into a global de-

scriptor. The PointNet architecture is not well suited to cap-

ture local geometric structures. Thus, state-of-the-art meth-

ods enhance vanilla PointNet architecture by adding dif-

ferent mechanism to capture local contextual information,

such as graph convolutional networks or using hand-crafted

features. We present an alternative approach, dubbed Min-

kLoc3D, to compute a discriminative 3D point cloud de-

scriptor, based on a sparse voxelized point cloud represen-

tation and sparse 3D convolutions. The proposed method

has a simple and efficient architecture. Evaluation on stan-

dard benchmarks proves that MinkLoc3D outperforms cur-

rent state-of-the-art. Our code is publicly available on the

project website. 1

1. Introduction

Applying deep learning methods to solve 3D computer

vision problems is an area of active development. A num-

ber of methods for classification [28], semantic segmenta-

tion [28, 7] and local [8] or global [1] features extraction

from 3D point clouds was recently proposed. We focus our

attention on finding a discriminative, low-dimensional 3D

point cloud descriptor for place recognition purposes. Lo-

calization is performed by searching the database for geo-

tagged point clouds with descriptors closest to the query

point cloud descriptor. The idea is illustrated in Fig. 1.

Place recognition methods are widely used in robotics, au-

tonomous driving [23] and augmented reality [24].

The first learning-based place recognition method oper-

ating on 3D point clouds is PointNetVLAD [1]. It uses

1https://github.com/jac99/MinkLoc3D
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Figure 1. Point cloud-based place recognition. MinkLoc3D com-

putes a global descriptor of a query point cloud. Localization is

performed by searching the database for geo-tagged point clouds

with closest descriptors.

PointNet [28] architecture to extract local features and

NetVLAD [2] layer to aggregate them into a global descrip-

tor. While PointNet proved to be successful in many appli-

cations, it was originally proposed to process point clouds

representing single objects, not large and complex scenes.

It is not well suited extract informative local features.

To overcome this weakness, latter 3D place recognition

methods enhance vanilla PointNet architecture by adding

different mechanism to capture local contextual informa-

tion. PCAN [41] uses sampling and grouping operation

at multiple scales. State-of-the-art LPD-Net [19] method

uses rather complex architecture and combines learning-

based and handcrafted local features. 3D points enhanced

with pre-computed handcrafted features are processed by a

PointNet module, fed to a graph neural network to aggre-

gate neighbourhood information and further processed us-

ing Point Net architecture. Finally, a global descriptor is

computed using NetVLAD [2] layer. LPD-Net surpasses

previous state-of-the-art by a large margin. However, at the

expense of architectural and computational complexity.

Increasing complexity of recent 3D point cloud-based

place recognition methods, all based on unordered set of

points representation, motivated us to investigate feasibility

of using alternate approach and network architecture. We
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choose sparse voxelized representation and sparse convolu-

tions, as recently it proved successful in many 3D vision

tasks, including local feature extraction [8], semantic seg-

mentation [7] and point cloud registration [6].

Our method, dubbed MinkLoc3D, has a simple, elegant

and effective architecture and outperforms prior state-of-

the-art. MinkLoc3D consists of two parts, local feature ex-

traction network followed by feature aggregation layer. In

order to produce local features with richer semantic content,

we adapted Feature Pyramid Network (FPN) [18] architec-

ture. The input point cloud is first quantized into a sparse

voxelized representation and processed by a local feature

extraction network. Different than prior methods we use

a simple Generalized-Mean pooling [18] layer, instead of

NetVLAD [2] layer, to aggregate local features into a dis-

criminative global point cloud descriptor.

MinkLoc3D achieves state-of-the-art results on standard

3D place recognition benchmarks. It outperforms Point-

NetVLAD [1] by a large margin. It improves over the

current state-of-the-art LPD-Net [19] despite having sim-

pler architecture and being more computationally effec-

tive. Comparison with vision-based RobotCar Seasons [34]

benchmark proves its robustness to challenging environ-

mental conditions.

Our main contribution is the development of a global

point cloud descriptor extraction method based on an al-

ternate point cloud representation and network architecture

than prior state-of-the-art. Our MinkLoc3D method ad-

vances state-of-the-art on the popular benchmarks. It proves

the potential of using sparse voxelized representation and

sparse convolutions for efficient extraction of discrimina-

tive features from 3D point clouds. We believe our work can

spark further improvements in the point cloud-based place

recognition field by showing promising development direc-

tion.

2. Related work

Point cloud representation for deep learning. Early

deep learning methods for 3D point cloud processing use

volumetrically discretized representations [22]. It’s a natu-

ral extension of 2D image representation as a grid of pix-

els and 3D convolutions can be used to effectively process

such data. However, such representation is very inefficient.

The memory requirement grows cubically as spatial resolu-

tion increases, making it inappropriate for processing larger

point clouds.

PointNet [28] is the first deep learning architecture op-

erating directly on raw 3D point clouds. Each point is pro-

cessed in isolation by multi-layer perceptrons and point fea-

tures are aggregated using a symmetric max pooling func-

tion. This makes the architecture independent from input

points ordering. The drawback is that it cannot capture lo-

cal geometric structures and has limited ability to recog-

nize fine-grained patterns. To alleviate this problem, Point-

Net++ [29] enhances PointNet with hierarchical processing.

An alternative is to use sparse voxelized representa-

tion [12]. This allows using 3D convolutions to effec-

tively capture local structures and patterns, similarly as

2D convolutions do in 2D images. However, naive im-

plementations are computationally inefficient. Recently,

an auto-differentiation library for sparse tensors, so called

Minkowski Engine 2, was proposed [7]. It efficiently im-

plements sparse convolutions by using coordinate hashing.

Sparse voxelized representation proved successful and yield

state-of-the-art results in many 3D vision tasks, such as lo-

cal feature extraction [8] and semantic segmentation [7].

3D point cloud-based place recognition using learned

global features. PointNetVLAD [1] is the first deep net-

work for large-scale 3D point cloud retrieval. It com-

bines PointNet [28] architecture to extract local features and

NetVLAD [2] layer to aggregate local features and produce

a discriminative global descriptor. The main weakness of

PointNetVlad is its reliance on PointNet [28] for local fea-

ture extraction. PointNet architecture is weak at capturing

local geometric structures which adversely impacts discrim-

inability of the resultant global descriptor. To overcome this

weakness, latter methods enhance PointNetVlad, by adding

different mechanism to extract local contextual information.

PCAN [41] adds an attention mechanism to predict sig-

nificance of each point based on a local context. The input

point cloud is first processed using PointNet architecture to

compute local features. Then, sampling and grouping ap-

proach inspired by PointNet++ [29] is used to extract local

contextual information at multiple scales and produce per-

point attention map. Finally, NetVLAD [2] layer aggregates

attention-weighted local features into a global descriptor.

DAGC [36] combines dynamic graph CNN [39] archi-

tecture with dual attention mechanism [11] to aggregate lo-

cal contextual information at multiple scales. Local fea-

tures are aggregated using NetVLAD [2] layer to produce a

global descriptor.

LPD-Net [19] relies on handcrafted features and uses

graph neural networks to extract local contextual informa-

tion. First, ten handcrafted features, such as local curva-

ture or point density, are computed for each point. Then,

3D points enhanced with handcrafted features are processed

using Point Net architecture, fed to a graph neural network

to aggregate neighbourhood features and further processed

using Point Net-like architecture. Finally, global descriptor

is computed using NetVLAD [2] layer. The method yields

state-of-the-art results, surpassing previously proposed so-

lutions by a significant margin. However, at the expense of

architectural complexity and high computational cost.

2https://github.com/NVIDIA/MinkowskiEngine
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DH3D [9] is a recent 6DoF relocalization method oper-

ating on 3D point clouds. It unifies global place recogni-

tion and local 6DoF pose refinement by inferring local and

global 3D descriptors in a single pass through the network.

The local feature extraction module uses Flex Convolu-

tion (FlexConv) [13] and Squeeze-and-Excitation (SE) [15]

blocks to fuse multi-level spatial contextual information

and channel-wise feature correlations into local descrip-

tors. NetVLAD [2] layer aggregates attention-weighted lo-

cal features into a global point cloud descriptor.

Deep metric learning. Deep metric learning [20] uses

deep neural networks to compute a non-linear mapping

from a high dimensional data point space to a low-

dimensional Euclidean space, known as a representation or

embedding space. The learned mapping preserves semantic

similarity between objects. This technique is widely used

in many recognition tasks in computer vision domain, such

as pedestrian re-identification [14] and image retrieval [17].

Early deep metric learning methods use a Siamese archi-

tecture trained with a contrastive loss [3]. Latter methods

propose more complex loss functions, such as triplet [14]

or quadruplet [5] loss. Significant attention is put to a

selection of an effective sampling scheme to choose in-

formative training samples, so called hard negatives min-

ing [40]. One of the most popular schemes is batch hard

negative mining proposed in [14], which constructs training

triplets by selecting the hardest positive and negative exam-

ples within each mini-batch. In the last few years a number

of more sophisticated loss function formulations and sam-

pling schemes was proposed [40, 38, 4]. However, recent

works [26, 31] suggest that their advantage over classic con-

trastive or triplet margin loss is moderate at best. Based on

these findings we choose triplet margin loss when training

our network.

3. MinkLoc3D: global point cloud descriptor

for place recognition

Our goal is to compute a discriminative and generaliz-

able global descriptor from the input point cloud given as

an unordered set of 3D coordinates. This section describes

the proposed architecture and training process of the net-

work computing such descriptor.

3.1. Network architecture

Our network has a very simple architecture shown in

Fig. 2, yet it proved to be more effective and efficient than

state-of-the-art methods on standard benchmarks. It con-

sists of two parts: local feature extraction network and

generalized-mean (GeM) pooling [30] layer. Input point

cloud P = {(xi, yi, zi)}, in the form of a set of 3D point co-

ordinates, is first quantized into a single channel sparse ten-

Conv3

Conv2

Conv1

Conv0

1x1Conv2

1x1Conv3

TConv3

+

Local	feature	extraction

4/64

1/32

2/32

8/64 8/256

4/256

Point	cloud

Sparse
quantize

Global	descriptor
256	dimensions

GeM

Sparse
tensor

Figure 2. MinkLoc3D architecture. The input point cloud is quan-

tized into a sparse, single channel, 3D tensor. Local features are

extracted using a 3D Feature Pyramid Network [18] architecture.

Generalized-mean (GeM) [30] pooling produces a global point

cloud descriptor. Numbers in local feature extraction module (e.g.

1/32) denote a stride and number of channels of a feature map pro-

duced by each block.

sor P̂ = {(x̂i, ŷi, ẑi, 1)}. The values of this single channel

are set to one for non-empty voxels. The sparse tensor if fed

to the local feature extraction network, which produces a

sparse 3D feature map F̂ =
{(

x̂j , ŷj , ẑj , f
(1)
j , . . . , f

(c)
j

)}

,

where c is a feature dimensionality (256 in our experi-

ments), x̂j , ŷj , ẑj quantized coordinates and f
(1)
j , . . . , f

(c)
j

features of j-th feature map element. The sparse 3D feature

map F̂ is pooled using a generalized-mean (GeM) pool-

ing [30] layer, which produces a global descriptor vector

g. GeM is generalization of a global max pooling and

global average pooling operators and is defined as: g(k) =
(

1
n

∑

j=1...n

(

f
(k)
j

)p)
1

p

, where g(k) is k-th element of the

global descriptor vector g, n is a size (number of non-zero

elements) in the sparse local feature map F̂ , f
(k)
j is k-th fea-

ture of the j-th local feature map element and p is a learn-

able pooling parameter.

The design of the local feature extraction network is in-

spired by MinkowskiNet [7] sparse convolutional network

architecture, and Feature Pyramid Network [18] design pat-

tern. Bottom-up part part of the network contains four con-

volutional blocks producing sparse 3D feature maps with

decreasing spatial resolution and increasing receptive field.

The top-down part contains a transposed convolution gen-

erating an upsampled feature map. Upsampled feature map

is concatenated with the skipped features from the corre-

sponding layer of the bottom-up pass using a lateral connec-

tion. Such design is intended to produce a feature map with

relatively high spatial resolution and large receptive field.

Our initial experiments proved its advantage over a simple

convolutional architecture without top-down processing.

Tab. 1 shows details of each convolutional block in a lo-
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Block Layers

Conv0 C
32

5k1s

Conv1 C
32

2k2s

〈

C
32

3k1s
C

32

3k1s

〉

Conv2 C
64

2k2s

〈

C
64

3k1s
C

64

3k1s

〉

Conv3 C
64

2k2s

〈

C
64

3k1s
C

64

3k1s

〉

1x1Conv2 C
256

1k1s

1x1Conv3 C
256

1k1s

TConv3
t
C

256

2k2s

Table 1. Details of a local feature extraction part of MinkLoc3D

network. All convolutions in bottom-up Conv0 . . . 3 blocks are

followed by batch norm and ReLU non-linearity. 〈. . .〉 denotes a

residual block.

cal feature extraction network. We use notation introduced

in [35], whereC
c

akbs

denotes a convolution with c kernels

of shape a×a×a and stride b. t decorator is used to indicate

a transposed convolution. 〈. . .〉 denotes a residual block

with a skip connection, defined as 〈f〉 (x)
.
= f (x) + x.

The first convolutional block (Conv0) has bigger 5x5x5 ker-

nels, in order to aggregate information from a larger neigh-

bourhood. Bottom-up blocks (Conv1, Conv2 and Conv3)

are made of a stride two convolution, which decreases spa-

tial resolution by two, followed by residual block consisting

of two convolutional layers with 3x3x3 kernel. All convo-

lutional layers in bottom-up blocks are followed by batch

normalization [16] layer and ReLU non-linearity. Two

1x1Conv blocks have the same structure, both contain a sin-

gle convolutional layer with 1x1x1 kernel. The aim of these

blocks is to unify the number of channels in feature maps

produced by bottom-up blocks, before they are merged in

the top-down pass through the network. The top-down part

of the network consists of a single transposed convolution

layer (TConv3) with 2x2x2 kernel.

3.2. Network training

To train our network we use a deep metric learning ap-

proach [20] with a triplet margin loss [14] defined as:

L(ai, pi, ni) = max {d(ai, pi)− d(ai, ni) +m, 0} ,

where d(x, y) = ||x − y||2 is an Euclidean distance be-

tween embeddings x and y; ai, pi, ni are embeddings of an

anchor, a positive and a negative elements in i-th training

triplet and m is a margin hyperparameter. The loss function

is minimized using a stochastic gradient descent approach

with Adam optimizer.

Previous methods, such as PointNetVLAD [1] and LPD-

Net[19], use rather inefficient training strategy. In order to

construct informative triplets, for each anchor point cloud

they sample 2 positive and 18 negative candidates. Embed-

dings of all candidate point clouds are calculated and only

one hardest positive and negative example is taken to con-

struct a training triplet. Thus, 21 point clouds need to be

processed to construct one triplet.

We developed an alternative, more efficient, training pro-

cedure based on batch hard negative mining approach [14].

At the beginning of each epoch we randomly partition a

training set into batches. A batch of size n is constructed by

sampling n/2 pairs of structurally similar elements. After a

batch is constructed, we compute two n×n boolean masks,

one indicating structurally similar pairs and the other struc-

turally dissimilar. We use hash-based indexing to efficiently

check if two elements are structurally similar, dissimilar or

similarity is indefinite. Then, the batch is fed to the network

to compute embeddings. Using similarity and dissimilarity

boolean masks and computed embeddings, we mine hardest

positive and hardest negative examples and construct infor-

mative training triplets. In our approach, processing one

batch consisting of n elements produces n training triplets.

This approach brings down network training time from days

to hours.

During experiments we noticed that with larger batch

sizes, the training process is prone to collapse, where all

embeddings approach the same value. To overcome this

problem, we use a simple yet effective dynamic batch siz-

ing strategy. The training starts with a small batch size, say

16 examples. At the end of each epoch, the average number

of active triplets (i.e. triplets producing non-zero loss) per

batch is examined. If the ratio of active triplets to all triplets

in a batch falls below the predefined threshold Θ, the batch

size is increased by a fixed batch expansion rate α.

To increase variability of the training data and reduce

overfitting, we apply on-the-fly data augmentation. It in-

cludes random jitter with a value drawn from a normal dis-

tribution N (µ = 0, σ = 0.001); random translation by a

value sampled from 0 . . . 0.01 range; and removal of ran-

domly chosen points, where the percentage of points to re-

move is uniformly sampled from 0 . . . 10% range. We also

adapted a random erasing augmentation [42] and randomly

remove all points within a fronto-parallel cuboid with a ran-

dom size and position.

4. Experimental results

In this section we describe the datasets and evaluation

methodology, compare our method to the state-of-the-art

and conduct ablation study. We also compare our method

with image-based visual localization method on the stan-

dard visual localization benchmark.
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4.1. Datasets and evaluation methodology

The network is trained and evaluated using a modified

Oxford RobotCar dataset and three in-house datasets: Uni-

versity Sector (U.S.), Residential Area (R.A.) , Business

District (B.D.) introduced in [1]. The datasets are created

using a LiDAR sensor mounted on the car travelling through

these four regions at different times of day and year. Oxford

RobotCar dataset is build using SICK LMS-151 2D LiDAR

scans and in-house dataset using Velodyne HDL-64 3D Li-

DAR.

All point clouds are preprocessed with the ground planes

removed and downsampled to 4096 points. The point co-

ordinates are shifted and rescaled to be zero mean and in-

side the [−1, 1] range. See Fig. 4 for exemplary data items.

Training tuples are generated using ground truth UTM co-

ordinates. Structurally similar point clouds are at most 10m

apart. Dissimilar point clouds are at least 50m apart. For

point clouds between 10 and 50m apart similarity is indefi-

nite. Each dataset is split into disjoint training and test sub-

sets. For more information please refer to [1].

Same as in previous works, we evaluate our network in

two scenarios. In baseline scenario, the network is trained

using the training subset of Oxford dataset and evaluated

on test splits of Oxford and in-house datasets. In refined

scenario, the network is trained on the training subset of

Oxford and in-house datasets; and evaluated on test splits

of Oxford and in-house datasets. The number of training

and test elements used in each scenario is shown in Tab. 2.

Baseline Dataset Refined Dataset

Training Test Training Test

Oxford 21.7k 3.0k 21.7k 3.0k

In-house - 4.5k 6.7k 1.7k

Table 2. Number of elements in datasets used in baseline and re-

fined evaluation scenarios.

Evaluation metrics We follow the same evaluation pro-

tocol as in [1, 19]. A point cloud from a testing dataset is

taken as a query and point clouds from different traversals

that cover the same region form the database. The query

point cloud is successfully localized if at least one of the

top N retrieved database clouds is within d = 25 meters

from the ground truth position of the query. Recall@N is

defined as the percentage of correctly localized queries. As

in [1] we report Average Recall@1 (AR@1) and Average

Recall@1% (AR@1%) metrics.

Implementation details. In all experiments we quantize

3D point coordinates with 0.01 quantization step. As point

coordinates in the Baseline and Refined datasets are normal-

ized to be in [−1, 1] range, this produces up to 200 voxels in

each spatial direction. Other parameters of the training pro-

cess are listed in Tab.3. Initial learning rate is divided by 10

at the epoch given in LR scheduler steps row. The Refined

Dataset is larger and more diverse than Baseline Dataset,

hence in refined scenario the network is trained twice as

long. The dimensionality of the resultant global descriptor

is set to 256 , same as in prior methods.

Baseline Refined

Initial batch size 32 16

Batch size limit 256 256

Batch expansion threshold (Θ) 0.7 0.7

Batch expansion rate (α) 1.4 1.4

Number of epochs 40 80

Initial learning rate 1e-3 1e-3

LR scheduler steps 30 60

L2 weight decay 1e-3 1e-3

Triplet loss margin (m) 0.2 0.2

Table 3. Parameters of the training process in baseline and refined

evaluation scenarios.

All experiments are performed on a server with a single

nVidia RTX 2080Ti GPU, 12 core AMD Ryzen Thread-

ripper 1920X processor, 64 GB of RAM and SSD hard

drive. We use PyTorch 1.5 [27] deep learning framework,

MinkowskiEngine 0.4.3 [7] auto-differentiation library for

sparse tensors and PML Pytorch Metric Learning library

0.9.88 [26].

4.2. Results and discussion

Comparison with state-of-the-art. We compare per-

formance our global descriptor with prior art: Point-

NetVLAD [1], PCAN [41], DAGC [36] and LPD-Net [19].

We also include DH3D [9] method in an evaluation. DH3D

is a recent 6DOF localization method, which includes a

global point cloud descriptor computation as a part of the

pose estimation pipeline.

Tab. 4 compares performance of our MinkLoc3D with

state-of-the-art methods trained on the Baseline Dataset.

When evaluated on Oxford dataset, MinkLoc3D wins with

AR@1% 3.0 p.p. higher than the runner-up, LPD-Net.

When evaluated on three in-house datasets, it performs

slightly worse compared than LPD-net (1.0 and 0.6 p.p.

worse for U.S. and B.D. sets respectively and 0.7 p.p. better

for R.A.). It must be noted that Oxford dataset and three

in-house datasets were acquired using LiDARs with differ-

ent characteristics. Even so, our method yields comparable

results to LPD-Net which relies on hand-crafted features.

MinkLoc3D discriminability and generalization capability

is significantly higher than all other fully learning based

methods.

Tab. 5 shows evaluation results of state-of-the-art meth-

ods trained on a larger and more diverse Refined Dataset.
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Oxford U.S. R.A. B.D.

PointNetVLAD [1] 80.3 72.6 60.3 65.3

PCAN [41] 83.8 79.1 71.2 66.8

DH3D-4096 [9] 84.3 - - -

DAGC [36] 87.5 83.5 75.7 71.2

LPD-Net [19] 94.9 96.0 90.5 89.1

MinkLoc3D (our) 97.9 95.0 91.2 88.5

Table 4. Evaluation results (Average Recall at 1%) of place recog-

nition methods trained on the Baseline Dataset.

For PointNetVLAD and PCAN we run the evaluation us-

ing the trained models provided by authors. LPD-Net was

trained from scratch and evaluated on Refined Dataset using

the open source code. Our MinkLoc3D is a clear winner.

Compared to the state-of-the-art LPD-Net, the AR@1% is

higher between 0.8 p.p. and 2.9 p.p. on all evaluation sub-

sets. The advantage over other methods is even higher, be-

tween 5-18 p.p. Average Recall plots in Fig. 3 show that

our method outperforms previous methods on all evaluation

subsets.

Tab. 6 compares the number of trainable parameters

and inference time (runtime per cloud). Our MinkLoc3D

method is significantly faster compared to LPD-Net. LPD-

Net requires time consuming preprocessing of the input

point cloud to compute 10 handcrafted features. Even with-

out including hand-crafted feature extraction time, LPD-

Net has longer inference time compared to MinkLoc3D (26

vs 22 ms). Our model is also much lighter compared to

prior methods. It has only 1.5 million trainable parameters,

whereas other methods have an order of magnitude more.

This can be explained by the fact, that our method produces

informative local features, that can be pooled using a sim-

ple Generalized-Mean pooling [25] which has few learnable

parameters. Other methods use NetVLAD [2] aggregation

layer with millions of learnable parameters.

Figure 4 visualizes nearest neighbour search results us-

ing our MinkLoc3D descriptor in Oxford evaluation sub-

set. The leftmost column shows a query point cloud and

other columns show its five nearest neighbours. Figure 5

shows failure cases. More visualizations of nearest neigh-

bour search results can be found in Supplementary Material.

Ablation study. In this section we investigate impact of

the network design choices on the discriminativity and gen-

eralization capability of our method. In all experiments,

the network is trained using the Baseline Dataset and evalu-

ated on Oxford and three in-house datasets (U.S., R.A. and

B.D.).

Tab. 7 shows the impact of a feature aggregation method

on the performance of the global descriptor. The follow-

ing methods are evaluated: global max pooling (MAC),

Generalized-Mean (GeM) pooling [30], NetVLAD [2] and

NetVLAD with Context Gating [25] (NetVLAD-CG). Sur-

prisingly, a simple GeM layer with few learnable parame-

ters produces the most discriminative global descriptors and

has the best generalization capability. More sophisticated

methods, NetVLAD and NetVLAD with Context Gating,

score similarly on Oxford dataset, but noticeably worse on

in-house datasets. This can be attributed to two factors.

First, our training datasets have a moderate size. Using

NetVLAD layer, with millions of trainable parameters, in-

creases the risk of overfitting. Second, our local feature ex-

traction network works very well and produces informative

features, that can be effectively pooled using a simple GeM

layer to produce a discriminative global descriptor.

Tab. 8 shows impact of a descriptor size on the discrim-

inability of the global descriptor. The number of channels

in lateral connections (1x1Conv2, 1x1Conv3 blocks) and in

a transposed convolution TConv3 block is set to the same

value as the dimensionality of the final descriptor. Parame-

ters of bottom-up convolutional blocks remain unchanged.

The network performance is relatively similar with larger

descriptor sizes (between 64 and 512) with AR@1% be-

tween 97.3 and 98.0% on Oxford dataset and between 90.3

and 93.2% on in-house datasets. The performance deterio-

rates, when the descriptor size falls to 32.

Comparison with image based methods. In this para-

graph we compare performance of our MinkLoc3D with

state-of-the-art image-based place recognition and visual

localization methods in challenging environmental condi-

tions. The comparison is done using RobotCar Seasons [34]

dataset. It contains outdoor images captured in the city of

Oxford at various periods of a year in different atmospheric

conditions, e.g. snow, rain, dawn or night.

We compare MinkLoc3D performance against place

recognition methods based on a global image descrip-

tor: DenseVLAD [37] and NetVLAD [2]; and against

full 6DoF (6 degree-of-freedom) relocalization meth-

ods: NetVLAD+SP [32], DenseVLAD+D2-Net [10] and

NetVLAD+SP+SG [33]. For each image in RobotCar Sea-

sons dataset, we find LiDAR readings with corresponding

timestamps in the in original RobotCar dataset [21] and con-

struct the point cloud. Then, we use MinkLoc3D network

to compute a global point cloud descriptors and link this

descriptor with a corresponding image. To approximate a

6DoF pose of a query image, we search for a database image

which descriptor (computed from its corresponding point

cloud), is closest to the descriptor of a query image (com-

puted from a corresponding point cloud). Then, we return

the known pose of a database image as an approximation of

the query image pose. Retrieved poses are evaluated using

the online evaluation service at Long-term visual localiza-

tion site.3

3https://www.visuallocalization.net/
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Oxford U.S. R.A. B.D.

AR@1% AR@1 AR@1% AR@1 AR@1% AR@1 AR@1% AR@1

PointNetVLAD [1] 80.1 63.3 94.5 86.1 93.1 82.7 86.5 80.1

PCAN [41] 86.4 70.7 94.1 83.7 92.3 82.3 87.0 80.3

DAGC [36] 87.8 71.5 94.3 86.3 93.4 82.8 88.5 81.3

LPD-Net [19] 94.9 86.6 98.9 94.4 96.4 90.8 94.4 90.8

MinkLoc3D (our) 98.5 94.8 99.7 97.2 99.3 96.7 96.7 94.0

Table 5. Evaluation results (Average Recall at 1% and at 1) of place recognition methods trained on the Refined Dataset.
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Figure 3. Average recall of place recognition methods trained on the Refined Dataset.

Parameters
Runtime

per cloud

PointNetVLAD [1] 19.8M 15 ms

PCAN [41] 20.4M 55 ms

LPD-Net [19] 19.8M 26 ms

LPD-Net [19] with f.e. 19.8M 917 ms

MinkLoc3D (our) 1.1M 21 ms

Table 6. Computation time required by different methods. LPD-

Net with f.e. includes hand-crafted features extraction time.

Architecture
Oxford

AR@1%

In-house

AR@1%

MinkFPN+MAC 97.3 92.4

* MinkFPN+GeM 97.9 93.2

MinkFPN+NetVLAD 97.0 91.1

MinkFPN+NetVLAD-CG 97.2 84.7

Table 7. Impact of a feature aggregation method on the discrim-

inability of the global descriptor. The network is trained on the

Baseline Dataset. * indicates MinkLoc3D architecture.

Results are shown in Tab. 9. In day conditions image-

based methods perform generally better, with up to 10

p.p. more correctly localized queries. However, both Li-

DAR based methods (ours and LPD-Net) operate on rel-

Descriptor

size

Oxford

AR@1%

In-house

AR@1%

512 98.0 92.6

* 256 97.9 93.2

128 97.5 91.5

64 97.3 90.3

32 95.8 86.4

Table 8. Impact of a descriptor size on the discriminability of the

global descriptor. The network is trained on the Baseline Dataset.

ative small, downsampled point clouds with 4096 points.

Even with this small number of points both methods per-

form reasonably well. Also both LiDAR based meth-

ods approximate 6DoF pose by taking the pose of the

closest nearest neighbour found. Full 6DoF localiza-

tion methods, NetVLAD+SP, DenseVLAD+D2 Net and

NetVLAD+SP+SG, employ much more sophisticated ap-

proach, where candidate matches found using a global de-

scriptor are filtered by matching local features with geo-

metric consistency criteria. In night conditions point cloud-

based method show their potential. Our method surpass all

image-based methods by a large margin with the exception

of the latest NetVLAD+SP+SG, which has slightly higher

performance.
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query dist=1.13 TP dist=1.40 TP dist=1.44 TP dist=1.45 TP dist=1.82 FP

Figure 4. Nearest neighbours search results in Oxford evaluation subset. The leftmost column shows a query point cloud. Other columns

show its five nearest neighbours. dist is an Euclidean distance in the descriptor space. TP indicates true positive and FP false positive.

day conditions night conditions

dawn dusk
overcast

summer

overcast

winter
rain snow sun night night-rain

DenseVLAD [37] 92.5 94.2 92.0 93.3 96.9 90.2 80.2 19.9 25.5

NetVLAD [2] 82.6 92.9 95.2 92.6 96.0 91.8 86.7 15.5 16.4

NetVLAD+SP [32] 90.3 96.7 98.1 96.2 97.6 95.9 94.1 35.4 33.4

DenseVLAD+D2-Net [10] 94.4 95.9 98.3 96.2 96.9 94.9 91.1 53.9 56.1

NetVLAD+SP+SG [33] 97.3 97.2 99.8 96.7 98.1 97.8 96.1 91.9 92.0

LPD-Net [19] 79.7 79.9 79.7 73.8 - - 82.3 77.3 32.8

MinkLoc3D (our) 89.2 88.3 90.3 83.1 66.3 86.3 87.4 86.1 58.0

Table 9. Comparisons with 6DoF visual localization methods on RobotCar Seasons dataset. We report percentage of queries correctly

localized within 5 meter and 10◦ threshold. Five top rows show performance of image-based methods and two bottom rows LiDAR

scan-based methods.

(a) (b) (c)

Figure 5. Failure cases. Examples of unsuccessful retrieval results

using our network. (a) is the query point cloud, (b) incorrect match

to the query and (c) the closest true match.

5. Conclusion

In this paper we present MinkLoc3D, a novel 3D point

cloud descriptor, based on a sparse voxelized point cloud

representation and 3D FPN [18] architecture. Extensive

experimental evaluation proves that it outperforms prior

cloud-based place recognition methods. The success of

our method can be attributed to two factors. First, sparse

convolutional architecture can produces informative local

features, that can be used to construct a discriminative

global point cloud descriptor. Second, improvements in the

training process allows efficient and effective training with

larger batch size, which positively affects discriminabil-

ity and generalization capability of the resultant descriptor.

The natural next step is to enhance the proposed method to

build full 6DoF localization solution.

It should be also noted, that achieved results (AR@1%

between 96.7% and 99.4% when trained on Refined

Dataset) show that standard benchmarks used to train and

evaluate point cloud-based place recognition methods are

close to being saturated and there’s a little room for im-

provement. Larger and more diverse datasets would be

needed to instigate further progress.
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