
J
H
E
P
1
2
(
2
0
1
5
)
1
1
9

Published for SISSA by Springer

Received: November 6, 2015

Accepted: December 2, 2015

Published: December 17, 2015

Minkowski 3-forms, flux string vacua, axion stability

and naturalness

Sjoerd Bielleman, Luis E. Ibáñez and Irene Valenzuela
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1 Introduction

Consistency of Poincare invariant field theory implies that the possibilities for Lorentz

structure of massless fields is quite limited. Fermions must have spin 1/2 or 3/2, whereas

bosons should have a Lorentz structure of any of the kinds C0, Cµ, Cµν or gµν , with g the

graviton and the C-fields being antisymmetric. This list should be extended to include

3-index antisymmetric tensors Cµνρ. At first sight this extra possibility looks irrelevant,

since a Minkowski 3-form has no propagating degrees of freedom. However the presence

of such fields may lead to important physical implications. A very recent example of this

fact is discussed in [1], in which it is shown that the ultraviolet behaviour of pure gravity

amplitudes changes if 3-form contributions are included in loops, in spite of not having

propagating degrees of freedom. More well known is the fact that the corresponding field

strength Fµνρσ may be non-vanishing and permeate space-time giving rise to a constant

contribution to the cosmological constant, and hence to new (quantized) degrees of freedom.

Due to this fact Minkowski 4-forms have been considered in the past in trying to address

the cosmological constant problem [2–6]. More specifically Brown and Teitelboim [7, 8]

considered a background 4-form field strength in space-time, contributing to the vacuum

energy. Membranes coupling to the C(3) form can nucleate and give rise to jumps in the

c.c. They suggested this contribution adjusts itself dynamically to cancel the rest of the

contributions to the c.c. This 4-form is assumed not to couple directly to other fields in the
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theory. The main difficulty with this approach is that the 4-form steps required to cancel

the c.c. should be extremely tiny and is difficult to construct a working model with the

required properties.

Bousso and Polchinski [9] suggested also to consider the contribution of 4-forms to

the c.c. within the context of string theory (see also [10]). They argued that in string

theory plenty of Minkowski 4-forms appear upon compactification and that their values

are quantized. There is then a discretum in which the individual (large) 4-form values

could conspire to yield a detailed (almost) cancellation of the c.c. if the number of 4-forms

and their possible quantized values is sufficiently large. The structure of the scalar potential

has the schematic form

V =
∑

i

F 2
i − Vobs (1.1)

where Fi = ǫµνρσF i
µνρσ and −Vobs denotes the remaining contributions, typically yielding a

negative value. In this case the cancellation is not dynamical but is assumed to occur on the

basis of anthropic arguments. A difficulty with this proposal so formulated is that within

string vacua one cannot separate the issue of the c.c. from that of moduli fixing and one

expects the 4-forms to couple to the moduli, making the situation far more complicated.

As is well known, soon after a general approach to fix all moduli within Type IIB string

theory vacua was proposed [11], in which internal RR and NS fluxes are turned on [12]

to fix the complex structure moduli and dilaton in Type IIB orientifolds, with the Kahler

moduli assumed to be fixed by non-perturbative effects. Since then a large amount of effort

has been dedicated to the issue of moduli fixing, involving internal fluxes [13–17]. Still the

possible role of Minkowski 4-forms has been rarely discussed.

Minkowski 4-forms were discussed in papers by Dvali [18–21] in which it was shown

that the usual strong CP problem and its axion solution may be elegantly described in

terms of a composite 3-form, the QCD Chern-Simons term C(3), with a dynamical 4-form

proportional to F ∧ F . Here the PQ solution to the strong CP problem corresponds to

the 3-form becoming massive via a coupling to a 2-form Bµν , the latter being the dual of

a standard axion.

More recently Kaloper and Sorbo [22, 23] showed that 4-forms in field theory provide

for a natural definition of quadratic chaotic inflation [24], stable under large field trips of

the inflaton. Schematicaly, one starts from an action including not only a quadratic piece

for the 4-form but a coupling to an axion-like field φ

L = − F 2
4 + µφF4 + . . . (1.2)

with µ some mass parameter. Impossing dC3 = F4 through a Lagrange multiplier q and

upon using the equations of motion for F4, one finds a quadratic scalar potential of the form

V0 =
1

2
(q + µφ)2 (1.3)

where q is interpreted as a F4 vev. Membranes couple to the 3-form C3 and induce changes

∆q = e, where e is the membrane charge. The interesting point is that this is not a scalar
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potential but rather a family of potentials or different branches parametrized by the value

of q. The family of potentials has a discrete shift symmetry

φ → φ + φ0 , q → q − µφ0 (1.4)

which is spontaneously broken when a minimum φ = −q/µ is chosen. For each local

minimum we have a quadratic potential, which can be used e.g. to induce chaotic inflation

if φ is identified with the inflaton. The above description in terms of a 4-form is a way

of gauging a shift global symmetry for a scalar field without introducing new degrees of

freedom. One can formulate the same system by using the dual 2-form B2 instead of the

scalar φ. Here, as in [18–21] , C3 gets massive by combining with B2, yielding a massive

degree of freedom. One then obtains an action of the schematic form [18–21, 25]

L = −F 2
4 − µ2

2
|dB2 − C3|2 + . . . (1.5)

This action is obviously invariant under a gauge transformation

B2 → B2 + Λ2 , C3 → C3 + dΛ2 (1.6)

which corresponds to the above shift symmetry. This shift symmetry is expected to be

broken in a complete theory by non-perturbative effects. However, what makes this elab-

orated construction of a simple quadratic potential interesting is that the symmetries will

protect the potential from perturbative and Planck suppressed corrections. Indeed, gauge

invariance of F4 and the shift symmetry of φ force the corrections to appear in powers

(F 2
4 /M

4)n, with M the ultraviolet cut-off of the theory, rather than arbitrary powers of φ.

Thus corrections to an inflationary potential should appear as powers of V0/M
4
p , which will

be very small for an inflaton potential V0 < (1016GeV )4. This is crucial to get stability of

large field inflation in these schemes.

This Kaloper-Sorbo Lagrangian is a 4D field theory avatar of a somewhat analogous

structure found in the monodromy inflation models of [25–28, 45]. In those models large

field inflation is attained by coupling an axion-like periodic field to an external source of

energy, like e.g. a brane tension. Upon a period the field gets a shift in energy, so that the

field does not come to the same point but rather perform a large trans-Planckian excursion.

In the recent paper of Marchesano, Shiu and Uranga [25] it has been explicitly shown how

a structure analogous to that of the KS Lagrangian appears in specific string constructions.

In the present paper we study in a systematic way the role of Minkowski 4-forms in

Type II, D = 4, N = 1 orientifold vacua and discuss to what extent the above discussed 4-

form avatars do appear in compactified string theory. We also study the connection between

the internal RR and NS fluxes abundantly used in moduli fixing and the Minkowski 4-forms.

We analyse in more detail the case of Type IIA orientifold N = 1 flux vacua, in which the

discussion is more transparent, but also present analogous results for the Type IIB case.

In the former case some of the conclusions are as follows

• RR and NS closed string fluxes through internal cycles are in one to one correspon-

dence to Minkowski 4-forms. These 4-forms act as auxiliary fields of both Kahler and

complex structure moduli as well as for the N = 1 supergravity multiplet.
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• The full dependence of the flux scalar potential on RR and NS axions goes always

through combinations of Minkowski 4-forms. As a result the scalar potentials of

string flux vacua are not any random sugra potential but have a branched structure.

The potential has the general form

V4−forms =
∑

i

fij(ReMa) F
i
4F

j
4 +

∑

i

F i
4 Θi(ReMa, ImMa) + Vlocal(ReMa) . (1.7)

Here Ma denote collectively both Kahler and complex structure moduli, and ImMa

denote the RR and NS axions. The functions Θi come from the Type IIA Chern-

Simons couplings and contain polynomials of the axion fields with coefficients involv-

ing linearly the internal fluxes. Vlocal contains the contribution of the D-branes and

orientifold planes to the potential, which can be re-expressed in terms of the ReMa

upon imposing RR tadpole cancellation. Upon applying the equations of motion for

the 4-forms the full scalar potential is obtained, with an axion dependent part which

is always positive definite.

• The above scalar potential is in some sense a string multi 4-form and multi-flux gener-

alisation of the Kaloper-Sorbo structure in which the quadratic potential is replaced

by more general (up to order six) polynomials. The role of the shift symmetry is

played by the duality symmetries of the compactified theories. Under R ↔ 1/R du-

ality symmetries the different Minkowski 4-forms transform into each other. As in

the KS field theory model, gauge invariance of the 4-forms combined with the duality

symmetries of the compactification constrain the corrections to the potential to come

suppressed by powers of V0/M
4
p . This shows that flux string vacua is a natural arena

to construct large field inflaton models with a stable potential.

The structure in eq. (1.7) resembles the one discussed by Beasley and Witten in the

context of M-theory compactified in G2 manifolds X in the presence of G4 flux [46]. They

found that, although the superpotentialW depends explicitly only on the G4 flux supported

on X, it also describes the breaking of SUSY by G4 flux in Minkowski. The resulting scalar

potential is also branched, in analogy with the Schwinger model in two dimensions [47].

This structure leads to families of scalar potentials parametrized by specific flux choices,

some of which are related by orbits of duality transformations. As expected, there can be

transitions from one potential to another by membrane nucleation. This has been analysed

in a context similar to ours in [48, 49]. The membranes in Type IIA come from D2, D4, D6

and D8-branes wrapping even cycles (for RR 4-forms) and NS5 branes wrapping 3-cycles

(for NS 4-forms). Analogous conclusions hold for Type IIA vacua with geometric fluxes. In

this case the nucleating membranes will be KK5-branes wrapping 3-cycles. A similar story

also applies to N = 1 Type IIB orientifolds with RR and NS fluxes, which we describe

more briefly. We also briefly touch upon the issue of non-geometric fluxes. In the Type IIB

case the natural objects which appear are complex 4-forms, involving the complex dilaton

as well as both RR and NS fluxes in their definition.

We also suggest that the above structure of symmetries may provide for a new way

to obtain an interacting theory of scalars in which stability against loop corrections may
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be obtained. This would be a consequence of the multi-branched structure of the axion

scalar fields yielding a corrected potential which is itself an expansion in powers of the

uncorrected potential. We also speculate about possible applications of this idea.

The structure of this paper is as follows. In the next section we recall a few facts

about Minkowski 4-forms in general. In section 3 we study the structure of Minkowski

4-forms in Type IIA orientifolds with RR and NS fluxes. We perform the dimensional

reduction starting from the D = 10 Type IIA action and focus on the couplings of the

Minkowski 4-forms. We show how they behave as moduli auxiliary fields and how they

are invariant under a class of discrete symmetries involving both RR and NS axion shifts

as well as internal flux transformations. We also discuss in the toroidal case the action of

R ↔ 1/R dualities as well as how the introduction of geometric fluxes modifies the setting.

In section 4 we address the case of Type IIB orientifolds and how in this case the RR and

NS 4-forms combine to yield complex auxiliary fields, but a structure otherwise analogous

to that of the Type IIA case. We also discuss briefly how 4-forms may arise from the

open string sector, by dimensionally reducing the duals of the F2 gauge field strengths,

and discuss in some detail the example of reference [45]. In section 5 we present a general

discussion of implications of the uncovered symmetry structure for the stability of scalar

potentials against perturbatione corrections. We briefly discuss the case of inflation and

a possible new way to obtain naturally light interacting scalars. Some conclusions are left

for section 6.

2 Minkowski 3-forms

Before turning to Type II orientifold compactifications, let us recall a few facts about

3-forms (see e.g. [9, 10, 18–22, 50, 51]). The bosonic action of a 3-form includes terms

S = −
∫

d4x
√−g

1

48
FµνρσF

µνρσ + Sbound + Smem . (2.1)

Here Sbound includes some boundary terms which do not modify the equations of motion

and will not play a role in our discussion, so will not be displayed here. On the other hand

Smem describes the possible coupling of C3 to membranes, i.e.

Smem = q

∫

D3

d3ξǫabc Cµνρ

(

∂Xµ

∂ξa
∂Xν

∂ξb
∂Xρ

∂ξc

)

, (2.2)

where the membrane charge q has dimensions of mass2 and D3 is the membrane world

volume. Away from the membranes the equations of motion for C3 force F4 to be con-

stant, i.e.

Fµνρσ = fǫµνρσ (2.3)

where f is a constant. In the presence of membrane domain walls, the value of this constant

varies as ∆f = q as one goes across the wall. As argued e.g. in [9] the value of the 4-form

in string theory is quantized in units of the membrane charge, i.e.

f = nq , n ∈ Z . (2.4)
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In the case of generic string compactifications we will have multiple 4-forms, some coming

directly from dimensional reduction and others upon expanding higher order antisymmetric

RR or NS tensors in harmonics in the compact directions. In addition, as we will see,

unlike the BT or BP scenarios, the 4-forms have couplings to the axions and moduli of the

compactification, with a structure for each 4-form

F 2 + Fθ(φi) , F = Fµνρσǫ
µνρσ (2.5)

with θ a function of the axions and moduli. Upon integration by parts the second piece

may be written as

Cνρσ Jνρσ ; Jνρσ = ǫµνρσ∂µθ(φi) (2.6)

This current is conserved, i.e., ∂νJ
νρσ = 0 and the action is invariant under the gauge

transformations.

Cνρσ −→ Cνρσ + ∂[νΩρσ] . (2.7)

For 4-forms in which θ(φi) is just a linear function of a RR or NS axion field, the

structure of its contribution to the action is analogous to a Kaloper-Sorbo action. In this

case one can dualise the axion into a Minkowski 2-form in the usual way, with

∂µφ = ǫµνρσ∂
νBρσ . (2.8)

Then the φF4 coupling becomes

Cνρσ(∂
νBρσ) (2.9)

indicating how through a Higgs mechanism the 3-form gains a gauge invariant mass by

swallowing the 2-form. This is the dual of the axion becoming massive in the KS setting,

and is what Dvali used for his reinterpretation of the QCD axion physics [18–21]. The

3-form and 2-form have then gauge transformations

Cνρσ → Cνρσ + ∂[νΩρσ] ; Bρσ → Bρσ +Ωρσ . (2.10)

This leads to a massive 3-form multiplet, which now contains a massive scalar degree of

freedom. This structure of a massive scalar may be connected also with torsion cycles in

string compactifications, as emphasized in [25].

Massless 3-forms may be embedded into N = 1 supersymmetric multiplets. They

naturally appear as auxiliary fields in non-minimal versions of the N = 1 chiral multi-

plet [52–62]. And essentially correspond to replacing one or both of the real auxiliary fields

of a chiral multiplet by corresponding 4-forms. Similarly, one can formulate non-minimal

N = 1 sugra multiplets with one or two real scalar auxiliary fields being replaced by 4-

forms. Still these type of multiplets have not been discussed much in the literature. In [58]

the SUSY action of a non-minimal chiral multiplet S including one 4-form auxiliary field

is discussed in detail. The corresponding superfield may be defined as

S = −1

4
D

2
V , (2.11)

– 6 –
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where V is a real multiplet with the same content as a standard vector multiplet, but with

the vector field replaced by ǫµνρσC
νρσ. The chiral S field has then an expansion

S = M + iθσµθ∂µM +
1

4
θθθθ�M +

√
2θλ +

i√
2
θθθσµ∂µλ + θθ(D + iF ) , (2.12)

with F = ǫµνρσF
µνρσ and D an auxiliary real scalar. This multiplet contains on-shell one

complex scalar M and one Weyl fermion λ. It can combine with a linear supermultiplet L,

which includes a 2-form antisymmetric field B2, to yield a massive 3-form multiplet. This

is a SUSY generalisation of the Higgs mechanism described around eq. (2.9). In addition

these non-minimal chiral super fields S can have superpotential couplings in superspace, i.e.

SW =

∫

d2θd2θ SaS
a

+

∫

d2 θW (S) +

∫

d2θ W ∗(S) = (2.13)

−|∂M |2 +DaDa + F aF a +Wa(D
a + iF a) +W ∗

a (D
a − iF a) + . . . .

where Wa denotes derivative with respect to Sa. Using the equations of motion for C3

one gets F a = Im(Wa) + fa, with fa a constant. Then the scalar potential has the

form [54, 58, 59]

VS = |Wa + ifa|2 . (2.14)

This agrees with the result obtained for standard chiral multiplets with the replacement

Wa → Wa+ ifa. Let us advance that this multiplet is not enough to describe the structure

of 4-forms that we find in Type IIA and IIB orientifolds. In particular we find that for the

Kahler(complex structure) moduli in IIA(IIB) orientifolds both auxiliary fields of a chiral

multiplet are replaced by 4-forms.

3 4-forms in Type IIA orientifolds

We turn now to describe how 4-forms appear in Type IIA orientifold compactifications

down to four dimensions. The compactification of ten-dimensional massive Type IIA string

theory on a Calabi-Yau threefold in the presence of background fluxes has been thoroughly

studied in e.g. [63–67]. Here we perform the same compactification but keeping trace of all

the Minkowski 4-forms which appear upon dimensionally reducing the 10d RR and NSNS

fields. This leads to a new formulation of the scalar potential in terms of Minkowski 4-forms

as in eq.(1.7) and the intriguing result that the full dependence of the flux scalar potential

on RR and NS axions comes only through couplings to the said 4-forms.

3.1 4-forms, RR and NS fluxes in IIA orientifolds

Let us consider Type IIA string theory compactified on a Calabi-Yau threefold Y in the

presence of O6 planes. The massless ten-dimensional bosonic content of the closed string

spectrum contains the metric, the dilaton and the antisymmetric two-form B2 from the

NS-NS sector and the p-form fields Cp from the RR sector. We will work in the democratic

formulation [68] in which all the p-form fields Cp with p = 1, 3, 5, 7 are present, so we will

have to impose the Hodge duality relations

G6 = − ∗10 G4 , G8 = ∗10G2 , G10 = − ∗10 G0 (3.1)

– 7 –
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at the level of the equations of motion in order to avoid overcounting of the physical degrees

of freedom. The gauge invariant field strengths are defined as [65, 68]

Gp = dCp−1 −H3 ∧ Cp−3 + FeB (3.2)

where H3 = dB2, Fp = dCp−1 and F is a formal sum over all the RR fluxes Fp. The

background field strength G0 may be regarded as the mass parameter (also known as

Romans mass) of massive Type IIA supergravity, G0 = −m. The massless 4d fields (before

introducing the fluxes) are in one-to-one correspondence with the harmonic forms of the

internal manifold Y, so the multiplicity is counted by the dimension of the cohomology

groups H(p,q)(Y ). To implement the orientifold projection we split the harmonic forms

into forms with even or odd parity under the orientifold projection. The elements of the

cohomology basis satisfy the following relations,
∫

Y

ωα ∧ ω̃β = δβα , α, β ∈ {1 . . . h(1,1)+ } (3.3)

∫

Y

ωa ∧ ω̃b = δba , a, b ∈ {1 . . . h(1,1)− } (3.4)

∫

Y

αK ∧ βL = δLK , K, L ∈ {1 . . . h(2,1) + 1} (3.5)

where ω, ω̃, α denote a 2-form, 4-form and 3-form respectively. Notice that since the volume

form is odd under the orientifold projection and the Hodge star involves contraction with

the volume form, the dual form of an odd 2-form ωa is actually an even 4-form ω̃a. Therefore

ωa ∈ H
(1,1)
− and ω̃a ∈ H

(2,2)
+ while ωα ∈ H

(1,1)
+ and ω̃α ∈ H

(2,2)
− . Analogously αK ∈ H3

+ and

βK ∈ H3
−. The metric, the dilaton, C3 and C7 are even under the orientifold projection

while B2, C1 and C5 are odd.

We are interested in the presence of Minkowski 3-form fields in the fluxed induced

scalar potential. In addition to the universal RR 3-form C3 one can also get 3-forms by

dimensionally reducing higher RR and NSNS fields, C5, C7, C9 and H7, and considering

three of the indices in Minkowski space. By allowing also for the presence of internal fluxes,

the RR field strengths can be expanded as

F0 =−m, F2 =
∑

i

qiωi , F4 =F 0
4 +

∑

i

eiω̃i

F6 =
∑

i

F i
4ωi + e0dvol6 , F8 =

∑

a

F a
4 ω̃a , F10 =Fm

4 dvol6 (3.6)

where i, a = 1, . . . , h
(1,1)
− . The parameters e0, ei, qi,m refer to internal RR fluxes on Y and

we get 2h
(1,1)
− +2 Minkowski 4-forms labelled by F 0

4 , F
i
4, F

a
4 and Fm

4 . Similarly the NS H3

background is intrinsically odd under the orientifold projection so it can be expanded as

H3 =

h−

2,1
∑

I=0

hIβI (3.7)

while the dual H7 can be expanded in terms of even 3-forms

H7 =
∑

I

HI
4 ∧ αI (3.8)
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obtaining h+2,1 + 1 additional Minkowski 4-forms HI
4 coming from the NSNS sector. More-

over, the fields B2 and C3 can be expanded as

B2 =
∑

i

biωi , C3 =
∑

I

cI3αI (3.9)

where bi and cI3 are 4d scalars and correspond to the axionic part of the complex super-

gravity fields T, S, U as follows,

ImTi = −
∫

B2 ∧ ω̃i = −bi ; i = 1, . . . , h11− (3.10)

ImUi =

∫

C3 ∧ βi = ci3 ; i = 1, . . . , h3+ (3.11)

ImS = −
∫

C3 ∧ β0 = −c03 . (3.12)

The Hodge dualities of eqs.(3.1) relate the Minkowski 4-forms and the internal magnetic

fluxes as we proceed to explain in the following. Separating each field strength into

Minkowski and internal parts and using eq.(3.6), the duality relations given by (3.1) imply

∗4F 0
4 =

1

k

(

e0 + eib
i +

1

2
kijkq

ibjbk − m

3!
kijkb

ibjbk − h0c
0
3 − hic

i
3

)

∗4F i
4 =

gij

4k

(

ej + kijkb
jqk − m

2
kijkb

jbk
)

∗4F a
4 = 4kgab(qb −mbb)

∗4Fm
4 = −m (3.13)

where gij = 1
4k

∫

ωi ∧ ∗ωj is the metric in the Kahler moduli space, k is the volume and

kijk the topological triple intersection number.

The type IIA ten dimensional supergravity action can be divided into three terms,

SIIA = SRR + SNS + Sloc (3.14)

where the RR and NSNS actions are given by

SRR = − 1

8k210

∫

R1,3×Y

∑

p=0,2,4,6,8,10

Gp ∧ ∗10Gp + . . . ,

SNS = − 1

4k210

∫

R1,3×Y

e−2φH3 ∧ ∗10H3 (3.15)

and Sloc refers to the contribution from localized sources like D6-branes and O6-planes.

Let us start analyzing the part of the action involving the RR fields. By using the duality

relations (3.1), the kinetic terms for the RR fields can be written as

− 1

2

∑

p=0,2,4,6,8,10

Gp ∧ ∗10Gp = G4 ∧G6 +G2 ∧G8 +G0 ∧G10 (3.16)
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Plugging eqs.(3.6)–(3.9) into the above RR action and integrating over the internal dimen-

sions we get the following effective scalar potential in four dimensions

VRR = −1

2

[

F 0
4

(

e0 + biei +
1

2
kijkb

ibjqk −
m

6
kijkb

ibjbk
)

+F i
4

(

ei + kijkb
jqk −

1

2
mkijkb

jbk
)

+ F a
4 (qa −mba)− kmFm

4

]

(3.17)

This scalar potential can be rewritten by using eq.(3.13) in the general form

VRR = −1

2

[

−kF 0
4 ∧ ∗F 0

4 + 2F 0
4 ρ0 − 4kgij ∗ F i

4 ∧ F j
4 + 2F i

4ρi

− 1

4k
gabF

a
4 ∧ ∗F b

4 + 2F a
4 ρa + kFm

4 ∧ ∗Fm
4

]

(3.18)

already discussed in the introduction, in which the relations (3.13) arise as equations of

motion for the 3-forms. Since ∗∗F4 = −F4 the contribution to the potential energy is

positive. Notice that although the Minkowski 3-forms have no dynamical degrees of freedom

in four dimensions, the kinetic terms of these 3-forms lead to a Minkowski background

which also contributes to the scalar potential of the theory. In addition we have some

Chern-Simons couplings of the Minkowski 4-forms to the functions

ρ0 = e0 + biei + kijk
1

2
qib

jbk − m

6
kijkb

ibjbk − h0c
0
3 − hic

i
3

ρi = ej + kjklb
kql − m

2
kjklb

kbl

ρa = qb −mbb

ρm = −m (3.19)

depending polinomially on the axionic fields and the internal fluxes. Analogously, the

kinetic term for the NSNS field leads to the following contribution,

VNS =
1

2
e−2φcIJH

I
4H

J
4 (3.20)

where cIJ =
∫

βI ∧ ∗βJ is the metric on the complex structure moduli space. By Hodge

duality the Minkowski 4-form background is related to the NS internal flux by

∗HI
4 = hI (3.21)

The contribution from the localized sources can be written as [65]

Vloc =
∑

a

∫

Σ
Ta

√−g e−φ (3.22)

where Ta is the tension of the object and Σ the worldvolume. Assuming that tadpole

cancellation is satisfied, this contribution can be related to the fluxes and the real part of

the moduli so that [65]

Vloc =
1

2
eKvivjvkkijk(mh0s−mhiu

i) , (3.23)
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with s, ui, vi the real parts of the S,Ui, Ti moduli respectively. which is independent of

the configuration of localized sources as long as they preserve N = 1 supersymmetry.

Combining all the pieces and using (3.13) we get the following scalar potential

V =
k

2
|F 0

4 |2+2k
∑

ij

gijF
i
4F

j
4 +

1

8k

∑

ab

gabF
a
4 F

b
4 +k|Fm

4 |2+ 1

2s2

∑

IJ

cIJH
I
4H

J
4 +Vloc (3.24)

which in terms of the moduli and the internal fluxes becomes

V =
1

2k

(

e0 + eib
i +

1

2
qikijkb

jbk − 1

6
mkijkb

ibjbk
)2

+
gij̄

8k

(

ei + qkkiklb
l − 1

2
mkiklb

kbl
)(

ej + qmkjmnb
n − 1

2
mkjmnb

mbn
)

+ 2kgij(q
i −mbi)(qj −mbj) + km2 +

1

2s2

∑

IJ

cIJh
IhJ + Vloc (3.25)

as has been previously obtained in the literature [64]. This potential can also be recovered

from the standard Cremmer et al. supergravity description in terms of the N = 1 4d

effective Kahler potential and superpotential, see [63].

We would like to recall that the full axionic part of the scalar potential can be written

in terms of the above couplings to Minkowski 3-form fields and it is always positive definite.

This is one of the main results of the paper.

It is worth mentioning a subtlety regarding the process of integrating out the 3-form

fields. By looking at (3.18) the equation of motion for the 3-form field implies

d(∗4F4 − ρ) = 0 → ∗4F4 − ρ = c (3.26)

where c is a constant and ρ the function depending on the axionic moduli defined in (3.19).

This would imply a shift on the 4-form background leading to a priori new terms in the

scalar potential that can not be recovered from the standard Cremmer et al. supergravity

description. In particular the shifts would appears as quantized spurion insertions which

could have important implications for moduli fixing and the search of de Sitter vacua. These

shifts agree with the results of [54, 58, 59] for which a 4-form acting as an auxiliary field

implies a shift on the scalar potential with respect to the standard supergravity formula.

While valid from a pure effective 4d approach, our 4-forms come actually from dimension-

ally reducing higher RR and NS fields which are related, at the classical level, by Hodge

duality. In fact, we have seen that the Hodge dualities relate the 4-form backgrounds and

the internal fluxes forcing this extra shift to vanish. However we do not discard completely

the possibility of an integer quantum shift which would not be visible at the level of the

classical equations of motion here considered.

The underlying well-defined structure of the scalar potential in terms of the 4-forms

is also remarkable. In this description it is clear that the solution of minimum energy

will correspond to have all 4-forms vanishing, and can be obtained by solving eqs. (3.13)

and (3.21) in which the left side of each equation is equal to zero. We recover then the
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AdS minima with bi = qi/m previously studied in detail in [66, 67, 69]. This suggests that

moduli fixing might be more intuitive in terms of 4-forms.

Note that there are in total 2h11− 4-forms, denoted above as F i
4 and F a

4 , which act as

auxiliary fields for the h11− Kahler moduli of the compactification. This means that the

SUSY multiplets associated to the Kahler moduli should contain two 4-forms acting as

auxiliary fields. On the other hand there are h3+ 4-forms HI
4 associated to the h3+ complex

structure fields. In this case the associated SUSY multiplets would only include one 4-

form auxiliary field, like the multiplets discussed in [58]. In addition there are two 4-forms

F 0
4 , F

m
4 which seem to be associated to the N = 1 supergravity complex scalar auxiliary

field. In this connection the relation imposed by the equations of motion between the 4-

forms and the moduli of the compactification is interesting. By looking at eqs. (3.13), the

Minkowski 4-forms satisfy

kF 0
4 − vaF

a
4 = ReW (3.27)

1

2
kiF

i
4 − kFm

4 = ImW (3.28)

where W is the N = 1 type IIA RR superpotential given by

W = e0 + ieaT
a − 1

2
kabcq

aT bT c +
1

6
imkabcT

aT bT c (3.29)

It would be interesting to understand if this structure is consequence of the possible identifi-

cation of 4-form fields as auxiliary fields of the moduli/gravity multiplets. More generally, it

would seem that non-minimal N = 1 supergravity formulations, with auxiliary field scalars

replaced by Minkowsk 4-forms, as in refs. [52–58], could be the appropriate formulation to

describe the multi-branched nature of string flux vacua.

3.2 Symmetries

The above effective action features remarkable shift and duality symmetries which play

an important role in constraining the structure of the scalar potential. In particular the

latter is invariant under discrete group transformations acting both on the moduli and the

internal fluxes. They correspond to shifts on the axionic components of the Kahler and

complex structure moduli combined with the corresponding changes on the internal fluxes.

In particular, a shift on the Kahler axion given by

bi → bi + ni (3.30)

combined with

m → ρm = m (3.31)

qa → ρa(bi = −ni) = qa + nam (3.32)

ei → ρi(bi = −ni) = ei − kijkq
jnk − m

2
kijkn

jnk (3.33)

e0 → ρ0(bi = −ni) = e0 − eini +
1

2
kijkq

injnk +
m

6
kijkn

injnk (3.34)
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leaves invariant the scalar potential and relates equivalent vacua. These transformations

were first introduced in the toroidal orientifold of ref. [66]. They are however part of the du-

ality symmetries of any CY orientifold. In the mirror Type IIB picture this corresponds to

a shift on the complex structure of the torus. Notice that the above transformations leave

invariant each 4-form independently, as expected by coming from higher dimensional gauge

invariance. Therefore the derivation of this group of transformations is more intuitive in

this formulation in terms of 4-forms than in the standard Cremmer et al. supergravity de-

scription. They also correspond to the generalization of the Kaloper-Sorbo shift symmetry

underlying the axion monodromy inflationary models.

Analogously, the scalar potential is also invariant under shifts on the complex structure

moduli of the form

cI3 → cI3 + nI (3.35)

e0 → e0 + hInI (3.36)

corresponding to the mirror of Type IIB SL(2,Z) shifts. Also in this case, the 4-forms

remain invariant independently.

In a different vein, the effect of performing two or more T-dualities over the system is

interesting . Let us consider for simplicity a Type IIA toroidal orientifold compactification,

and focus on the diagonal Kahler moduli. The results can be generalised to other geometries

with non-trivial one-cycles. Given a basis of 2-forms ωi such that the Kahler form can be

written as

J =
3

∑

i=1

viωi (3.37)

we can perform two T-dualities along the two real directions of the Poincare-dual 2-cycle

of some ωi. In particular, if T-duality is performed along i = 3 we obtain again a type IIA

theory in which

v3 → 1

v3
(3.38)

and the other two fields vi with i 6= 3 remain invariant. In this case v3 corresponds to the

area of the 2-torus along which we perform the two T-dualities. Factors on α′ are omitted

to avoid clutter but can be easily recovered. Let us assume for simplicity an isotropic

compactification such that the triple intersection number is kijk = 1 if all the indices are

different, and zero otherwise. The volume of the overal manifold transforms as

k =
1

6
kijkv

ivjvk = v1v2v3 → v1v2

v3
(3.39)

The metric is given in general by

gij = −1

4

(

kij
k

− 1

4

kikj
k2

)

, gij = −4k

(

kij − vivj

2k

)

(3.40)

and transforms under the two T-dualities as

g33

8k
↔ 1

4k
,

g11

8k
↔ kg22 ,

g22

8k
↔ kg11 , 2kg33 ↔

k

2
(3.41)
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The RR part of the scalar potential is invariant under this T-duality if the functions defined

in (3.19) are also interchanged

ρ0 ↔ ρi if i = 3 (3.42)

ρi ↔ ρa if i 6= a 6= 3 (3.43)

ρa ↔ ρm if a = 3 (3.44)

Therefore T-duality seems to exchange Minkowski 4-forms with each other. Recall that

each 4-form comes from dimensionally reducing the field strength of the different higher

dimensional RR fields. Then it can be checked that the result matches with the known

transformation rules for the RR fields under T-duality,

C3 ↔ C5 if C5 propagates along the T-dual direction (3.45)

C5 ↔ C7 if C7 (but not C5) propagates along the T-dual direction (3.46)

C7 ↔ C9 if C9 (but not C7) propagates along the T-dual direction . (3.47)

Finally, if the internal manifold is T 6 we can perform a T-dual transformation along

all the internal dimensions, obtaining

k ↔ 1

k
,

gij

8k
↔ kgij (3.48)

and the potential is invariant if

ρ0 ↔ ρm (3.49)

ρi ↔ ρa (3.50)

consistent with the transformation rules for the RR fields. Note that the fact that T-

dualities relate the different 4-forms make that e.g. only the full VRR combination, involving

all 4-forms, will be invariant under dualities and shift symmetries, we will come back to

this issue in section 5. Let us conclude by mentioning that non-vanishing values for the

4-forms will generically break SUSY (since they are auxiliary fields). However the discrete

symmetries will remain unbroken, since the 4-forms are invariant under them.

3.3 4-forms and geometric fluxes in toroidal Type IIA orientifolds

It is known that beyond standard RR and NS other, less well studied NS fluxes may be

present. These include the geometric fluxes in toroidal models that appear in the context

of Scherk-Schwarz reductions. In this section we will just explore whether the addition of

these fluxes change in any important way the above discussion. We will take an effective

viewpoint on geometric fluxes and focus on the essential results. See [65, 67] and references

therein for a more thorough discussion of geometric fluxes.

We are interested to see how the presence of geometric fluxes change the 4-forms

described in eqs. (3.13). Geometric fluxes are easiest described on a factorized 6-torus

⊗3
i=1T

2
i with O6-planes wrapping 3-cycles. In addition we assume there is a Z2 × Z2

orbifold twist so that only diagonal moduli survive projection. In this case we are left with
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3 Kahler moduli and 4 complex structure moduli (including the complex dilaton). In this

setting there are 12 geometric fluxes ωM
NK that are convienently put in a 3-vector ai and a

3× 3-matrix bij , see [67, 70] for notation.

Geometric fluxes can be used to convert a p-form into a (p + 1)-form via:

(dX)N1...Np+1
= ωK

[N1N2
XN3...Np+1]K , denoted by ω ·X. In particular we find:

ω ·B = biaiβ0 − bibijβ
j and ω · C3 = −ω̃iaic0 + ω̃ibijc

j . (3.51)

From an effective viewpoint, geometric fluxes change the field strengths of B, C3 and C5

as follows [65]:

G4 → F4 + ω · C3 −H ∧ C1 − ω ·B2 ∧ C1 + FeB , (3.52)

G6 → F6 −H ∧ C3 − ω ·B2 ∧ C3 + FeB , (3.53)

H3 → H3 + ω ·B2 . (3.54)

Putting these field strengths in the in the IIA action and integrating over the internal

dimensions as before we find an extra coupling in the NS sector,

−
∫

Y

e−2φω ·B ∧H7 =
e−2φ4

k

(

biaiH
0
4 − bibijH

j
4

)

, (3.55)

and two in the RR sector,

−
∫

Y

G4 ∧G6 = F 0
4

(

bibijc
j − biaic0

)

− F i
4(bijc

j − aic
0) . (3.56)

In this way the 4-forms get modified as

⋆F 0
4 =

1

k

[

e0 + biei −
1

6
mkijkb

ibjbk +
1

2
kijkqib

jbk − h0c
0
3 − hic

i
3 + bibijc

j
3 − biaic

0
3

]

⋆F i
4 =

gij

4k

[

ej + kjklb
kql − m

2
kjklb

kbl + bjkc
k
3 − ajc

0
3

]

⋆H0
4 =h0 + biai

⋆H i
4 =hi − bjbji .

The intersection numbers kijk are equal to one if all the indices are different and 0 oth-

erwise, since we have a toroidal compactification space. It can be shown that the scalar

potential that is obtained from these 4-forms and eq. (3.24) can also be obtained from the

superpotential given in [65, 67].

One interesting question is how the discrete symmetries are modified in the presence

of geometric fluxes. One finds that the 4-forms are still invariant under shifts of the axion

in the Kahler moduli and complex structure moduli

bi → bi + ni
b (3.57)

cJ → cJ + nJ
c (3.58)
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in combination with

h0 → h0 − ain
i
b (3.59)

hi → hi + nj
bbji (3.60)

ej → ej + ajn
0
c − bjkn

k
c (3.61)

e0 → e0 + hin
i
c + h0n

0
c + ni

bbijn
j
c − ni

bain
0
c (3.62)

in combination with the shifts of the previous section. All in all, the general structure for

4-forms we described above remains in the pressence of geometric fluxes, as expected.

4 4-forms in Type IIB orientifolds

We turn now to the case of Type IIB D = 4 orientifolds. We concentrate on 4-forms coming

from the closed string sector but we also briefly mention an example of 4-form arising from

the open string sector.

4.1 4-forms and the IIB flux induced scalar potential

Compared to Type IIA the structure in IIB [71, 72] is in principle slightly simpler because

the CS couplings are simpler. Only the NS H3 and RR F3 tensors have a role in the context

of CY N = 1 orientifolds. It is convenient to define the complex 3-form

G3 = F3 − iSH3 (4.1)

where S is the complex dilaton, S = 1/gs + ic0. The relevant piece in our discussion are

the kinetic terms of the 2-forms, which in this complex notation may be written as

SIIB = − 1

2k210

∫

R1,3×Y

1

3!

1

S + S∗
G3 ∧∗ Ḡ3 (4.2)

where ∗Ḡ3 = Ḡ7. As we did in the Type IIA case we can now expand G7 in terms of internal

harmonics with coefficients given by Minkowski 4-forms. We will consider here only IASD

G3 fluxes of class (3, 0) and (2, 1), which can induce SUSY-breaking. The contribution

from ISD G3 fluxes does not depend on the moduli and it is proportional to the topological

number giving the flux contribution to the D3 RR charge [12, 73], so it appears (combined

with the contribution from localised sources) in the tadpole cancellation conditions. Then

the relevant expansion is given by

G7 = G
0
4 ∧ Ω + G

a
4 ∧ χa , a = 1, . . . , h21 , (4.3)

where Ω is the holomorphic (3, 0) form, and the χa form a basis of the h21 3-forms in the

CY X. Here G0
4 ans Ga

4 are complex Minkowski 4-forms which may be written in terms of

NS and RR pieces F4, H4 as

G0
4 = F 0

4 − iSH0
4 , Ga

4 = F a
4 − iSHa

4 . (4.4)
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The basis of (2, 1) forms may be expressed in terms of the holomorphic 3-form Ω and the

complex structure Kahler potential K as [74]

χa =
∂Ω

∂Ua
+ KUa

Ω . (4.5)

From the term G3 ∧ Ḡ7 we then get the kinetic terms for the Minkowski 3-forms and some

couplings to the dilaton and complex structure moduli. For Ga
4 the coupling is given by

1

S + S∗

∑

a

G
a
4

∫

X

G3 ∧
(

∂Ω

∂Ua
+ KUa

Ω

)

=
1

S + S∗

∑

a

G
a
4 Da

∫

X

G3 ∧ Ω

=
1

S + S∗

∑

a

G
a
4 DaWGVW , (4.6)

where WGVW is the Gukov-Vafa-Witten superpotential and Da are the Kahler covariant

derivatives with respect to the complex structure fields Ua. For the remaining 4-form G0
4

one gets the coupling

1

S + S∗
G

0
4

∫

X

G3 ∧ Ω = −G
0
4 (DSWGVW) . (4.7)

The kinetic terms of the 7-form yield the quadratic pieces

κ

S + S∗
(|G0

4|2 − Ga
4G

b
4Gab̄) , (4.8)

where Gab̄ is the metric of the complex structure fields and

κ =

∫

X

Ω ∧ Ω = ie−Kc.s.(Ua), Gab̄ = −
∫

X
χa ∧ χb

∫

X
Ω ∧ Ω

, (4.9)

where Kc.s.(Ua) is the Kahler potential of the complex structure moduli. Collecting all the

pieces, the ten dimensional action (4.2) reduces to the following four dimensional effective

lagrangian in terms of the Minkowski 4-forms,

LIIB =
1

S + S∗

(

κ (|G0
4|2 − Ga

4G
b
4Gab̄) −G

0
4 (S+S∗)DSWGVW+

∑

a

G
a
4 D

aWGVW

)

(4.10)

Notice that, in analogy to Type IIA, the full scalar potential, excluding the contribution

from localised sources, can be written in terms of the Minkowski 3-form fields. One can

now introduce Lagrange multipliers enforcing dC3 = F4 for each of the Minkowski 3-forms.

Upon using the equations of motion for the 4-forms one gets

∗Gb̄
4 = −ieKc.s.Gab̄ (DaWGVW + (f4 − iSh4)a) , (4.11)

∗G0
4 = −ieKc.s.

(

(S + S∗)DSWGVW + (f4 − iSh4)0
)

where fa,0
4 , ha,04 are RR and NS constants, from the Lagrange multipliers. We thus see that

the complex 4-forms Ga,0
4 are associated to the auxiliary fields of the complex structure

and dilaton, but include also a shift associated to the Minkowski 4-form backgrounds. This
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result is very similar to the one discussed around eq. (2.14) and suggested in [54, 58, 59].

The main difference is that here the two N = 1 auxiliary fields are replaced by 4-forms and

also here it is the supergravity auxiliary fields , with the covariant derivatives Da, DS , which

suffer the shift. Also the shift depends on the complex dilaton. In Type IIA we argued that

the classical Hodge dualities forced this shift to vanish, identifying the constant background

terms of the Minkowski 4-forms with the internal fluxes of the magnetic duals. The analogy

here would be to set f4, h4 = 0 with the argument that the internal fluxes parametrizing

the G3 background are enough to account for all the degrees of freedom (there should not

be extra parameters). However we do not discard completely the possibility of an integer

quantum shift, not visible in the classical expressions here considered.

By inserting eqs.(4.11) in the Lagrangian (4.10) we get the following scalar potential

V = eKS+Kc.s.

(

|(S + S∗)DSW + g0|2 +Kab̄|DaW − ga|2
)

(4.12)

where we have used that KS = −log(S + S∗) and redefined g0,a ≡ (f4 − iSh4)0,a. If the

shifts vanish, we recover the standard formula for the N = 1 supergravity scalar potential.

Note that, due to the no-scale structure (there is no dependence of the superpotential

on the Kahler moduli), after using the equations of motion for the 4-forms one obtains a

positive definite scalar potential of the standard no-scale form.

Finally, the same web of transformations studied in section 3.2 relating different vacua

of Type IIA compactified in a CY threefold, are also present in Type IIB compactified in

the mirror C̃Y . The discrete shift given by (3.30) acting on a Kahler modulus of Type

IIA corresponds to a shift on the complex structure of the mirror Type IIB. Notice that

since the supergravity description to leading order in α′ is reliable at large volume, this

shift symmetry will arise at the large complex structure limit of the mirror C̃Y . If we are

dealing with a toroidal compactification instead, then the shift symmetry will correspond

to the usual complex structure reparametrizations of the torus. Recall that this shift on the

complex structure (in Type IIB) or in the Kahler modulus (in Type IIA) leaves invariant

the effective theory only if it is combined with the corresponding transformations on the

internal fluxes, studied in section 3.2. Analogously a shift on the complex structure (3.35)

in Type IIA maps to a shift on the axionic component of the Kahler moduli in Type IIB.

This latter shift symmetry is expected from the fact that the imaginary part of the a Kahler

modulus in IIB is actually an axion coming from dimensionally reducing the RR field C4.

While in Type IIA the current description in terms of 4-forms offered a very intu-

itive picture about these transformation (leaving each 4-form invariant), the situation in

Type IIB is less transparent. Since we only have the 4-forms coming from G7 we can not

decompose the scalar potential into different smaller invariant pieces. Hence in the end

the exercise of finding the transformation rules in this description is not easier than just

studying the symmetries of the full scalar potential (or of the auxliliary fields). We would

like to remark though that this set of transformations leave each 4-form invariant and are

the generalization of the shift symmetry of axion monodromy models and the Kaloper-

Sorbo Lagrangian. In other words, string theory provides a rich and more intriguing web

of duality symmetries which are the generalization of the aforementioned shift symmetry.
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Besides, the full appearance of the ‘axionic’ moduli in terms of couplings to the Minkowski

3-form fields highly constrains the form of α′ and perturbative corrections. As we will see

in section 5 this structure acts as a sort of ‘chiral symmetry’ protecting the scalar poten-

tial from dangerous higher order corrections, apparently independently whether the field

appears or not in the 4d Kahler potential.

Before closing this section let us make a few remarks about non-geometric fluxes [69,

75] in toroidal Type IIB orientifolds, see e.g.([70]) for a brief description of these fluxes.

Non-geometric fluxes are still poorly understood although their existence is implied by

T-dualities. They are known to induce additional terms in the superpotential. Type IIB

orientifolds allow only for so called Q-type non-geometric fluxes (we use notation in [69])).

The fluxes have index structure QNP
M with antisymmetric upper indices and they are odd

under the O(3) orientifold involution. In IIB there are no geometric ωM
NP nor non-geometric

RMNP fluxes which are even. The effect of the Q-fluxes on the Gukov-Vafa superpotential

is captured by the replacement

G3 = (F3 − iSH3) −→ G3 +QJ c (4.13)

where the 4-form

Jc = i

3
∑

i=1

Tiω̃i , (4.14)

with Ti the three diagonal Kahler moduli and

(QJ c)MNP =
1

2
QAB

[M (Jc)NP ]AB . (4.15)

Going back now to the 4-forms in IIB, eq. (4.6) gets modified as

1

S + S∗

∑

a

G
a
4 Da

∫

X

(G3 +QJ c) ∧ Ω . (4.16)

The right-hand side is nothing but the Kahler derivative (with respect to the complex

structure) of the extension of the GVW super potential to include non-geometric fluxes.

So it seems that also in the presence of this class of non-geometric fluxes the structure of

the Minkowski 4-forms acting as auxiliary fields in the effective action persists.

4.2 Minkowski 4-forms and open string moduli

Up to here we have discussed the role of Minkowski 3-form fields in the closed string

sector of Type II. We have seen that the full RR and NSNS axion dependence of the flux

scalar potential can be written in terms of these 3-forms. A similar question arises for

the open string sector of the theory. Can also the scalar potential of the open (periodic)

string moduli be written in terms of 3-form fields? In this section we address the issue for

the D7-brane moduli sector of a Type IIB orientifold compactification. In particular, we

review the computation done in [45], for which the flux induced scalar potential of a D7

position modulus can be written in terms of a Kaloper-Sorbo coupling of the scalar with

a Minkowski 3-form field arising from the magnetic open string field strength. In [45] the
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goal was to derive the Kaloper-Sorbo Lagrangian of a concrete inflationary model, dubbed

Higgs-otic inflation, in which the inflaton is the position modulus of a wandering D7-brane

in a transverse torus. This way one can use the Kaloper-Sorbo symmetry properties to

argue from an effective approach that the higher order corrections are under control and

do not spoil inflation. Here we derive the effective theory and discuss the result with the

new insight gained from previous sections.

In the open string sector of Type II string theory, Minkowski 3-forms may arise from

the dual magnetic potentials of the worldvolume gauge fields of the D-branes. In particular,

for a D7-brane the magnetic gauge potential is a 5-form A5, whose field strength can be

expanded as

F6 = iF4 ∧ ω̄2 − iF̄4 ∧ ω2 (4.17)

where ω2 is a (2,0)-form associated to the position modulus Φ of the D7. This field can

be expanded as Φ = φω2 where φ is a 4d complex scalar. Notice that unlike the 4-forms

coming from the closed string sector, now F4 is a complex Minkowski 4-form. We are

going to focus on the Abelian case, but a priori it could be generalised to non-Abelian

gauge groups.

Consider ISD G3 bulk fluxes inducing a B-field on the brane given by [45, 76–80]

B2 =
gsσ

2i
(G∗φ− Sφ̄)ω2 + cc. , (4.18)

where we have denoted the non-supersymmetric ISD (0,3)-flux as G ≡ G1̄2̄3̄ and the super-

symmetric (2,1)-flux as S ≡ ǫ3jkG3j̄k̄ (see [80] for notation). The relevant part of the DBI

action to leading order in α′, ie. in the Yang-Mills approximation, is given by [45, 76, 80]

SDBI = µ7σ

∫

R1,3×S4

1

2
(B2 + σF2) ∧ ∗8(B2 + σF2) + . . . (4.19)

where σ = 2πα′. Plugging the decomposition (4.17) into the above Lagrangian and per-

forming dimensional reduction we obtain
∫

S4

F6 ∧ ∗8F6 = |F4|2 2

∫

S4

ω2 ∧ ∗4ω̄2 , (4.20)

∫

S4

B2 ∧ F6 =
1

2
gsσ

(

F4(G
∗φ− Sφ∗) + F̄4(Gφ∗ − S∗φ)

)

∫

S4

ω2 ∧ ω̄2 , (4.21)

leading to the following effective four dimensional Lagrangian

L4 = µ7σρ

(

|F4|2 −
1

2
gsσ

(

F4(G
∗φ− Sφ∗) + F̄4(Gφ∗ − S∗φ)

)

)

+ . . . (4.22)

Here ρ =
∫

S4
ω2 ∧ ∗4ω̄2 and we have used that ∗4ω2 = −ω2. Upon integrating out the

3-form field we get

V4 = µ7σρ

∣

∣

∣

∣

f − 1

2
gsσ(G

∗φ− Sφ∗)

∣

∣

∣

∣

2

, (4.23)

where f is an integration constant which can be identified with the magnetic flux F2. Note

however that, by an appropriate choice for the B2 gauge, the constant term f may be
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reabsorbed into the definition of what the origin of the wandering D7-brane is. In fact

it was took equal to zero in [45]. The above expression reflects the branched properties

of the Higgs vev as the D7-moves along a cycle in the torus. The potential is invariant

under shifts on the position modulus if they are combined with the corresponding shift on

F2 flux. This shift symmetry underlies the typical multi-branch structure of a Kaloper-

Sorbo Lagrangian (or an F-term axion monodromy model), its presence being important to

keep the potential under control in large field inflationary models. The idea again is that

the underlying shift symmetry and the gauge invariance of the 3-form field protects the

potential from dangerous higher order corrections, as we will discuss in section 5. Once a

specific branch is chosen, ie. the flux background is fixed, we can inflate with the position

modulus inducing the monodromy and allowing for large field excursions. Let us finaly

note that we recover only half of the complete scalar potential because we are missing

the Chern-Simons part of the action, which because of supersymmetry will give the same

contribution as in eq.(4.23) (see [81] for a similar computation of the flux-induced scalar

potential obtained from the Chern-Simons action of a D5-brane, in which the authors also

keep explicetely the presence of the 4-forms coming from the RR fields).

In addition to the above quadratic piece, the position modulus can also have couplings

with other matter fields. Yukawa couplings with the D7 Wilson lines AI can be obtained

by considering the non-abelian part of F2 in eq.(4.20) and can also be written in terms of

the Minkowski 3-form field.

One can think of exploring a similar structure within Type IIA orientifolds. The

magnetic gauge field is a 4-form A4, which has to be expanded in a basis of 1-forms on

the D6-brane 3-cycles in order to get a Minkowski 3-form field. This can be done e.g. in

toroidal models, recovering the T-dual picture of the D7-brane models discussed above,

and also CY’s with appropriate 3-cycle topology. One can expand also the magnetic gauge

field in a basis of torsion cycles obtaining the models of Massive Wilson lines discussed

in [25]. We leave the study of this IIA case for future work.

5 4-forms, inflation and stability of scalar potentials

5.1 Stability of axions in flux vacua

In this section we discuss possible physical consequences of the structure of flux vacua

described in terms of minkowski 4-form fluxes as discussed above. For these applications

a crucial point is that we have found that all the RR and NS axion dependence of the flux

scalar potential goes always through Minkowski 3-forms. And by gauge invariance of the

latter, the flux potential, even after α′ and perturbative corrections are considered, should

admit an expansion in powers of the gauge invariant Minkowski 4-forms, i.e. for VRR in

Type IIA

V (bi, ca) =
∑

r,si,ta,u

crsitau

m
4(w−1)
p

(F 2r
0 )(F 2u

m )(Πi(gklF
kF l)si)(Πa(gbcF

bF c)ta) − Vnon−axionic ,

(5.1)

where r, u, si, ta are integers and the c’s are coefficients depending on the non-axionic

components of the Kahler and complex structure moduli. F0, Fi, Fa, Fm are the 4-forms
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discussed in section 3 (contracted with the Levi-Civita tensor), and

w = r + u+
∑

si +
∑

ta − 4 . (5.2)

Vnon−axionic collects pieces of the potential which will not depend on the axion fields, like

the local contributions in Vlocal discussed in section 3. Note that for a single factor, e.g

t1 6= 0, g11 = 1 with the rest of the integers vanishing, one gets the familiar Kaloper-Sorbo

structure of the type

V (b1) =
∑

n≥1

cn

m
4(n−1)
p

V n
0 =

∑

n≥1

cn

m
4(n−1)
p

(F1)
2n =

∑

n≥1

cn

m
4(n−1)
p

(q1 +mb1)
2n , (5.3)

and a discrete symmetry q1 → q1 − m, b1 → b1 + 1. As claimed in [22], due to this

symmetry and the gauge invariance of F1, all corrections to the leading quadratic potential

are suppressed. Indeed, if applied to inflation, the axion/inflaton b1 can have large field

trans-Planckian excursions since, with a Hubble parameter at inflation HI ≃ 1016GeV,

the possible corrections will be suppressed by powers V0/m
4
p and there will not be isolated

bn1/m
n
p terms in the potential.

As we have seen, in string theory the story is slightly more complicated, there are many

4-forms in the game and a complicated moduli fixing potential. Still the message we have

found is similar. All axion dependence comes through 4-forms, which are gauge invariant,

and each 4-form is invariant under discrete transformations under which the axions shift

while internal fluxes also shift. These transformations are a subset of the duality symmetries

present in a given CY compactification. The axions are not real axions, in the sense that

they may have masses and Yukawa couplings. They could be called multi-branched axions

since they feature a discrete shift symmetry as long as internal fluxes are also shifted.

This is the branched structure which has appeared in the past in the context of F-term

monodromy inflation [25]. Moreover, the quadratic potential of Kaloper-Sorbo is replaced

by more general polynomials up to order six.

In fact the situation in string theory is often much simpler than what eq. (5.1) seems

to indicate. Indeed, as we have shown in the Type IIA toroidal orbifold example, although

the 4-forms are invariant under axion shifts, they transform into each other under duality

transformations, T-dualities in this example. Due to the transformations in eq. (3.41) the

different RR 4-forms appear in the particular combination VRR in eq. (3.24) so that actually

the corrections to the RR potential will appear as an expansion in powers of VRR itself.

More generally, the full duality group of a specific Type II orientifold would often force the

corrections to the original potential to be an expansion in powers of the leading potential

potential V0, i.e.one expects in these cases

V =
∑

n

cnV
n
0 , (5.4)

where V0 is the tree level, leading order in α′, flux potential.

In the applications of this setting to inflation, the higher order corrections in V0,

although under control, may be non-negligible in the particular case of large field inflation.

In fact in that case they may lead to a flattening effect [82] so that, although for small
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field the uncorrected V0 gives an appropriate description, the asymptotic behaviour of the

potential for large field gets flattened. This has been observed in the context of certain

monodromy inflation models. It may also appear as an effect of the interaction of the

inflaton with heavy modes. This flattening effect is important, since e.g. it makes standard

quadratic chaotic inflation become e.g. linear and be consistent with Planck/BICEP limits.

Note however that this flattening effect does not modify the value of masses at the origin.

In models of inflation, in which the inflaton appears in the Dirac-Born-Infeld action of

a D-brane, the α′ corrections to the scalar potential do appear as a series expansion in the

leading scalar potential V0, see e.g. [25–27, 45, 83], in agreement with (5.4). It arises upon

expansion of the square root in the DBI action or, in the case in which the scalar is an open

string mode, due to a non-canonical redefinition of the scalar kinetic term. An example of

this effect is discussed in [45] in which the inflaton (which in this case is identified with a

MSSM Higgs) has an action with terms of the general form

L = −(1 + ξV0)(Dµφ)
2 − V0 + . . . , (5.5)

where in this case V0 is just quadratic and ξ is a constant factor proportional to α′. After

setting the kinetic term in canonical form, α′ corrections to the potential appear as a power

series in V0, giving rise to a linear behaviour for large φ. In this case φ parametrizes the

position of a D-brane on a torus, which is T-dual to a continuous Wilson line. Although

here φ is not a closed string monodromy axion, the model is an example of monodromy

inflation since there is a shift symmetry corresponding to discrete translation of the D-

brane of the torus and a non-trivial scalar potential arising from fluxes. As discussed in

section 4.2 the scalar potential V0 admits a description in terms of a complex open string

Minkowski 4-form.

Let us also note in closing that kinetic term redefinitions like that appearing in eq. (5.5)

also appear in computing the higher derivative corrections to general N = 1 supergravity

Lagrangians, see [84, 85] and references therein.

5.2 Multi-branched axions, scalar stability and naturalness

There are essentially a two well stablished ideas in order to make stable scalar masses

against loop corrections and get naturally light scalars, i.e. naturalness. One of them is

supersymmetry and the other is Goldstone bosons. To the latter case belong the (con-

tinuous) Peccei-Quinn shift symmetry of axions. This symmetry is only broken at the

non-perturbative level by instanton effects. It has however the drawback that axions have

only derivative couplings (e.g., no Yukawas). Analogously, there are BSM models in which

the Higgs fields are Goldstones bosons of a spontaneously broken global symmetry but

again Yukawa couplings are forbidden to leading order.

The class of flux potentials discussed in this paper seem to show the existence of a

third alternative to achieve scalar masses stable against loop corrections. These are fields

analogous to the multi-branched axions discussed in the previous sections. These fields

present a discrete shift invariance when accompanied by adequate transformations of de

Lagrangian parameters, fluxes in the case at hand. So it is important to realise that these
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are not symmetries of the field action. Rather, this is a symmetry of a Landscape of

Lagrangians differing by the different values of the parameters, fluxes in the string theory

case. But this Landscape structure, with different values for fluxes, is what one really

finds in string theory. Membrane domain walls, coupled to 3-forms are able to interpolate

between potentials corresponding to different Lagrangian parameters (fluxes).

A very important difference with the axion or, in general, Goldstone boson symmetry

is that the symmetry is consistent with interactions. Consider as an explicit model that

provided by the RR potential VRR of Type IIA string compactifications in section 3. The

potential presents polynomial interactions of the scalars bi, which are still consistent with

shifts bi → bi+ni as long as the e0, ei, qa parameters are transformed as in eq. (3.34). There

is in fact a landscape of potentials corresponding to different choices for these parameters,

and the symmetries relate different potentials and vacua. In view of these symmetries and

the landscape structure, the perturbative corrections to this scalar potential should appear

as a power series in the tree potential VRR. One expects for the corrected potential to a be

a function V = f(VRR) of the classical potential. Assume that the uncorrected potential

V 0
RR(φi) has a minimum at some values φi = φ0

i , Then at that minimum

dVcor

dφi
=

(

df

dVRR

)(

dVRR

dφi

)

= 0 (5.6)

so that the corrected potential has also in general a extremum there. For the masses at

that point one then has
∂2Vcor

∂φi∂φj
=

(

∂f

∂VRR

)(

∂2VRR

∂φi∂φj

)

(5.7)

and for ∂f
∂VRR

> 0 the corrected potential has also a minimum there.

The obvious observation is that both mass matrices are proportional and hence, for

an analytic function f , if the uncorrected potential has a massless scalar, the corrected

potential will also have a massles scalar. There exists a sort of scalar chirality for the scalar

potential if the structure (5.4) is true. In particular it would seem that modifications like

e.g. a quadratic loop divergence for the masses of scalars should be forbidden, since they

would violate explicitly this property. One way to understand this is to think that, from the

effective field theory point of view, upon renormalisation we should have to use a regulator

which is consistent with 4-form gauge invariance and the shift and duality symmetries,

and that such a regulator should not allow for a quadratic cut-off. While working on

a given branch, a perturbative calculation would yield e.g. a quadratic scalar divergence

for interacting scalars like these. However that would violate the branched structure of

the theory. Once taking the latter into account such divergences should be forbidden by

the symmetries.

It is tempting to speculate about the application of this stability property to the

SM hierarchy problem and the Higgs. Although the Higgs field is not directly an axion,

there are string constructions in which the Higgs degrees of freedom may be identified with

complex Wilson lines (see e.g. [45] and references there in) or their T-dual, D-brane position

moduli. In such a case the scalar Higgs may posses a multi-branch structure and one could

conceive such an scenario. The symmetries would forbid quadratic divergences for the
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Higgs mass. Still the scalar potentials considered in this paper contain only moduli and no

gauge interactions with charged fields. Furthermore, in order to be useful, one should be

able obtain a SUSY breaking scale much larger than the discrete symmetry breaking scale,

so that it is the latter which is mantling scalars light rather than SUSY. In this respect

one should play with the different flux degrees of freedom and compact volumes, which

requires a complete scheme of moduli fix ing in De Sitter. It would be interesting to see

whether models with these characteristics and the property (5.4) can be built. We leave

the study of that possibility to future research.

6 Conclussions and outlook

In this paper we have studied the role of Minkowski 3-forms in (orientifold) flux compact-

ifications of Type IIA and Type IIB theory. To this aim we have performed an explicit

dimensional reduction of the D=10 Type II actions in the presence of RR and NS internal

fluxes, keeping trace of the resulting Minkowski 4-forms and their couplings. These ex-

ternal fluxes are in one to one correspondance with the more familiar internal fluxes. We

find that the Minkowski 4-forms act as auxiliary fields of the Kahler and complex structure

moduli of the compactifications. This is consistent with the fact that 3-forms in Minkowski

have no propagating degrees of freedom, but the corresponding field strength 4-forms may

contribute to the cosmological constant.

We find that the dependence of the flux scalar potential on the RR and NS axions

always goes through the corresponding Minkowski 4-forms. In this context is then im-

portant to realise that in any Type II orientifold compactifications there are symmetries

under which these RR and NS axions suffer discrete shifts as long as appropriate discrete

translations of the internal fluxes are performed. Interestingly, the 4-forms are invariant

under these transformations. This, combined with the (3-form) gauge invariance, forces

the axion scalar potentials, even after perturbative corrections are included, to be express-

ible as an expansion in powers of the 4-forms. We also argue, and exemplify in a Type

IIA toroidal case, that additional duality symmetries will typically force a more restric-

tive structure with a perturbatively corrected scalar potential being a power series of the

leading order potential V0, as in eq. (5.4). This would be both a multifield generalisation

with higher order couplings and a string realisation of the field theory idea of Kaloper and

Sorbo. An important difference though is that the axions in this paper posses non-trivial

polynomial interactions.

The use of 4-forms, acting as auxiliary fields, to describe string flux vacua is most

appropriate to reveal the multi branched structure of flux scalar potentials. We have found

that in both Type IIA and Type IIB orientifolds keeping track of the 4-forms appearing

upon compactification allow us to identify in a simpler way the underlying symmetries of

the flux multi branched vacua. The corresponding 3-forms couple to membranes which can

break these symmetries but only at the non-perturbative level, inducing vacuum transitions

through domain walls.

The discrete symmetries which are preserved by the 4-forms are not standard single

Lagrangian symmetries but rather symmetries of a landscape of Lagrangians parametrized
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by the different internal fluxes. Not only fields transform, but masses and couplings (fluxes)

as well. The RR and NS fields are not axions in the usual sense (since their flux couplings

break the Peccei-Quinn symmetry explicitly) but multi-branched axions , which are only

invariant under discrete symmetries accompanied by flux transformations. The property

in eq. (5.4), preserved in an α′ expansion, would be of interest for large field models of

inflation in the string theory context, particularly in models of F-term monodromy [25],

which directly contain this Kaloper-Sorbo structure. The symmetries will protect the cor-

responding axion/inflaton when featuring trans-Planckian trips. Furthermore one expects

the loop corrections to preserve also the structure in (5.4). In particular we have argued

that quadratic divergences are not expected to appear for these multi-branched axions even

though they can have non-trivial couplings and masses and no supersymmetry. This would

provide for a new mechanism to maintain interacting scalars stable against quadratic loop

corrections. We hope to report on possible applications of these ideas in future work.
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[67] P.G. Camara, A. Font and L.E. Ibáñez, Fluxes, moduli fixing and MSSM-like vacua in a

simple IIA orientifold, JHEP 09 (2005) 013 [hep-th/0506066] [INSPIRE].

– 29 –

http://dx.doi.org/10.1007/JHEP01(2014)059
http://arxiv.org/abs/1310.5582
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.5582
http://dx.doi.org/10.1007/JHEP12(2014)014
http://arxiv.org/abs/1407.5688
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.5688
http://dx.doi.org/10.1016/S0550-3213(97)00337-4
http://arxiv.org/abs/hep-th/9604196
http://inspirehep.net/search?p=find+EPRINT+hep-th/9604196
http://dx.doi.org/10.1016/0550-3213(81)90225-X
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B184,381"
http://dx.doi.org/10.1016/0550-3213(81)90281-9
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B187,389"
http://dx.doi.org/10.1016/0550-3213(96)00370-7
http://arxiv.org/abs/hep-th/9603181
http://inspirehep.net/search?p=find+EPRINT+hep-th/9603181
http://dx.doi.org/10.1016/S0550-3213(97)00510-5
http://arxiv.org/abs/hep-th/9704045
http://inspirehep.net/search?p=find+EPRINT+hep-th/9704045
http://dx.doi.org/10.1016/S0370-1573(00)00085-5
http://arxiv.org/abs/hep-th/0005225
http://inspirehep.net/search?p=find+EPRINT+hep-th/0005225
http://dx.doi.org/10.1140/epjc/s10052-008-0567-9
http://arxiv.org/abs/0712.1923
http://inspirehep.net/search?p=find+EPRINT+arXiv:0712.1923
http://dx.doi.org/10.1007/JHEP05(2013)001
http://arxiv.org/abs/1212.4639
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.4639
http://dx.doi.org/10.1140/epjc/s2003-01336-8
http://arxiv.org/abs/hep-th/0307198
http://inspirehep.net/search?p=find+EPRINT+hep-th/0307198
http://dx.doi.org/10.1016/0550-3213(85)90216-0
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B254,187"
http://dx.doi.org/10.1088/1742-6596/343/1/012012
http://arxiv.org/abs/1107.3232
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.3232
http://dx.doi.org/10.1103/PhysRevD.80.127701
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D80,127701"
http://dx.doi.org/10.1016/j.nuclphysb.2005.04.007
http://arxiv.org/abs/hep-th/0412277
http://inspirehep.net/search?p=find+EPRINT+hep-th/0412277
http://dx.doi.org/10.1016/S0550-3213(02)00338-3
http://arxiv.org/abs/hep-th/0202168
http://inspirehep.net/search?p=find+EPRINT+hep-th/0202168
http://dx.doi.org/10.1088/1126-6708/2005/06/047
http://arxiv.org/abs/hep-th/0503169
http://inspirehep.net/search?p=find+EPRINT+hep-th/0503169
http://dx.doi.org/10.1088/1126-6708/2005/07/066
http://arxiv.org/abs/hep-th/0505160
http://inspirehep.net/search?p=find+EPRINT+hep-th/0505160
http://dx.doi.org/10.1088/1126-6708/2005/09/013
http://arxiv.org/abs/hep-th/0506066
http://inspirehep.net/search?p=find+EPRINT+hep-th/0506066


J
H
E
P
1
2
(
2
0
1
5
)
1
1
9

[68] E. Bergshoeff, R. Kallosh, T. Ort́ın, D. Roest and A. Van Proeyen, New formulations of

D = 10 supersymmetry and D8-O8 domain walls, Class. Quant. Grav. 18 (2001) 3359

[hep-th/0103233] [INSPIRE].

[69] G. Aldazabal, P.G. Camara, A. Font and L.E. Ibáñez, More dual fluxes and moduli fixing,
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