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Abstract Realisations of associahedra with linear non-isomorphic normal fans can be

obtained by alteration of the right-hand sides of the facet-defining inequalities from

a classical permutahedron. These polytopes can be expressed as Minkowski sums

and differences of dilated faces of a standard simplex as described by Ardila et al.

(Discret Comput Geom, 43:841–854, 2010). The coefficients yI of such a Minkowski

decomposition can be computed by Möbius inversion if tight right-hand sides z I are

known not just for the facet-defining inequalities of the associahedron but also for all

inequalities of the permutahedron that are redundant for the associahedron. We show

for certain families of these associahedra:

(1) How to compute the tight value z I for any inequality that is redundant for an

associahedron but facet-defining for the classical permutahedron. More precisely, each

value z I is described in terms of tight values z J of facet-defining inequalities of the

corresponding associahedron determined by combinatorial properties of I .

(2) The computation of the values yI of Ardila, Benedetti & Doker can be significantly

simplified and depends on at most four values za(I ), zb(I ), zc(I ) and zd(I ).

(3) The four indices a(I ), b(I ), c(I ) and d(I ) are determined by the geometry of the

normal fan of the associahedron and are described combinatorially.

(4) A combinatorial interpretation of the values yI using a labeled n-gon. This result

is inspired from similar interpretations for vertex coordinates originally described by

Loday and well-known interpretations for the z I -values of facet-defining inequalities.
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1 Introduction

Postnikov defined in [18] generalised permutahedra as a subfamily of all convex poly-

topes that have the following H-description:

Pn({z I }) :=
{

x ∈ R
n

∣

∣

∑

i∈[n] xi = z[n] and
∑

i∈I xi ≥ z I for ∅ ⊂ I ⊂ [n]
}

,

where [n] denotes the set {1, 2, . . . , n}. The classical (n − 1)-dimensional permuta-

hedron, as described for example by Ziegler, [29], corresponds to z I = |I |(|I |+1)
2

for

∅ ⊂ I ⊆ [n] (we distinguish between ⊂ and ⊆!). Obviously, some of the above

inequalities may be redundant for Pn({z I }) and, unless the value z I is tight, suffi-

ciently small increases and decreases of z I for a redundant inequality do not change

the combinatorial type of Pn({z I }). Although the encoding by all values z I is not

efficient, Proposition 1.2 below gives a good reason to specify tight values z I for

all I ⊆ [n]. The subfamily of generalised permutahedra is now characterised by the

additional requirement that Pn({z I }) is an element of the deformation cone of the

classical permutahedron. Equivalently, this means that the normal fan of the gener-

alised permutahedron is a coarsening of the normal fan of the classical permutahedron

or that no facet-defining hyperplane of the permutahedron is moved past any ver-

tices, compare Postnikov et al. [19]. This fine distinction and additional condition

is easily overlooked but essential. For example, Proposition 1.2 does not hold for

arbitrary polytopes Pn({z I }), we illustrate this by a simple example in Sect. 5. Fun-

damental examples of generalised permutahedra are dilations of the standard simplex

�n = conv{e1, e2, . . . , en} where ei denotes the i th standard basis vector of R
n .

For any two polytopes P and Q, the Minkowski sum P + Q is defined as

{p + q | p ∈ P, q ∈ Q}.

In contrast, we define the Minkowski difference P − Q of P and Q only if there is

a polytope R such that P = Q + R. For more details on Minkowski differences we

refer to [23]. We are interested in decompositions of generalised permutahedra into

Minkowski sums and differences of dilated faces λI �I of the (n − 1)-dimensional

standard simplex �n , where the faces �I of �n are given by conv{ei }i∈I for I ⊆ [n].
If a polytope P is the Minkowski sum and difference of dilated faces of �n , we

say that P has a Minkowski decomposition into faces of the standard simplex. The

following two results are known key observations.

Lemma 1.1 ([1, Lemma 2.1]). Pn({z I }) + Pn({z′
I }) = Pn({z I + z′

I }).

If we consider the function I �−→ z I that assigns every subset of [n] the corre-

sponding tight value z I of Pn({z I }), then the Möbius inverse of this function assigns

to I the coefficient yI of a Minkowski decomposition of Pn({z I }) into faces of the

standard simplex:
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Fig. 1 Two 3-dimensional associahedra Asc
3 = P4({z̃c

I
}) with vertex coordinates computed for differently

chosen Coxeter elements according to [11]. The different Coxeter elements are encoded by different label-

ings of hexagons as indicated. The images shown are isometric copies of 3-polytopes contained in the affine

hyperplane x1 + x2 + x3 + x4 = 10 of R
4

Proposition 1.2 ([1, Proposition 2.3]) Every generalised permutahedron Pn({z I })
can be written uniquely as a Minkowski sum and difference of faces of �n:

Pn({z I }) =
∑

I⊆[n]
yI �I ,

where yI =
∑

J⊆I (−1)|I\J |z J for each I ⊆ [n].

In particular, we also have z I =
∑

J⊆I yJ . A basic example is the classical permu-

tahdron: it is known to be a zonotope and it is the Minkowski sum of the edges and

vertices of �n . The reader is invited to check that the corresponding z I -values obtained

by this formula yield precisely the right-hand sides mentioned earlier.

We will study Minkowski decompositions of generalised permutahedra that have

the same normal fan as Asc
n−1. Two 3-dimensional examples of Asc

3 (with distinct

normal fans) are shown in Fig. 1, we describe their construction in detail in Sect. 2.

The normal fans of these polytopes are determined by a Coxeter element c of the

symmetric group, but we will avoid the explicit use of Coxeter elements and use a

partition Dc ⊔ Uc of [n] induced by c instead. The main result is that the relation

between z I - and yI -coordinates of Proposition 1.2 simplifies significantly: each yI

can be computed from at most four values z J which depend on I and the normal fan

of the polytope (or, equivalently, the Coxeter element c or the corresponding partition

of [n]). Moreover, we give an explicit combinatorial description how to determine these

terms z J . If we further restrict to the realisations Asc
n−1 as described by Hohlweg and

Lange in [11], we show that the coefficients yI can be described as signed product of

path-lengths of a labeled polygon.

We now give examples of Minkowski decompositions of realisations of

2-dimensional associahedra As
c1

2 and As
c2

2 which are contained in the affine hyperplane

x1 + x2 + x3 = 6 of R
3. We immediately see that the Minkowski decompositions are

distinct since the set of coefficients yI differs. These associahedra are pentagons that

are obtained from the classical permutahedron by making the inequality x1 + x3 ≥ 3
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(respectively x2 ≥ 1) redundant. They are described by the following complete set of

tight z I -values z
c1

I and z
c2

I :

I {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

z
c1
I

1 1 1 3 2 3 6

z
c2
I

1 0 1 3 3 3 6

Using Proposition 1.2, the reader may verify that

As
c1

2 =1�{1} + 1�{2} + 1�{3} + 1�{1,2} + 0�{1,3} + 1�{2,3} + 1�{1,2,3}

and

As
c2

2 = 1�{1} + 0�{2} + 1�{3} + 2�{1,2} + 1�{1,3} + 2�{2,3} + (−1)�{1,2,3}.

Illustrations of these decompositions are given in Figs. 2 and 3.

We could stop here and be fascinated how the Möbius inversion relates the descrip-

tion by half spaces to the Minkowski decomposition. But we go beyond this alternating

sum description for yI and significantly simplify the formula for each yI in Therom 4.2.

In fact, each yI can be expressed as an alternating sum of at most four non-zero values

za(I ), zb(I ), zc(I ) and zd(I ) which are tight right-hand sides for certain facet-defining

inequalities as specified in the theorem. In other words, we extract combinatorial

core data for the Möbius inversion of the function z I and answer the question which

subsets J of I are essential to compute yI if the associahedron’s normal fan is the

normal fan of Asc
n−1. Figure 9 illustrates how Theorem 4.2 can be used to compute

the coefficients yI for one of the two examples shown in Fig. 1. If the associahedron

coincides with some Asc
n−1 of Hohlweg and Lange [11], Theorem 4.3 states a purely

combinatorial interpretation of the values yI . To illustrate this theorem, we recompute

yI for As
c1

2 and As
c2

2 in Examples 4.6 and 4.7.

The outline of the paper is as follows. Section 2 summarises necessary known facts

about Asc
n−1 and indicates some occurrences of the realisations considered here in the

mathematical literature. In Sect. 3 we introduce the notion of an up and down interval

Fig. 2 The Minkowski decomposition of the 2-dimensional assiciahedron As
c1
2 into faces of the standard

simplex is actually a Minkowski sum of some faces of a standard simplex
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Fig. 3 The Minkowski decomposition of As
c2
2 into dilated faces of�[n]

decomposition for subsets I ⊆ [n]. This decomposition depends on the choice of a

Coxeter element c (or equivalently on a partition of [n] induced by c) and is essential

to prove Proposition 3.8. This proposition gives a combinatorial characterisation of

all tight values z I for Asc
n−1 needed to evaluate yI using Proposition 1.2. The main

results, Theorems 4.2 and 4.3, are then stated in Sect. 4. The proof of Theorem 4.2 is

long and convoluted and deferred to Sects. 6 and 7, while Theorem 4.3 is proved under

the assumption of Theorem 4.2 in Sect. 4. To show that Proposition 1.2 and Theo-

rem 4.2 do not hold for polytopes Pn({z I }) that are not contained in the deformation

cone of the classical permutahedron, we briefly study a realisation of a 2-dimensional

cyclohedron in Sect. 5.

About the same time as some of these results were achieved, Pilaud and Santos

showed that the associahedra Asc
n−1 are examples of brick polytopes [16,17]. One

of their results is that any brick polytope can be expressed as a Minkowski sum of

other brick polytopes. As a consequence, we have two Minkowski decompositions of

Asc
n−1 that are extremal in the following sense. The first decomposition of Asc

n−1 has a

relatively complicated structure with respect to the coefficients yI (possibly negative

numbers) but is very simple with respect to the polytopes used (faces of a standard

simplex). On the other hand, the second decomposition of Asc
n−1 has a simple structure

in terms its coefficients (they are either 0 or 1) but is more complicated with respect

to the polytopes used (brick polytopes). At the time of writing, the exact relationship

of these two decompositions is not properly understood and remains a joint project of

Pilaud with the author.

2 Associahedra as Generalised Permutahedra

Associahedra form a family of combinatorially equivalent polytopes and can be

realised as generalised permutahedra. Since the combinatorics of a polytope is encoded

in its face lattice, we define an associahedron as a polytope with a face lattice that is

isomorphic to the lattice of sets of non-crossing proper diagonals of a convex and plane

(n + 2)-gon Q ordered by reversed inclusion.1 This description immediately tells us

1 A proper diagonal is a line segment connecting a pair of vertices of Q whose relative interior is contained

in the interior of Q. A non-proper diagonal is a diagonal that connects vertices adjacent in ∂ Q and a

degenerate diagonal is a diagonal where the end-points are equal.
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Fig. 4 The four possible c-labelings Qc of a hexagon

that the set of k-faces is in bijection to the set of triangulations of Q with k proper

diagonals removed. In particular, vertices correspond to triangulations and facets cor-

respond to proper diagonals. Since associahedra turn out to be simple polytopes, a

result of Blind and Mani-Levitska with an elegant proof due to Kalai, [3,13], guaran-

tees that the face lattice is already determined by the 1-skeleton, so it suffices to specify

the vertex-edge graph to determine the combinatorics of the face-lattice. This graph is

known as the flip graph of triangulations of Q. In 2004, Loday published a beautiful

combinatorial description for the vertex coordinates of associahedra constructed ear-

lier by Shnider and Sternberg, Shnider and Stasheff [24,25,14]. Loday’s description

is in terms of labeled binary trees dual to the triangulations of Q. The construction

of Shnider, Sternberg and Stasheff as well as Loday’s vertex description was subse-

quently generalised by Hohlweg and Lange [11]. The latter construction explicitly

describes realisations Asc
n−1 of (n − 1)-dimensional associahedra and exhibits them

as generalised permutahedra. The construction depends on the choice of a Coxeter

element c of the symmetric group �n on n elements.

We now outline the construction of Asc
n−1. Although we use Coxeter elements in

our notation to distinguish between different realisations, we do not explicitly use

Coxeter elements. It is known that the Coxeter elements are in bijection to the certain

partitions Dc ⊔ Uc of [n]. We will use these partitions to obtain labelings Qc of Q and

refer to Dc as down set and to Uc as up set. The partitions satisfy

Dc = {d1 = 1 < d2 < · · · < dℓ = n} and Uc = {u1 < u2 < · · · < um},

so n = ℓ + m, |Dc| = ℓ ≥ 2 and |Uc| = m. We now obtain the c-labeling Qc of Q

with label set [n +1]∪ {0} as follows. Pick two vertices of Q which are the end-points

of a path with ℓ + 2 vertices on the boundary of Q, label the vertices of this path

counter-clockwise increasing using the label set Dc := Dc ∪ {0, n + 1} and label the

remaining path clockwise increasing using the label set Uc. The labeling Qc has the

property that the label set Dc is always on the right-hand side of the diagonal {0, n +1}
oriented from 0 to n + 1. To illustrate these c-labelings Qc, observe that there are

four distinct partitions Dc ⊔ Uc for n = 4 which yield the four labeled hexagons Qc

shown in Fig. 4. We derive values z I for some subsets I ⊂ [n] using oriented proper

diagonals of Qc as follows. Orient each proper diagonal δ from the smaller to the

larger labeled end-point of δ, associate to δ the set Rδ that consists of all labels on
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Table 1 Rδ and z̃c
I

associated to the proper diagonals δ of the labelled hexagon for the associahedron on

the left of Fig. 1 (Dc = 1, 3, 4 and Uc = 2)

δ {0, 3} {0, 4} {0, 5} {1, 2} {1, 4} {1, 5} {2, 3} {2, 4} {3, 5}
Rδ {1} {1, 3} {1, 3, 4} {2, 3, 4} {3} {3, 4} {1, 2} {1, 2, 3} {4}
z̃c

Rδ
1 3 6 6 1 3 3 6 1

the strict right-hand side of δ, and replace the elements 0 and n + 1 by the smaller

respectively larger label of the end-points contained in Uc if possible. For each proper

diagonal δ we have Rδ ⊆ [n] but obviously not every subset of [n] is of this type if

n > 2. Now set

z̃c
I :=

{

|I |(|I |+1)
2

if I = Rδ for some proper diagonal δ,

−∞ else,

compare Tables 1 and 2 for the two associahedra Asc
3 depicted in Fig. 1 that correspond

to two different c-labelings of a hexagon. In [11] it is shown that Pn({z̃c
I }) is in fact an

associahedron of dimension (n−1) realised in R
n for every choice of c. In other words,

to obtain these associahedra from the classical permutahedron, we make all inequalities

redundant that do not correspond to a proper diagonal of Qc. Of course, the right-hand

sides z̃c
I = −∞ are not tight. Proposition 3.8 shows how we can compute the tight

values for z̃c
I using finite values z̃c

I of facet-defining inequalities only. Throughout this

manuscript and for any choice c, the reader may refer to this set of tight values {z̃c
I } to

illustrate the results. But we emphasise that this specific choice {z̃c
I } is only assumed

for Statements 4.3–4.5. All other results are valid for the larger class of z I -coefficients

where is polytope Pn({z I }) is an associahedron with the same normal fan as some

Asc
n−1. Proposition 3.8 and Theorem 4.2 can be applied to this more general situation

to obtain tight values for the redundant values zc
I and to obtain the coefficients yI of

the Minkowski decomposition into faces of the standard simplex.

It is known that realisations As
c1

n−1 and As
c2

n−1 can be linear isometric for certain

choices c1 and c2 and values z I , [2]. While the two associahedra depicted in Fig. 1

are neither linear isometric nor do they have the same normal fan, we remark that the

associahedra As
c1

2 and As
c2

2 discussed in the previous section are linear isometric and

the isometry is a point reflection � in the hyperplane
∑

i∈[3] xi = 6. Although the z I -

and yI -values differ for both realisations, they transform according to this isometry. If

we consider a Minkowski decomposition of As
c2

2 with respect to the faces of �(�3),

we obtain precisely the Minkowski coefficients of As
c1

2 with respect to the faces of the

standard simplex:

Table 2 Rδ and z̃c
I

associated to the proper diagonals δ of the labelled hexagon for the associahedron on

the right of Fig. 1 (Dc = 1, 4 and Uc = 2, 3)

δ {0, 4} {2, 4} {3, 4} {0, 5} {0, 3} {1, 2} {2, 5} {1, 3} {1, 5}
Rδ {1} {1, 2} {1, 2, 3} {1, 4} {1, 3, 4} {2, 3, 4} {1, 2, 4} {3, 4} {4}
z̃c

Rδ
1 3 6 3 6 6 6 3 1
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Fig. 5 The Minkowski decomposition of As
c1
2 into faces of the simplex �(�[3])

As
c2

2 = �(�{1}) + �(�{2}) + �(�{3}) + �(�{1,2})

+�(�{2,3}) + �(�{1,2,3}),

see Fig. 5 for an illustration. We can weaken this observation a little bit to obtain

a statement about realisations with linear isomorphic normal fans. Such realisations

have been discussed for example by Ceballos et al. [6]. Suppose that � is a linear

isomorphism that maps the normal fan of As
c1

n−1 to the normal fan of As
c2

n−1. Then �

induces a transformation between the index sets of the redundant/irredundant inequal-

ities of As
c1

n−1 to the redundant/irredundant inequalities of As
c2

n−1. Of course, the values

z
c1

I for As
c1

n−1 transform only into tight right-hand sides of As
c2

n−1 if As
c2

n−1 = �(As
c1

n−1).

Thus we obtain two Minkowski decompositions of As
c2

n−1: one into faces of the stan-

dard simplex �n as described in Theorem 4.2 and another one into faces �I of �(�n).

The combinatorial description of the coefficients y I for As
c2

n−1 with respect to faces

of �(�n) is the same as the description of yI for As
c1

n−1 with respect to faces of �n . Of

course, to compute the coefficients y I , the values for the right-hand sides have to be

adjusted to the right-hand sides z
c1

I of �(As
c1

n−1). As a consequence, the combinatorial

data that describes the simplification of the Möbius inversion of Theorem 4.2 is already

determined by the geometry of the normal fan of Asc
n up to linear isomorphism.

We end this section relating Asc
n to earlier work. Firstly, we indicate a connec-

tion to cambrian fans, generalised associahedra and cluster algebras and secondly to

convex rank texts and semigraphoids in statistics. Thirdly, we mention some earlier

appearances of specific instances of Asc
n−1 in the literature.

Fomin and Zelevinsky introduced generalised associahedra in the context of clus-

ter algebras of finite type, [8], and it is well-known that associahedra are generalised

associahedra associated to cluster algebras of type A. The construction of [11] was

subsequently generalised by Hohlweg, Lange, and Thomas to generalised associahe-

dra, [12], and depends also on a Coxeter element c. The geometry of the normal fans of

these realisations is determined by combinatorial properties of c and the normal fans

are c-cambrian fans (introduced by Reading and Speyer in [20]). Reading and Speyer

conjectured the existence of a linear isomorphism between c-cambrian fans and g-

vector fans associated to cluster algebras of finite type with acyclic initial seed (the

notion of a g-vector fan for cluster algebras was introduced by Fomin and Zelevinsky

[9]). In [21], Reading and Speyer describe and relate cambrian and g-vector fans in

more detail and prove their conjecture up to an assumption of another conjecture of
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[9]. Yang and Zelevinsky gave an alternative proof of the conjecture of Reading and

Speyer in [28]. Stella recently recovered the realizations of generalized associahedra

for finite type of [12] and describes the relationship to cluster algebras in detail [27].

Generalised permutahedra and therefore the associahedra Asc
n−1 are closely related

to the framework of convex rank tests and semigraphoids from statistics as discussed

by Morton et al. [15]. The semigraphoid axiom characterises the collection of edges

of a permutahedron that can be contracted simultaneously to obtain a generalised per-

mutahedron. The authors also study submodular rank tests, its subclass of Minkowski

sum of simplices tests and graphical rank tests. The latter one relates to graph associ-

ahedra of Carr and Devadoss [5]. Among the associahedra studied in this manuscript,

Loday’s realisation fits to Minkowski sum of simplices and graphical rank tests.

Some instances of Asc
n−1 have been studied earlier. For example, the realisations of

Loday, [14], and of Rote et al. [22], related to one-dimensional point configurations,

are affine equivalent to Asc
n−1 if Uc = ∅ or Uc = [n]\{1, n}. For Uc = ∅, the

Minkowski decomposition into faces of a standard simplex is described by Postnikov

in [18]. Moreover, Rote, Santos, and Streinu point out in Sect. 5.3 that their realisation

is not affine equivalent to the realisation of Chapoton et al. [7]. It is not difficult to

show that the realisation described in [7] is affine equivalent to Asc
3 if Uc = {2} or

Uc = {3}.

3 Tight Values for all z
c

I
for As

c

n−1

Since the facet-defining inequalities for Asc
n−1 correspond to proper diagonals of Qc,

we know precisely the irredundant inequalities for the generalised permutahedron

Pn({z̃c
I }) = Asc

n−1. In this section, we determine tight values z̃c
I for all I ⊆ [n] cor-

responding to redundant inequalities in order to be able to compute the coefficients

yI of the Minkowski decomposition of Asc
n−1 as described by Proposition 1.2. The

concept of an up and down interval decomposition induced by the partitioning Dc ⊔Uc

(or, equivalently, induced by c) of a given interval I ⊂ [n] is a key concept that we

introduce first, it allows us to describe any I ⊆ [n] in terms of unions and intersec-

tions of sets Rδ for certain proper diagonals determined by this decomposition (or,

equivalently, as unions of set differences of certain sets Rδ and their complements).

Definition 3.1 (Up and down intervals). Let Dc = {d1 = 1 < d2 < · · · < dℓ = n}
and Uc = {u1 < u2 < · · · < um} be the partition of [n] induced by a Coxeter

element c.

(a) A set S ⊆ [n] is a non-empty interval of [n] if S = {r, r + 1, . . . , s} for some

0 < r ≤ s < n. We write S as closed interval [r, s] (end-points included) or as

open interval (r − 1, s + 1) (end-points excluded). An empty interval is an open

interval (k, k + 1) for some 1 ≤ k < n.

(b) A non-empty open down interval is a set S = {dr < dr+1 < · · · < ds} ⊆ Dc for

some 1 ≤ r ≤ s ≤ ℓ. We write S as open down interval (dr−1, ds+1)Dc
where we

allow dr−1 = 0 and ds+1 = n + 1, i.e. dr−1, ds+1 ∈ Dc. For 1 ≤ r ≤ ℓ − 1, we

also have the empty down interval (dr , dr+1)Dc
.
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(c) A closed up interval is a non-empty set S = {ur < ur+1 < · · · < us} ⊆ Uc for

some 1 ≤ r ≤ s ≤ ℓ. We write [ur , us]Uc
.

We often omit the words open and closed when we consider down and up intervals.

There will be no ambiguity, because we are not going to deal with closed down intervals

or open up intervals. Up intervals are always non-empty, while down intervals may

be empty. It will be useful to distinguish the empty down intervals (dr , dr+1)Dc
and

(ds, ds+1)Dc
if r = s although they are equal as sets.

It might be helpful to read the following definition of the up and down interval

decomposition in combination with Examples 3.3 and 3.5.

Definition 3.2 (Up and down interval decomposition). Let Dc ⊔ Uc be the partition

of [n] induced by a Coxeter element c and I ⊂ [n] be non-empty. The up and down

interval decomposition of type (v,w) of I is a partition of I into disjoint up and down

intervals I U
1 , . . . , I U

w and I D
1 , . . . , I D

v obtained by the following procedure.

1. Suppose there are ṽ non-empty inclusion maximal down intervals of I denoted

by Ĩ D
k = (ãk, b̃k)Dc

, 1 ≤ k ≤ ṽ, with b̃k ≤ ãk+1 for 1 ≤ k < ṽ. Consider also

all empty down intervals ED
i = (dri

, dri +1)Dc
with b̃k ≤ dri

< dri +1 ≤ ãk+1 for

0 ≤ k ≤ ṽ where b̃0 = 1 and ãṽ+1 = n. Denote the open intervals (ãi , b̃i ) and

(dri
, dri +1) of [n] by Ĩi and Ei respectively.

2. Consider all inclusion maximal up intervals of I contained in some interval Ĩi

or Ei obtained in Step 1 and denote these up intervals by

I U
1 = [α1, β1]Uc

, . . . , I U
w = [αw, βw]Uc

.

Without loss of generality, we assume αi ≤ βi < αi+1.

3. A down interval I D
i = (ai , bi )Dc

, 1 ≤ i ≤ v, is a down interval obtained in Step 1

that is either a non-empty down interval Ĩ D
k or an empty down interval ED

k with

the additional property that there is some up interval I U
j obtained in Step 2 such

that I U
j ⊆ Ek . Without loss of generality, we assume bi ≤ ai+1 for 1 ≤ i < v.

Example 3.3 We describe the up and down interval decomposition for three subsets

of [4] which is partitioned into Dc = {1, 3, 4} and Uc = {2} and encourage the reader

to sketch the steps.

(i) J1 = {2, 3}.
The only non-empty inclusion maximal down interval of J1 is Ĩ D

1 =(1, 4)Dc
={3};

there are no empty down intervals ED
i to be considered. As inclusion maximal up

intervals of J1 contained in Ĩ1 = (1, 4) = {2, 3}, we identify I U
1 =[2, 2]Uc

={2}.
The up and down interval decomposition of J1 is (1, 4)Dc

⊔ [2, 2]Uc
. Its type

is (1, 1).

(ii) J2 = {2}.
There is no non-empty inclusion maximal down interval of J2 to be considered,

but there is one empty down interval ED
1 = (1, 3)Dc

such that E1 = (1, 3) = {2}
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contains one inclusion maximal up interval I U
1 = [2, 2]Uc

= {2} of J2. It follows

that the up and down interval decomposition of J2 is (1, 3)Dc
⊔ [2, 2]Uc

. Its type

is (1, 1).

(iii) Consider J3 = {2, 4}.
The only non-empty inclusion maximal down interval of J3 is Ĩ D

1 =(3, 5)Dc
={4};

there is one empty down interval ED
1 = (1, 3)Dc

such that E1 contains an inclu-

sion maximal up interval of J3, this is the up interval I U
1 = [2, 2]Uc

= {2}. There

is no non-empty inclusion maximal up interval contained in Ĩ D
1 . It follows that the

up and down interval decomposition of J3 is
(

(1, 3)Dc
⊔ [2, 2]Uc

)

⊔
(

(3, 5)Dc

)

.

Its type is (2, 1).

Definition 3.4 (Nested up and down interval decomposition, nested components)

Let Dc ⊔ Uc be the partition of [n] induced by a Coxeter element c and I ⊂ [n] be

non-empty.

(a) The up and down interval decomposition of I is nested if its type is (1, w).

(b) A nested component of I is an inclusion-maximal subset J of I such that the up

and down decomposition of J is nested.

The definition of a nested up and down interval decomposition can be rephrased as

follows: all up intervals are contained in the interval (a1, b1) of [n] obtained from the

unique (empty or non-empty) down interval I D
1 = (a1, b1)Dc

. The following example

describes the up and down interval decompositions of I = Rδ for all proper diagonals

δ of Qc. The situation is illustrated in Fig. 6. As a consequence, we observe that the

up and down interval decomposition for Rδ is always nested if δ is a proper diagonal.

Example 3.5 Let Dc ⊔ Uc be the partition of [n] induced by a Coxeter element c. The

proper diagonals δ = {a, b}, a < b, of the c-labeled polygon Qc are in bijection

to certain non-empty proper subsets Rδ ⊂ [n] that have an up and down interval

decomposition of type (1, 0), (1, 1), or (1, 2). More precisely, we have

Fig. 6 The four possible situations for a diagonal δ = {a, b} of Example 3.5
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(i) Rδ = (a, b)Dc
iff Rδ has an up and down decomposition of type (1, 0).

(ii) Rδ = (0, b)Dc
∪ [u1, a]Uc

or Rδ = (a, n + 1)Dc
∪ [b, um]Uc

iff Rδ has a decom-

position of type (1, 1).

(iii) Rδ = (0, n + 1)Dc
∪ [u1, a]Uc

∪ [b, um]U pc iff Rδ has an up and down decompo-

sition of type (1, 2).

To simplify notation, we extend the definition of Rδ to the non-proper diagonals

δ = {0, u1} and δ = {um, n + 1} by defining R{0,u1} = R{um ,n+1} = [n]. An example

of the diagonals δi, j associated to an up and down interval decomposition defined in

the next Lemma is discussed and illustrated in Example 3.7 and Fig. 7.

Lemma 3.6 Given the partition [n] = Dc ⊔ Uc induced by a Coxeter element c. Let I

be a non-empty proper subset of [n] with up and down interval decomposition of

type (v,w) and nested components of type (1, w1), · · · , (1, wv). For 1 ≤ i ≤ v and

1 ≤ j ≤ wi , denote by [αi, j , βi, j ]Uc
the inclusion maximal up intervals contained in

the down interval (ai , bi )Dc
where βi, j < αi, j+1 and bi ≤ ai+1.

Associate to the nested component (1, wi ) the diagonal δi,1 = {ai , bi } if wi = 0.

If wi > 0 then associate to the nested component (1, wi ) the diagonals

δi,1 := {ai , αi,1},
δi, j := {βi, j−1, αi, j } for 1< j ≤wi , and

δi,wi +1 := {βi,wi
, b}.

Then the diagonals δi, j are non-crossing and

I =
⋃

i∈[v]

⋂

j∈[wi +1]
Rδi, j

=
⋃

i∈[v]

(

Rδi,wi +1
\
(

⋃

j∈[wi ]
[n]\Rδi, j

))

.

Proof It follows from the definition of nested components that δi, j and δi ′, j ′ are non-

crossing if i = i ′. That δi, j and δi, j ′ are non-crossing within a nested component is

implied by βi, j < αi, j+1.

To see the identities on I , we first remark that I =
⋂

j∈[w1+1] Rδ1, j
follows directly

from the the up and down interval decomposition of I and the definition of Rδ if I

has only one nested component. If I consists of more than one nested component,

Fig. 7 The associated diagonals δi, j for the three examples considered in Example 3.7
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we obtain the claim since it holds for each nested component separately. The sec-

ond identity is a simple reformulation of the first. This is easily seen in case of just

one nested component: instead of intersecting the sets Rδ , we choose δ = δ1,w1+1

and remove the complements [n]\Rδ1, j
, 1 ≤ j ≤ w1 from Rδ . This yields

⋂

j∈[w1+1] Rδi, j
. ⊓⊔

Example 3.7 We briefly discuss the diagonals associated to the up and down interval

decomposition for the three subsets J1 = {2, 3}, J2 = {2} and J3 = {2, 4} of [4]
partitioned by Dc = {1, 3, 4} and Uc = {2}. These examples are illustrated in Fig. 7.

(i) J1 = (1, 4)Dc
⊔ [2, 2]Uc

and the associated diagonals are δ1,1 = {1, 2} and

δ1,2 = {2, 4}.
(ii) J2 = (1, 3)Dc

⊔ [2, 2]Uc
and the associated diagonals are δ1,1 = {1, 2} and

δ1,2 = {2, 3}.
(iii) J3 =

(

(1, 3)Dc
⊔ [2, 2]Uc

)

⊔
(

(3, 5)Dc

)

and the associated diagonals are

δ1,1 = {1, 2}, δ1,2 = {2, 3} and δ2,1 = {3, 5}.

The final proposition of this section resolves the quest for tight values zc
I of all

redundant inequalities of an associahedron that has the normal fan of Asc
n−1. If we

denote this associahedron by Pn({z̃c
I }), then the inequalities that correspond to an

index set I = Rδ for some proper diagonal of Qc are precisely the facet defining

inequalities and all other inequalities are redundant.

Proposition 3.8 Given the partition [n] = Dc ⊔ Uc induced by a Coxeter element c.

Let I be a non-empty proper subset of [n] with up and down interval decomposition

of type (v,w) and nested components of type (1, w1), . . . , (1, wv). For 1 ≤ i ≤ v and

1 ≤ j ≤ wi , denote by [αi, j , βi, j ]Uc
the inclusion maximal up intervals contained in

the down interval (ai , bi )Dc
where βi, j < αi, j+1 and bi ≤ ai+1. The diagonals δi, j

are defined as in Lemma 3.6. For non-empty I ⊆ [n] we set

zc
I :=

∑

i∈[v]

(
∑

j∈[wi +1]
z̃c

Rδi, j
− wi z̃

c
[n]

)

.

Then P({zc
I }) = P({z̃c

I }) and all zc
I are tight.

Proof The verification of the inequality is a straightforward calculation:

∑

i∈I

xi =
∑

i∈[v]

∑

k∈
⋂

j∈[wi +1] Rδi, j

xk

=
∑

i∈[v]

(
∑

k∈[v]
xk −

∑

j∈[wi +1]

∑

k∈[n]\Rδi, j

xk

)

≥
∑

i∈[v]

(

z̃c
R[n] +

∑

j∈[wi +1]

(

z̃c
Rδi, j

− z̃c
[n]

))

.

The first equality is an application of Lemma 3.6 and the second equality is a

simple reformulation. The inequality holds, since
∑

i∈Rδ
xi ≥ z̃c

Rδ
is equivalent to

−
∑

i∈[n]\Rδ
xi ≥ z̃c

Rδ
− z[n] for every proper diagonal δ. ⊓⊔
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Definition 3.9 Let I be a non-empty proper subset of [n] with up and down interval

decomposition of type (v,w) and nested components of type (1, w1), · · · , (1, wv).

As in Lemma 3.6, we associate diagonals δi, j for 1 ≤ i ≤ v and 1 ≤ j ≤ wi . The

subset DI of proper diagonals of {δi, j |1 ≤ i ≤ v and 1 ≤ j} is called set of proper

diagonals associated to I . Similarly, we say that δ ∈ DI is a proper diagonal associated

to I .

We end this section with some remarks. First, if a non-proper diagonal δ = {0, u1} or

δ={um, n+1} occurs as a diagonal associated to the first or last nested component, the

formula for zc
I in Proposition 3.8 can be simplified by cancelation of the corresponding

terms z̃c
[n]. Second, for any proper diagonal δ of Qc, we obtain zc

Rδ
= z̃c

Rδ
. And finally,

we can characterise the face of P({z̃c
I }) that minimises the linear functional

∑

i∈I xi

for a given non-empty and proper subset I ⊂ [n].

Corollary 3.10 Associate the linear functional ϕI (x) =
∑

i∈I xi to a non-empty

proper subset I ⊂ [n] and denote the facet of P({z̃c
I }) that is supported by

∑

i∈Rδ
xi = z̃c

Rδ
for the proper diagonal δ by FRδ

. Then the intersection
⋂

δ∈DI
FRδ

is the minimizing face of P({z̃c
I }) for ϕI .

4 Main Results and Examples

Substitution of Proposition 3.8 into Proposition 1.2 provides a way to compute all

Minkowski coefficients yI since all tight values zc
I for Asc

n−1 = Pn({zc
I }) are known:

yI =
∑

J⊆I

(−1)|I\J |zc
J =

∑

J⊆I

(−1)|I\J |
∑

i∈[vJ ]

(
∑

j∈[wi +1]
z̃c

R
δ J
i, j

− wi z̃
c
[n]

)

. (1)

The goal of this section is to provide two simpler formulae for yI . The first one, given

in Theorem 4.2, simplifies Formula (1) to at most four non-zero summands for each

I ⊆ [n]. The second one, stated in Theorem 4.3, is only valid if the right-hand sides of

the facet-defining inequalities satisfy zc
I = |I |(|I |+1)

2
. The values yI are then described

as a (signed) product of two numbers that measure certain paths of Qc. Theorem 4.3

can be seen as a new aspect to relate combinatorics of the labeled n-gon Qc to a

construction of Asc
n−1: the coefficients for the Minkowski decomposition into faces

of the standard simplex can be obtained from the combinatorics of Qc. Two other

relations of the combinatorics of Qc to the geometry of Asc
n−1 were known before. It

is possible to extract the coordinates of the vertices [14,11], but it is also possible to

determine the facet normals and the right-hand sides for their inequalities [11].

From now on, we use the following notation and make some general assumptions

unless explicitly mentioned otherwise. Let [n] = Dc⊔Uc be the partition of [n] induced

by some fixed Coxeter element c with

Dc = {d1 = 1 < d2 < · · · < dℓ = n} and Uc = {u1 < · · · < um}.

A non-empty subset I ⊆ [n] with up and down interval decomposition of type (v,w)

has nested components (1, wi ), 1 ≤ i ≤ v, such that the inclusion maximal up inter-
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vals [αi, j , βi, j ]Uc
contained in the down interval (ai , bi )Dc

satisfy βi, j < αi, j+1 and

bi ≤ ai+1. For nested I , that is, if v = 1, we simplify notation and drop one subscript:

we write (a, b)Dc
∪

⋃w
j=1[α j , β j ]Uc

for the up and down interval decomposition where

α j < β j ≤ α j+1 as before. Nevertheless, we do not drop an index for the associated

diagonals δi j introduced in Lemma 3.6, we continue to denote them by δi, j or δ1, j

to avoid a conflict with the diagonals δ1, δ2, δ3 and δ4 defined next. To that respect,

we define γ (respectively Ŵ) to denote the smallest (respectively largest) element of

a nested set I and associate the following four diagonals of the c-labeled (n + 2)-gon

Qc to this nested set I :

δ1 = {a, b}, δ2 = {a, Ŵ}, δ3 = {γ, b}, and δ4 = {γ, Ŵ}.

In general, not all diagonals δi will be proper diagonals, but it will be useful to consider

the subset DI of {δ1, δ2, δ3, δ4} that consists of proper diagonals only. We emphasize

that the diagonals δi should be distinguished from the diagonals δi, j defined in Lemma

3.6 and the set DI should be distinguished from DI .

Example 4.1 We discuss the four diagonals δ1, δ2, δ3 and δ4 associated to three sub-

sets J1, J2, J3 ⊆ [4] which is partitioned into Dc = {1, 3, 4} and Uc = {2}. These

associated set DI are illustrated in Fig. 8.

(i) Since J1 = {2, 3} = (1, 4)Dc
⊔ [2, 2]Uc

is nested, we have γ = 2 and Ŵ = 3. It

follows that

δ1 = {1, 4}, δ2 = {1, 3}, δ3 = {2, 4} and δ4 = {2, 3}.

In this situation, all diagonals δi except diagonal δ2 = {1, 3} are proper diagonals.

Therefore, DI = {δ1, δ3, δ4}
(ii) Since J2 = {2} = (1, 3)Dc

⊔[2, 2]Uc
is nested, we have γ = Ŵ = 2. This implies

δ1 = {1, 3}, δ2 = {1, 2}, δ3 = {2, 3} and δ4 = {2, 2}.

In this situation, the diagonals δ1 and δ4 are not proper while the diagonals δ2

and δ3 are proper. Hence, DI = {δ2, δ3}.

Fig. 8 The diagonals of DJ (the proper diagonals among the associated diagonals δi ) for the three examples

of Example 4.1
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(iii) The set J3 = {2, 4} is not nested since its up and down interval decomposition is

of type (2, 1). We do not associate diagonals δi to J3, the set DI is empty.

We now extend our definition of Rδ and zc
Rδ

to all non-proper and degenerate

diagonals δ. If δ = {0, n + 1} and Uc = ∅ we set Rδ := [n] and zc
Rδ

= zc
[n].

Otherwise, if δ = {x, y} is not a proper diagonal (different from δ = {0, n + 1} if

Uc = ∅), we set:

Rδ :=
{

∅ if x, y ∈ Dc,

[n] otherwise,
and zc

Rδ
:=

{

0 if Rδ = ∅,

zc
[n] if Rδ = [n].

The main result, Theorem 4.2, actually combines two statements. Firstly, there is a

more efficient way to compute the coefficients of the Minkowski decomposition of

an associahedron Asc
n−1 = P({zc

I }) compared to the alternating sum proposed by

Proposition 1.2. Secondly, the terms zc
I for redundant inequalities that are needed

to compute yI are combinatorially characterised and depend on the choice of c or

equivalently on the normal fan of Asc
n−1. Of course, their precise values depend on

the values zc
I of inequalities that are facet-defining.

Theorem 4.2 Let I be non-empty subset of [n]. Then the Minkowski coefficient yI of

Asc
n−1 = P({zc

I }) is

yI =
{ (−1)|I\Rδ1

|(zc
Rδ1

− zc
Rδ2

− zc
Rδ3

+ zc
Rδ4

)

if v = 1,

0 otherwise.

We prove Theorem 4.2 in Sect. 6. An example illustrating the theorem for the left

associahedron Asc
3 of Fig. 1 (Dc = {1, 3, 4} and Uc = {2}) is given in Fig. 9 where we

also explicitly compute the yI -values for this realisation with zc
I = |I |(|I |+1)

2
for the

facet-defining inequalities.

For the rest of this section, we specialise to realisations with this specific choice

of z I -values. We obtain a nice combinatorial interpretation of the coefficients yI in

Theorem 4.3 and characterise the vanishing yI -values in Corollary 4.5.

If I has a nested up and down interval decomposition, the signed lengths Kγ and KŴ

of I are integers defined as follows. Let |KŴ| be the number of edges of the path in ∂ Q

connecting b and Ŵ that does not use the vertex labeled a. The sign of KŴ is negative if

and only if Ŵ ∈ Dc. Similarly, |Kγ | is the length of path in ∂ Q connecting a and γ not

using label b and Kγ is negative if and only if γ ∈ Dc. Equivalently, we have that Kγ

(respectively KŴ) is a positive integer if and only if γ ∈ Uc (respectively Ŵ ∈ Uc) and

that Kγ = −1 (respectively KŴ = −1) if and only if γ ∈ Dc (respectively Ŵ ∈ Dc).

We can now express the coefficients yI of Asc
n−1 in terms of Kγ and KŴ . The following

theorem is an easy consequence of Theorem 4.2.

Theorem 4.3 Let KŴ and Kγ be the signed lengths of I as defined above if I ⊆ [n]
has a nested up and down interval decomposition of type (1, k). Then the Minkowski
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coefficient yI of Asc
n−1 is

yI =
{ (−1)

|I\(a,b)D|
Kγ KŴ if I = {us} ⊆ Uc and v = 1,

(n + 1) − Kγ KŴ if I = {us} ⊆ Uc,

0 if v ≥ 2.

Proof By Theorem 4.2, the claim is trivial if I has up and down interval decomposition

of type v > 1. We therefore assume v = 1, set K := |Rδ1 | and observe

KŴ = |Rδ2 | − |Rδ1 | and Kγ = |Rδ3 | − |Rδ1 |.

Thus

|Rδ4 | =
{

K + Kγ + KŴ if I = {us},
K + Kγ + KŴ − 1 if I = {us},

as well as

zc
Rδ1

=
K (K + 1)

2
,

zc
Rδ2

=
(K + KŴ)(K + KŴ + 1)

2
,

zc
Rδ3

=
(K + Kγ )(K + Kγ + 1)

2
, and

zc
Rδ4

=

⎧

⎨

⎩

(K+KŴ+Kγ )(K+KŴ+Kγ +1)

2
if I = {us},

(K+KŴ+Kγ )(K+KŴ+Kγ +1)

2
− (n + 1) if I = {us}.

A direct computation shows

zc
Rδ1

− zc
Rδ2

− zc
Rδ3

+
(K + KŴ + Kγ )(K + KŴ + Kγ + 1)

2
= KŴ Kγ .

The claim is now an immediate consequence of Theorem 4.2. ⊓⊔

Corollary 4.4 For n ≥ 2 and any choice Dc ⊔ Uc, we have y[n] = (−1)|Uc|.

Proof The claim follows directly either from Theorem 4.2 or from Theorem 4.3. To

obtain the claim from Theorem 4.2, observe that [n]\Rδ1 = Uc and

zc
Rδ1

− zc
Rδ2

− zc
Rδ3

+ zc
Rδ4

= 1.

To obtain the claim from Theorem 4.3, we remark that [n]\Rδ1 = I\(a, b)D and

Kγ = KŴ = −1 since a = 0, b = n + 1, γ = 1, and Ŵ = n. ⊓⊔

Corollary 4.5 Let n ≥ 2 and Dc ⊔ Uc be a partition induced by some Coxeter

element c. Then yI = 0 if and only if I has an up and down decomposition of type

(vI , wI ) with vI > 1 or n = 3 and I = Uc = {2}.
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Proof Since Kγ and KŴ are non-zero, Theorem 4.3 implies yI = 0 if I = {us}. So

we assume I = {us}. It now suffices to prove that yI = 0 if and only if n = 3.

If n = 2 then I = {us} ⊆ Uc is impossible, so we have n ≥ 3. From Rδ2 ∪Rδ3 = [n]
and Rδ2 ∩ Rδ3 = {us} we conclude Kγ + KŴ = n +1. On the other hand, Theorem 4.3

implies that yI = 0 is equivalent to KŴ Kγ = n + 1. By substitution we have

K 2
Ŵ − (n + 1)KŴ + (n + 1) = 0

and solving for KŴ gives

KŴ,1/2 = −
−(n + 1)

2
±

√

(n + 1)2

4
− (n + 1) =

(n + 1) ±
√

n2 − 2n − 3

2
.

Since KŴ is a positive integer, we conclude that
√

n2 − 2n − 3 is a positive integer.

In particular, n2 − 2n − 3 = (n + 1)(n − 3) must be a square. For n = 3, we

conclude KŴ = 2, that is I = Uc = {2}. For n > 3 we derive the contradiction

(n + 1) = r2(n − 3) or (n − 3) = r2(n − 1) for some positive integer r . ⊓⊔

We now illustrate Theorem 4.3 by recomputing the yI -values for As
c1

2 and As
c2

2

mentioned in the introduction. For n = 3, there are two possible partitions of {1, 2, 3}
that correspond to the two Coxeter elements of �3: either Dc1 = {1, 2, 3} and Uc1 = ∅

or Dc2 = {1, 3} and Uc2 = {2}.

Example 4.6 Consider Dc1 = {1, 2, 3} and Uc1 = ∅ which yields Loday’s realisation.

(i) We have yI = 1 for I = {i} and 1 ≤ i ≤ 3.

The up and down interval decomposition of {i} is (i − 1, i + 1)D and γ = Ŵ = i .

It follows that Kγ = KŴ = −1 and I\(a, b)D = ∅. Thus yI = 1.

(ii) We have yI = 1 for I = {i, i + 1} and 1 ≤ i ≤ 2.

Then I = (i − 1, i + 2)D, γ = i , and Ŵ = i + 1. It follows that Kγ = KŴ = −1

and I\(a, b)D = ∅. Thus yI = 1.

(iii) We have yI = 0 for I = {1, 3}.
Then I = (0, 2)D ⊔ (2, 4)D, so I is of type (2, 0) and yI = 0 by Corollary 4.5.

(iv) We have yI = 1 for I = {1, 2, 3}.
Then I = (0, 4)D, γ = 1 and Ŵ = 3 implies Kγ = KŴ=−1 and I\(a, b)D=∅.

Thus yI = 1. Of course, we could also use Corollary 4.4 instead.

Altogether we have yI ∈ {0, 1} and As
c1

2 is a Minkowski sum of faces of the standard

simplex:

As
c1

2 =1�{1}+1�{2} + 1�{3} + 1�{1,2} + 1�{2,3} + 1�{1,2,3}.

Recall Fig. 2 for a visualisation of this equation of polytopes.

Example 4.7 Consider Dc2 = {1, 3} and Uc2 = {2}. The associahedron As
c2

2 is iso-

metric to As
c1

2 , [2], but it is not the Minkowski sum of faces of a standard simplex as

we show now.
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(i) We have yI = 1 for I = {1} and I = {3}.
The up and down interval decomposition is (0, 3)D and (1, 4)D respectively.

Therefore we have γ = Ŵ = 1 and γ = Ŵ = 3 respectively. It follows Kγ =
KŴ = −1 and I\(a, b)D = ∅.

(ii) We have yI = 0 for I = {2}.
The up and down interval decomposition is (1, 3)D ⊔ [2, 2]U, so I is of type

(1, 1). We have γ = Ŵ = 2 which implies Kγ = KŴ = 2. Since n = 3, we

conclude yI = (3 + 1) − 2 · 2 = 0. Of course, we could have used Corollary 4.5

instead.

(iii) We have yI = 2 for I = {i, i + 1} and 1 ≤ i ≤ 2.

Then I = (i −1, i +2)D, γ = i , and Ŵ = i +1, that is, Kγ =−1, KŴ=2. More-

over, I\(a, b)D = {2} if I = {1, 2} and Kγ = 2, KŴ = −1, and I\(a, b)D = {2}
if I = {2, 3}.

(iv) We have yI = 1 for I = {1, 3}.
Then I = (0, 4)D, γ = 1, and Ŵ = 3. It follows that Kγ = KŴ = −1 and

I\(a, b)D = ∅.

(v) We have yI = −1 for I = {1, 2, 3}.
Then I = (0, 4)D⊔[2, 2]U with γ = 1 and Ŵ = 3. It follows that Kγ = KŴ = −1

and I\(a, b)D = {2}. Again, we could have used Corollary 4.4 instead.

Thus, we obtain the following Minkowski decomposition into dilated faces of the

standard simplex:

As
c2

2 = 1�{1} + 1�{3} + 2�{1,2} + 1�{1,3} + 2�{2,3} + (−1)�{1,2,3}.

Recall that an illustration of this decomposition is given in Fig. 3.

5 A Remark on Cyclohedra

We now show that Proposition 1.2 does not hold if we consider a polytope obtained

by ‘moving some inequalities of the permutahedron past vertices’. The example is a

cyclohedron which also known as Bott-Taubes polytope or type B generalised per-

mutahedron [4,7,26]. A Minkowski decomposition of ‘generalised permutahedra of

type B’ (similar to Proposition 1.2 for generalised permutahedra) is not known.

The canonical embedding of the hyperoctahedral group Wn in the symmetric

group S2n induces realisations Cyc
n of cyclohedra using realisations Asc

2n−1 for certain

symmetric choices c. To obtain these realisations of cyclohedra, we follow [11] and

intersect Asc
2n−1 with ‘type B hyperplanes’ xi + x2n+1−i = 2n − 1 for 1 ≤ i < n. A

2-dimensional cyclohedron Cyc
2 obtained from Asc

3 (with up set Uc = {2}) by intersec-

tion with x1+x4 = 5 is shown in Fig. 10 (the hyperplane x2+x3 = 5 is implicitly used

since Asc
3 is contained in x1+x2 +x3+x4 = 10). A similar construction does not yield

a cyclohedron if one starts with the other associahedron of Fig. 1 where Uc = {2, 3}.
The tight right-hand sides of this realisation of the cyclohedron are obviously the tight

right-hand sides of Asc
3 except zc

{1,4} = zc
{2,3} = 5. The inequalities x1 + x4 ≥ 2 and

x2 + x3 ≥ 2 are redundant for Asc
3 and altering the level sets for these inequalities

from 2 (for Asc
3) to 5 (for Cyc

2) means that we move past the four vertices A, B, C ,
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Fig. 10 A 2-dimensional

cyclohedron Cy2 (black)

obtained from Asc
3

and D, so the realisation of the cyclohedron is not in the deformation cone of the

classical permutahedron. We now show by example that Proposition 1.2 does not hold

in this situation. To this respect, we list the function z I of tight right hand-sides for all

inequalities of the permutahedron (that is, facet-defining or not for the cyclohedron)

and its Möbius inverse yI , both defined on the boolean lattice:

In other words, if Proposition 1.2 were true for ‘generalised permutahedra not in

the deformation cone of the classical permutahedron’, then the following equation of

polytopes has to hold:

Cyc
2 + (�2 + 4�123 + 3�124 + 2�134 + �234)

= �1 + �3 + �4 + 3�12 + �13 + 3�14 + 5�23 + �34 + 5�1234.

One way to see that this equation does not hold is to compute the number of vertices of

the polytope on the left-hand side (27 vertices) and on the right-hand side (20 vertices)

using for example polymake [10].

6 A Proof of Theorem 4.2

This section is devoted to the proof of Theorem 4.2 under the assumption that

Lemma 6.3 holds; Lemma 6.3 is proved in Sect. 7. We begin with an outline of

the strategy to prove Theorem 4.2.
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First, we prove Proposition 6.2 which weakens Theorem 4.2 in two senses: we

restrict to I ⊂ [n] with a nested decomposition and we restrict to the situation where

DI = {δ1, δ2, δ3, δ4}, that is, where all four diagonals δi are proper. That the state-

ment of Proposition 6.2 is actually the statement of Theorem 4.2 weakened by these

additional assumptions follows from Corollary 6.7.

Lemma 6.3 states precisely which subsets of {δ1, δ2, δ3, δ4} are sets DI for some

I ⊂ [n] with a nested up and down interval decomposition. Lemma 6.4 then expresses

the Minkowski coefficients yI using these sets DI if I ⊂ [n] has a nested up and

down interval decomposition and |DI | < 4. Lemmas 6.5 and 6.6 then imply the

claim of Theorem 4.2 when I ⊂ [n] has a nested decomposition and not all δi are

proper. Finally, Lemma 6.8 covers the cases I ⊂ [n] where I does not have a nested

decomposition and Lemma 6.9 settles I = [n].
It will be convenient to rewrite Eq. (1) that was obtained at the beginning of Sect. 4

by combination of Propositions 1.2 and 3.8:

yI =
∑

J⊆I

(−1)|I\J |
∑

i∈[vJ ]

(
∑

j∈[wi +1]
z̃c

R
δ J
i, j

− wi z̃
c
[n]

)

=
∑

J⊆I

(−1)|I\J |
∑

i∈[vJ ]

(

z̃c
R

δ J
i,m J,i

+
∑

j∈[m J,i −1]

(

z̃c
R

δ J
i, j

− z̃c
[n]

))

where m J,i is either w J
i or w J

i + 1 in order to simplify the involved sum.

Suppose now that the proper diagonal δ occurs on the right-hand side of this rewrit-

ten formula for yI , that is, δ is one of the associated diagonals δ J
i, j for some J ⊆ I .

We now distinguish whether δ occurs as a single summand z̃c
R

δ J
i,m J,i

or as a compound

summand (z̃c
R

δ J
i, j

− z̃c
[n]) and make the following definition.

Definition 6.1 Let I ⊂ [n] be non-empty and [n] = Dc ⊔ Uc.

(a) A proper diagonal δ (associated to J ⊆ I ) is of type z̃c
Rδ

(in the expression for yI ),

if there exists an index i ∈ [vJ ] such that δ = δ J
i,m J,i

.

(b) A proper diagonal δ (associated to J ⊆ I ) is of type
(

z̃c
Rδ

− z̃c
[n]

)

(in the expression

for yI ), if there exist indices i ∈ [vJ ] and j ∈ [m J,i − 1] such that δ = δ J
i, j

A geometric interpretation of these notions is the following. The proper diagonal δ

(associated to J ⊆ I ) is of type z̃c
Rδ

(in the expression for yI ), if δ is the ‘rightmost’

proper diagonal associated to a nested component of J . Similarly, the proper diagonal δ

(associated to J ⊆ I ) is of type
(

z̃c
Rδ

− z̃c
[n]

)

(in the expression for yI ), if δ is a proper

diagonal associated to a nested component of J , but it is not the rightmost one.

Proposition 6.2 Let I be a non-empty proper subset of [n] = Dc ⊔ Uc with up and

down interval decomposition of type (1, w) and DI = {δ1, δ2, δ3, δ4}. Then the

Minkowski coefficient yI of the generalised permutahedron P({z̃c
I }) with normal fan

of Asc
n−1 is given by

yI =
∑

δ∈DI

(−1)|I\Rδ | z̃c
Rδ

.
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Fig. 11 Let I = {3, 5, 6, 7, 8, 9, 10, 11, 12, 13} with γ = 3 ∈ Uc and Ŵ = 13 ∈ Dc . Its up and down

decomposition is I = (2, 14)Dc
∪ [3, 3]Uc

∪ [6, 11]Uc
. The diagonal δ = {5, 12} appears in the right

hand side for yI since (5, 12)Dc
⊆ (2, 14)Dc

and the up and down interval decomposition

of Rδ has type (1, 0). Since (2, 5) ∩ I = {3} and (12, 14) ∩ I = {13}, δ is

associated to S ∈ {{8, 10}, {3, 8, 10}, {8, 10, 13}, {3, 8, 10, 13}}, the diagonals associated to the up and

down interval decompositions of S form a subset of the dashed diagonals. The contribution of δ to yI van-

ishes. The only diagonals in this example associated to some J ⊆ I with up and down interval decomposition

of type (1, 0) and non-vanishing contribution to yI are δ1 = {2, 14} and δ2 = {2, 13}

The proof is not difficult but long and convoluted, so we first outline the proof. The

goal is to simplify the rewritten Eq. (1) for yI stated above. To that respect, we first

study the potential contribution of a proper diagonal δ that occurs in the sum on the

right-hand side. Given such a diagonal δ, we study which sets S ⊆ I satisfy δ ∈ DS

in order to collect all terms that involve zc
Rδ

. We will show that the corresponding sum

vanishes often. This result is obtained by a case study that depends on the type of the up

and down interval decomposition of Rδ . Since the up and down interval decomposition

of Rδ is of type (1, 0), (1, 1) or (1, 2) for any proper diagonal δ, we study these cases

in detail. After the necessary information is deduced for every possible diagonal δ, we

further simplify the formula for yI by another case study that distinguishes whether γ

or Ŵ is element of Dc or Uc.

Proof By assumption, the set I ⊂ [n] has an up and down interval decomposition of

type (1, w), that is, I = (a, b)Dc
⊔

⊔w
j=1[α j , β j ]Uc

. Let δ be some diagonal δ J
i, j that

occurs on the right-hand side of the equation for yI . In other words, δ is a proper and

non-degenerate diagonal δ J
i, j associated to the up and down interval decomposition of

type (v J , w J ) for some J ⊆ I . By Example 3.5, the up and down interval decom-

position of Rδ is either of type (1, 0), (1, 1) or (1, 2). A good understanding which

sets S ⊆ I (besides J ) satisfy δ ∈ DS is essential for the simplification. The complete

proof is basically a case study of these three cases for Rδ .

1. Rδ has up and down decomposition of type (1, 0), see Fig. 11.

Then Rδ = (ã, b̃)Dc
⊆ (a, b)Dc

and we may consider J = Rδ ⊆ I as witness for

the occurrence of δ in the right-hand side of (1). Let S ⊆ I be a set with δ ∈ DS .

Then J = (ã, b̃)Dc
is necessarily a nested component of type (1, 0) of S and all

other nested components are subsets of (a, ã) ∩ I and (b̃, b) ∩ I . It follows that

S ⊆ I satisfies δ ∈ DS if and only if

Rδ ⊆ S ⊆ Rδ ∪
(

(a, ã) ∩ I
)

∪
(

(b̃, b) ∩ I
)

.
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Fig. 12 Consider I as in Fig. 11. For δ ={6, 13}, the up and down interval decomposition of Rδ is of the

required sub-type of (1, 1). δ is associated to S ∈ {{3, 5, 6, 8, 10, 12}, {5, 6, 8, 10, 12}, {3, 6, 8, 10, 12},
{6, 8, 10, 12}} since (2, 6) ∩ I = {3, 5} and (13, 14) ∩ I = ∅ and some of the diagonals are associated to

the interval decomposition of S. The contribution of δ to yI vanishes. Diagonals of the required sub-type

of (1, 1) and non-vanishing contribution to yI are the diagonals δ3 = {3, 14} and δ4 = {3, 13}

We now collect all terms for z̃c
Rδ

in the expression for yI . Since δ is a proper

diagonal, we have z̃c
Rδ

= 0 and the resulting alternating sum vanishes if and only

if there is more than one term of this type, that is, if and only if

(

(a, ã) ∩ I
)

∪
(

(b̃, b) ∩ I
)

= ∅.

If
(

(a, ã)∩ I
)

∪
(

(b̃, b)∩ I
)

= ∅, we obtain (−1)|I\Rδ | z̃c
Rδ

as contribution for yI .

For later use in this proof, we note that
(

(a, ã)∩ I
)

∪
(

(b̃, b)∩ I
)

= ∅ guarantees

δ ∈ DI . Note that Rδ1 is always of type (1, 0) if the up and down decomposition

of Rδ is of type (1, 0). Similarly, we have δ2 ∈ DI with Rδ2 of type (1, 0) if

additionally Ŵ ∈ Dc, δ3 ∈ DI with Rδ3 of type (1, 0) if additionally γ ∈ Dc, and

δ4 ∈ DI with Rδ4 of type (1, 0) if additionally γ, Ŵ ∈ Dc.

2. Rδ has up and down decomposition of type (1, 1).

In contrast to Case 1, Rδ ⊆ I is not true in general any more. We distinguish two

cases, either δ = {β̃, b̃} with β̃ < b̃, β̃ ∈ Uc and b̃ ∈ Dc or δ = {ã, α̃} with

ã < α̃, ã ∈ Dc and α̃ ∈ Uc.

a. δ = {β̃, b̃}, see Fig. 12

Observe first that Rδ = (0, b̃)Dc
∪ [u1, β̃]Uc

with β̃ < b̃ ≤ b. Since we assume

that δ appears in the right-hand side of (1), we have β̃ ∈ I and may consider

J = Rδ ∩ I .

If S ⊆ I is a subset with δ ∈ DS then δ must be the ‘rightmost’ diagonal of one

nested component for S. This means that the diagonal δ associated to S is never

of type (z̃c
Rδ

− z̃c
[n]) in the expression for yI . Similarly to Case 1, we conclude

that the terms z̃c
Rδ

cancel if and only if

(

(a, β̃) ∩ I
)

∪
(

(b̃, b) ∩ I
)

= ∅ or z̃c
Rδ

= 0.

Again, z̃c
Rδ

= 0 since δ is a proper diagonal and the terms for z̃c
Rδ

do not

cancel if and only if there is only one subset S ⊆ I with δ ∈ DS , that is, if

((a, β̃) ∩ I ) ∪ ((b̃, b) ∩ I ) = ∅.
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Fig. 13 Let I = {3, 5, 6, 7, 8, 9, 10} with γ = 3 ∈ Uc and Ŵ = 10 ∈ Dc . Its up and down decomposition

is I = (2, 11)Dc
∪ [3, 3]Uc

∪ [6, 10]Uc
. For δ = {2, 8}, the up and down interval decomposition of Rδ

is of the required sub-type of (1, 1). Since (2, 2) ∩ I = ∅ and (8, 11) ∩ I = {9, 10}, δ is associated to

S ∈ {{5, 7, 8}, {5, 7, 8, 9}, {5, 7, 8, 10}, {5, 7, 8, 9, 10}}. Thus δ does not contribute to yI . In this figure,

only δ2 = {2, 10} contributes −(z̃c
Rδ2

− z̃[n]) to yI

For later use in this proof, we mention the two possible scenarios if

((a, β̃) ∩ I ) ∪ ((b̃, b) ∩ I ) = ∅.

Firstly, if γ ∈ Uc and Ŵ ∈ Dc, then δ ∈ {δ3, δ4} and the contribution of δ3 and

δ4 to yI is

(−1)|I\Rδ3
| z̃c

Rδ3
and (−1)|I\Rδ4

| z̃c
Rδ4

.

Secondly, if γ, Ŵ ∈ Uc, then δ = δ3 and the contribution to yI is (−1)|I\Rδ3
| z̃c

Rδ3
.

b. δ = {ã, α̃}
Observe first that Rδ = (ã, n + 1)Dc

∪ [α̃, um]Uc
with a ≤ ã < α̃. Since we

assume that δ appears in the right-hand side of (1), we have α̃ ∈ I and may

consider J = Rδ ∩ I .

If S ⊆ I with δ ∈ DS , then δ (associated to S) can be of type z̃c
Rδ

or (z̃c
Rδ

− z̃c
[n])

in the expression for yI . The diagonal δ is of type z̃c
Rδ

if and only if Rδ = Rδ ∩ I

and S = Rδ ∪ M for some subset M ⊆ (a, ã) ∩ I . The diagonal δ is of type

(z̃c
Rδ

− z̃c
[n]) for all other subsets S ⊆ I with δ ∈ DS , in particular, we conclude

Rδ ⊃ Rδ ∩ S.

We distinguish two sub-cases: either δ (associated to S) is of type (z̃c
Rδ

− z̃c
[n])

(in the expression for yI ) for all S ⊆ I with δ ∈ DS or there is an S ⊆ I with

δ ∈ DS such that δ (associated to S) is of type z̃c
Rδ

(in the expression for yI ).

i. δ is of type (z̃c
Rδ

− z̃c
[n]) for all S ⊆ I with δ ∈ DS , see Fig. 13.

As mentioned, we have Rδ ⊃ Rδ∩S for all sets S ⊆ I with δ ∈ S. Moreover,

these sets are in bijection to the subsets of
(

(a, ã) ∩ I
)

∪
(

(α̃, b) ∩ I
)

:

S =
(

Rδ ∩ (I\B)
)

∪ A for A ⊆ (a, ã) ∩ I and B ⊆ (α̃, b) ∩ I.

If there is more than one set S ⊆ I with δ ∈ DS , then collecting all summands

(z̃c
Rδ

− z̃c
[n]) in the expression for yI yields a vanishing alternating sum.

If there is only one set S ⊆ I with δ ∈ DS as associated diagonal then
(

(a, ã) ∩ I
)

∪
(

(α̃, b) ∩ I
)

= ∅ and it follows that Ŵ = α̃ ∈ Uc and

ã ∈ {a, γ } ∩ Dc.
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Fig. 14 Consider I = {3, 5, 6, 7, 8, 9, 10} with γ = 3 ∈ Uc and Ŵ = 10 ∈ Dc . The up and down

interval decomposition is I = (2, 11)Dc
∪ [3, 3]Uc

∪ [6, 9]Uc
. For δ = {2, 6}, the up and down interval

decomposition of Rδ has the required sub-type of (1, 1). We have Rδ = Rδ ∩ I , so J = {5, 6, 7, 8, 9, 10}
is the unique J ⊆ I such that δ ∈ DJ is of type z̃c

Rδ
(in the expression for yI ). For all other S ⊆ I with

δ ∈ DS , δ is of type (z̃c
Rδ

− z̃c
[n]) in the expression of yI . Since γ ∈ Uc , δ contributes (−1)|I\Rδ | z̃c

[n] =
−z̃c

[n] to yI . In this example δ = {2, 8} and δ = {2, 9}, contribute −z̃c
[n] and z̃c

[n] to yI

For later use in this proof, we note that γ ∈ Dc implies δ ∈ {δ2, δ4}. The

only possible contributions of δ in the expression for yI are therefore

(−1)|I\Rδ2
|(z̃c

Rδ2
− z̃c

[n]) and (−1)|I\Rδ4
|(z̃c

Rδ4
− z̃c

[n]).

But since the corresponding subsets Rδ2 ∩ I and Rδ4 ∩ I differ by γ , the

contribution to yI can be simplified to

(−1)|I\Rδ2
| z̃c

Rδ2
+ (−1)|I\Rδ4

| z̃c
Rδ4

.

If γ ∈ Uc, then δ = δ2 and we obtain

(−1)|I\Rδ2
|(z̃c

Rδ2
− z̃c

[n])

as contribution for yI .

ii. There is an S ⊆ I with δ ∈ DS such that δ is of type z̃c
Rδ

, see Fig. 14.

Since δ must be the ‘rightmost’ diagonal associated to S if δ (associated to S)

is of type z̃c
Rδ

(in the expression for yI ), we conclude Rδ = Rδ ∩ I .

In particular, we have Ŵ = n and b = n + 1 and thus (α̃, b) ∩ I = ∅ and

(α̃, b) ∩ I = (α̃, b). If (a, ã) ∩ I = ∅, then collecting terms for z̃c
Rδ

and

z̃c
[n] in the expression for yI again yields no contribution. We may therefore

assume (a, ã) ∩ I = ∅, that is ã ∈ {a, γ } ∩ Dc. First suppose that γ ∈ Dc.

Then δ is either δa = {a, α̃} or δγ = {γ, α̃}. Now δ is of type z̃c
Rδ

in the

expression of yI if and and only if δ is associated to Rδa or Rδγ . In all other

situations, δ is of type (z̃c
Rδ

− z̃c
[n]) in the expression of yI and is associated

to a set Rδa \M or Rδγ \M with non-empty M ⊆ (α̃, n +1). Collecting terms

for z̃c
Rδa

, z̃c
Rδγ

, and z̃c
[n] yields a vanishing contribution as desired (collecting

the terms for z̃c
[n] for fixed δ does not yield a vanishing contribution, but the

terms from δa and δγ cancel). If γ ∈ Uc then a similar argument gives

(−1)|I\Rδ | z̃c
[n] for δ = {a, α̃} with α̃ ∈ Uc and Rδ = Rδ ∩ I

as contribution for yI .
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Fig. 15 Consider I = {3, 5, 6, 7, 8, 9, 10, 11} with γ = 3 ∈ Uc and Ŵ = 11 ∈ Uc . The up and

down interval decomposition is I = (2, 12)Dc
∪ [3, 3]Uc

∪ [6, 11]Uc
. For δ = {3, 9}, the up and down

interval decomposition of Rδ is of the required sub-type of (1, 2) and δ does not contribute to yI since

(β, b) ∩ I = (9, 12) = {10, 11}. In this example, only δ4 = {3, 11} contributes to yI

3. Rδ has up and down decomposition of type (1, 2).

If Rδ is of type (1, 2) then δ = {α, β} with α, β ∈ Uc and there is u ∈ Uc such

that a < α < u < β < b. This in turn gives

Rδ = (0, n + 1)Dc
∪ [u1, α]Uc

∪ [β, um]Uc

as up and down interval decomposition for Rδ . By arguments as before, we con-

clude that collecting terms for z̃c
Rδ

and z̃c
[n] yields a vanishing contribution to yI

if (a, α) ∩ I = ∅. We therefore assume that (a, α) ∩ I = ∅ which is equivalent

to γ = α ∈ Uc. As a consequence, δ is an associated diagonal of S ⊆ I if and

only if S = (Rδ ∩ I )\M for some M ⊆ (β, b) ∩ I .

We now distinguish two cases: either there is an S ⊆ I with δ ∈ DS such that δ

(associated to S) is of type z̃c
Rδ

(in the expression for yI ) or not.

a. There is no S ⊆ I with δ ∈ DS such that δ (associated to J ) is of type z̃c
Rδ

, see

Fig. 15.

If (β, b) ∩ I = ∅ then collecting the terms z̃c
Rδ

and z̃c
[n] cancel respectively. If

(β, b) ∩ I = ∅ then we have Ŵ = β ∈ Uc and δ = δ4. In this situation, δ has

a unique contribution to yI which equals (−1)|I\Rδ4
|(z̃c

Rδ4
− z̃c

[n]).

b. There is a set S ⊆ I with δ ∈ DS such that δ is of type z̃c
Rδ

, see Fig. 16.

Since δ is the ‘rightmost’ diagonal associated to S ⊆ I and since (a, α)∩I=∅,

we conclude that b=n+1 andŴ = n ∈ Dc (recall that we also haveα=γ ∈ Uc).

Now observe that the set S ⊆ I with δ ∈ DS such that δ (associated to S) is of

type z̃c
Rδ

(in the expression for yI ) is unique: it is Rδ ∩ I . In particular, we have

[β, n] ∩ I = [β, n]. Collecting terms z̃c
Rδ

for all subsets S ⊆ I with δ ∈ DS

cancel, but collecting the terms z̃c
[n] does not vanish: we have a contribution

of (−1)|I\Rδ | z̃c
[n] to yI . We conclude that every diagonal δ = {γ, β} with

β ∈ Uc, [β, n]∩ I = [β, n] and {γ, β} = {ur , ur+1} contributes (−1)|I\Rδ | z̃c
[n]

to yI .

After this analysis of possible contributions to yI induced by proper diagonals, we

now prove

yI =
∑

δ∈DI

(−1)|I\Rδ | z̃c
Rδ

,
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Fig. 16 Consider I = {3, 5, 6, 7, 8, 9, 10, 11, 12} with γ = 3 ∈ Uc and Ŵ = 12 ∈ Dc . The up and

down interval decomposition is I = (2, 13)Dc
∪ [3, 3]Uc

∪ [6, 11]Uc
. For δ = {3, 9}, the up and down

interval decomposition of Rδ is of the required sub-type of (1, 2) and since (β, b)∩ = I (9, 13) ∩ I =
{10, 11, 12} = ∅, the diagonal δ is associated to eight sets. The contribution of δ to yI is −z̃c

[n]. In this

example, the four diagonals δ′ ∈ {{3, 6}, {3, 7}, {3, 9}, {3, 11}} are of the required sub-type of (1, 2) each

contributes (−1)|I\Rδ′ | z̃c
Rδ′

to yI

where we assume that I is a non-empty proper subset of [n] with a nested up and down

decomposition and |DI | = 4. We distinguish the following four cases:

1. γ, Ŵ ∈ Dc.

Then δ1, δ2, δ3, and δ4 contribute (−1)|I\Rδ | z̃c
Rδ

to yI according to Case 1 and no

other diagonal contributes according to the previous analysis. The claim follows

immediately.

2. γ ∈ Dc and Ŵ ∈ Uc.

Then δ1 and δ3 contribute (−1)|I\Rδ | z̃c
Rδ

to yI according to Case 1, while δ2 and δ4

contribute (−1)|I\Rδ | z̃c
Rδ

to yI according to Case 2(b)i. No other diagonal con-

tributes to yI . The claim follows immediately.

3. γ, Ŵ ∈ Uc.

The only diagonals with a contribution to yI are δ1 (Case 1), δ2 (Case 2(b)i),

δ3 (Case 2a) and δ4 (Case 3a). Taking their contribution into account, we obtain

yI = (−1)|I\Rδ1
| z̃c

Rδ1
+ (−1)|I\Rδ2

|(z̃c
Rδ2

− z̃c
[n]) + (−1)|I\Rδ3

| z̃c
rδ3

+(−1)|I\Rδ4
|(z̃c

Rδ4
− z̃c

[n]).

The claim follows since I\Rδ2 and I\Rδ4 differ by γ .

4. γ ∈ Uc and Ŵ ∈ Dc.

We distinguish the two sub-cases Ŵ = n and Ŵ = n.

(a) Ŵ = n implies that there is no u ∈ Uc such that [u, n] = [u, n] ∩ I .

In this situation, δ1 and δ3 contribute (−1)|I\Rδ | z̃c
Rδ

to yI according to Case 1

and δ2 and δ4 contribute (−1)|I\Rδ | z̃c
Rδ

according to Case 2a. No other diagonal

contributes, so the claim follows immediately.

(b) Ŵ = n.

If there is no u ∈ Uc such that [u, n] = [u, n] ∩ I then δ1 and δ2 contribute

according to Case 1 and δ3 and δ4 contribute according to Case 2a. No other

diagonal contributes, so the claim follows immediately.

If there exists u ∈ Uc such that [u, n] = [u, n] ∩ I then denote by umin the

smallest element of Uc such that [umin, n] = [umin, n] ∩ I . Now diagonals δ1

and δ2 contribute to yI according to Case 1 and diagonals δ3, δ4 according to
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Case 2a. But in this situation, according to Cases 2(b)ii and 3b, we also have

contributions of diagonals {a, u} and {γ, u} for u ∈ [umin, um]Uc
. This yields

∑

δ∈DI

(−1)|I\Rδ | z̃Rδ
+

∑

δ={a,α} with
α∈[umin ,um ]Uc

(−1)|I\Rδ | z̃c
[n]

+
∑

δ={γ,α}∈∂ Q with
α∈[umin ,um ]Uc

(−1)|I\Rδ | z̃c
[n].

But the second and third sum cancel, so we end up with the claim. ⊓⊔

In fact, the methods used in the proof of Proposition 6.2 suffice to prove the degenerate

cases DI = {δ1, δ2, δ3, δ4} as well. But before we try to analyse these cases, we remark

that some subsets of {δ1, δ2, δ3, δ4} never form a set DI associated to I ⊆ [n] and

[n] = Dc ⊔ Uc.

Lemma 6.3 Let n ≥ 3 and I ⊂ [n] be non-empty with up and down interval decom-

position of type (1, w). Then

(a) There is no partition [n] = Dc ⊔ Uc induced by a Coxeter element c and no

non-empty I ⊂ [n] such that DI is one of the following sets:

∅, {δ2}, {δ3}, {δ4}, {δ1, δ2}, {δ1, δ3}, {δ2, δ4}, or {δ3, δ4}.

(b) There is a partition [n] = Dc ⊔Uc induced by a Coxeter element c and a non-empty

I ⊂ [n] such that DI is one of the following sets:

{δ1}, {δ1, δ4}, {δ2, δ3}, {δ1, δ2, δ3}, {δ1, δ2, δ4}, {δ1, δ3, δ4}, {δ2, δ3, δ4},
or {δ1, δ2, δ3, δ4}.

The proof of Part (a) is left to the reader, while the situation of Part (b) is carefully

discussed in Sect. 7.

Lemma 6.4 Let n ≥ 3 and I ⊂ [n] be non-empty with up and down interval decom-

position of type (1, w) and |DI | < 4. Then

(a) Suppose that I satisfies one of the following conditions

(i) DI = {δ1} (Lemma 7.1),

(ii) DI = {δ1, δ3, δ4}, (a, b)D = {Ŵ}, and γ ∈ Uc (Lemma 7.6 (b) and (c)),

(iii) DI = {δ1, δ2, δ4}, (a, b)D = {γ }, and Ŵ ∈ Uc (Lemma 7.5 (b) and (c)),

(iv) DI = {δ1, δ2, δ3} and (a, b)D = {γ, Ŵ} (Lemma 7.4 (a))

(v) DI = {δ2, δ3, δ4} and (a, b)D = ∅(Lemma 7.7).

Then the Minkowski coefficient yI of Asc
n−1 is

yI =
∑

δ∈DI

(−1)|I\Rδ |zRδ
.
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(b) Suppose that I satisfies one of the following conditions

(i) DI = {δ1, δ4} (Lemma 7.2),

(ii) DI = {δ2, δ3} (Lemma 7.3),

(iii) DI = {δ1, δ3, δ4} and
⋃k

i=1[αi , βi ]Uc
= {Ŵ} (Lemma 7.6 (a)),

(iv) DI = {δ1, δ2, δ4} and
⋃k

i=1[αi , βi ]Uc
= {γ } (Lemma 7.5 (a)),

(v) DI = {δ1, δ2, δ3} and
⋃k

i=1[αi , βi ]Uc
= {γ, Ŵ} (Lemma 7.4 (b)).

Then the Minkowski coefficient yI of Asc
n−1 is

yI = (−1)|{γ,Ŵ}|z[n] +
∑

δ∈DI

(−1)|I\Rδ |zRδ
.

Proof The proof of the claim is a study of the 14 mentioned cases that characterise

the non-empty proper subsets I ⊂ [n] with DI = {δ1, δ2, δ3, δ4}. These 14 cases are

described in detail in Sect. 7, the proofs are along the lines of the proof of Proposi-

tion 6.2. ⊓⊔

Lemma 6.5 For n ≥ 3, let I be non-empty proper subset of [n] with up and down

interval decomposition of type (1, w) and |DI | < 4.

(a) In all cases of Lemma 6.4 (a) we have Rδ = ∅ if δ ∈ {δ1, δ2, δ3, δ4}\DI . Thus

yI =
4

∑

i=1

(−1)|I\Rδi
|zRδi

.

(b) In all cases of Lemma 6.4 (b) there is precisely one δ ∈ {δ1, δ2, δ3, δ4}\DI with

Rδ = ∅:

(i) Rδ2 = [n] (Lemma 7.2 (a) and Lemma 7.6 (a)) and we have

yI = (−1)|I\Rδ2
|zRδ2

+
∑

δ∈DI

(−1)|I\Rδ |zRδ
=

4
∑

i=1

(−1)|I\Rδi
|zRδi

.

(ii) Rδ3 = [n] (Lemma 7.2 (b) and Lemma 7.5 (a)) and we have

yI = (−1)|I\Rδ3
|zRδ3

+
∑

δ∈DI

(−1)|I\Rδ |zRδ
=

4
∑

i=1

(−1)|I\Rδi
|zRδi

.

(iii) Rδ4 = [n] (Lemma 7.3 and Lemma 7.4 (b)) and we have

yI = (−1)|I\Rδ4
|+|{γ,Ŵ}|zRδ4

+
∑

δ∈DI

(−1)|I\Rδ |zRδ
.

Moreover, we have γ = Ŵ except for Lemma 7.3 (a) where γ = Ŵ ∈ Uc.
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Proof The first case is trivial, since we only add vanishing terms to

∑

δ∈DI

(−1)|I\Rδ |zRδ
.

The second case is a bit more involved. First observe that γ = Ŵ except for

Case (a) of Lemma 7.3 when γ = Ŵ ∈ Uc. Now, using the description given in

Sect. 7, it is straighforward to check (−1)|{γ,Ŵ}| = (−1)|I\Rδ2
| for the first subcase,

(−1)|{γ,Ŵ}| = (−1)|I\Rδ3
| for the second subcase and (−1)|{γ,Ŵ}| = (−1)|I\Rδ4

|+|{γ,Ŵ}|

for the third subcase. ⊓⊔

Lemma 6.6 Let I be non-empty subset of [n] with up and down interval decomposition

of type (1, w). Then

(−1)|I\Rδ1
| = (−1)|I\Rδ2

|+1 = (−1)|I\Rδ3
|+1 = (−1)|I\Rδ4

|+|{γ,Ŵ}|.

Proof The claim for δ2 follows from

Rδ2 ∩ I =
{

(Rδ1 ∩ I ) ⊔ {Ŵ}, Ŵ ∈ Uc,

(Rδ1 ∩ I )\{Ŵ}, Ŵ ∈ Dc.

The case for δ3 is similar. For δ4 we have to consider

Rδ4 ∩ I =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(Rδ1 ∩ I ) ⊔ {Ŵ, γ } γ, Ŵ ∈ Uc,
(

(Rδ1 ∩ I ) ⊔ {γ }
)

\{Ŵ} γ ∈ Uc, Ŵ ∈ Dc,
(

(Rδ1 ∩ I ) ⊔ {Ŵ}
)

\{γ } Ŵ ∈ Uc, γ ∈ Dc,

(Rδ1 ∩ I )\{Ŵ, γ } γ, Ŵ ∈ Dc.

⊓⊔

We combine Proposition 6.2, Lemmas 6.5 and 6.6 to obtain Theorem 4.2 if I ⊂ [n]
has an up and down interval decomposition of type (1, w):

Corollary 6.7 Let I be non-empty proper subset of [n] with up and down interval

decomposition of type (1, w) and DI ⊆ {δ1, δ2, δ3, δ4}. Then

yI = (−1)|I\Rδ1
|(zc

Rδ1
− zc

Rδ2
− zc

Rδ3
+ zc

Rδ4

)

.

The techniques to prove Proposition 6.2 also enable us to compute the Minkowski

coefficient yI of Asc
n−1 if the up and down interval decomposition of I is of type

(v,w), v > 1, and I = [n].

Lemma 6.8 Let I be a non-empty proper subset of [n] with up and down interval

decomposition of type (v,w) with v > 1. Then yI = 0 for the Minkowski coefficient

of Asc
n−1.
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Proof For every proper diagonal δ = {d1, d2} with d1 < d2 that appears in the

expression for yI , there is a nested component N = (ai , bi )D ⊔
⊔wi

j=1[αi, j , βi, j ]U of I

such that ai ≤ d1 < d2 ≤ bi . Now δ appears in the expression for yI for every set S

where Rδ ∩ N ⊆ S ⊆ I . Since v > 1, the diagonal δ never contributes to yI . ⊓⊔

We now analyse the remaining case I = [n] and consider (0, n + 1)D ⊔ [u1, um]U as

up and down interval decomposition of I .

Lemma 6.9 For any partition Dc ⊔ Uc = [n] induced by some Coxeter element c, the

Minkowski coefficient y[n] satisfies

y[n] = (−1)|[n]\Rδ1
|(zc

Rδ1
− zc

Rδ2
− zc

Rδ3
+ zc

Rδ4

)

.

Proof For I = [n], we have a = 0, γ = 1, Ŵ = n, and b = n + 1. We associate

to the up and down interval decomposition of [n] precisely one diagonal that is not

proper and rewrite the formula for y[n] as

y[n] = z[n] +
∑

J⊂[n]
(−1)|[n]\J |z J .

We are now interested in the contribution of proper diagonals that are associated to

J ⊂ [n] and distinguish four cases. To find the contributions in each case, we proceed

along the lines of the proof of Proposition 6.2.

(1) Uc = ∅ and Dc = {1, n}.
Then D[n] = {δ1, δ2, δ3, δ4} and each diagonal of D[n] contributes to y[n] as well

as all proper diagonals {0, u} and {1, u} with u ∈ Uc since a = 0 and γ = 1.

Hence we have

∑

δ∈D[n]

(−1)|[n]\Rδ |zc
Rδ

+
∑

δ={0,α} with
α∈[u2,um ]Uc

(−1)|[n]\Rδ |zc
[n] +

∑

δ={1,α} with
α∈[u1,um ]Uc

(−1)|[n]\Rδ |zc
[n]

for
∑

J⊂[n](−1)|[n]\J |z J . Since {0, u1} is not a proper diagonal, the second

and third sum do not cancel and the term (−1)|[n]\R{1,u1}|zc
[n] remains. Now

|[n]\R{1,u1}| = 1 and

∑

δ∈D[n]

(−1)|[n]\Rδ |zc
Rδ

= (−1)|[n]\Rδ1
|(zc

Rδ1
− zc

Rδ2
− zc

Rδ3
+ zc

Rδ4

)

imply the claim.

(2) Uc = ∅ and Dc = {1, n}.
Then D[n] = {δ2, δ3, δ4} and we have

∑

J⊂[n]
(−1)|[n]\J |z J =

∑

δ∈D[n]

(−1)|[n]\Rδ |zc
Rδ

.
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The claim follows now from Rδ1 = [n] and Lemma 6.6.

(3) Uc = ∅ and Dc = {1, n}.
We have D[n] = {δ1, δ2, δ3}. Now each diagonal of D[n] and all proper diagonals

δ0,u = {0, u} and δ1,u = {1, u} with u ∈ Uc contribute to yI since a = 0 and

γ = 1. Similar to the first case, a term (−1)|[n]\R{1,u1}|zc
[n] is not canceled and we

obtain

y[n] = (−1)|[n]\Rδ1
|(zc

Rδ1
− zc

Rδ2
− zc

Rδ3

)

.

Since zRδ4
= z∅ = 0, the claim follows.

(4) Uc = ∅ and Dc = {1, n}.
We have D[n] = {δ2, δ3}, Rδ1 = [n] and Rδ4 = ∅. Hence

y[n] = z[n] +
∑

δ∈D[n]

(−1)|[n]\Rδ |zc
Rδ

= (−1)|[n]\Rδ1

(

zc
Rδ1

− zc
Rδ2

− zc
Rδ3

+ zc
Rδ4

)

.

⊓⊔

7 Characterisation of DI �= {δ1, δ2, δ3, δ4} for I ⊂ [n]

As stated in Lemma 6.3, not all 15 proper subsets of {δ1, δ2, δ3, δ4} appear as set of

proper diagonals DI for I ⊂ [n] with up and down decomposition of type (1, w) and

some Coxeter element c. The proof that a subset does not appear is not difficult, for

example, we can show that if DI contains certain diagonal(s) then DI is forced to

contain certain others. In this section we discuss Lemma 6.3(b) in detail and study the

sets DI with |DI | < 4. The seven proper subset of {δ1, δ2, δ3, δ4} that are possible are

characterised in Lemmas 7.1–7.7. We identified 14 conditions that characterise these

seven subsets.

Lemma 7.1 If DI = {δ1}, then I = {dr } with 1 ≤ r ≤ ℓ.

Proof δ1 ∈ DI implies (a, b)Dc
= ∅ and δ2, δ3, δ4 ∈ DI imply γ = Ŵ ∈ Dc. ⊓⊔

Lemma 7.2 (compare Fig. 17). If DI = {δ1, δ4}, then either

(a) I = {d1, u1} and u1 < d2, or

(b) I = {um, dℓ} and dℓ−1 < um .

(a) (b)

Fig. 17 Schematic illustrations: the two cases of DI = {δ1, δ4} (Lemma 7.2)
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Proof δ2, δ3 ∈ DI imply that {a, Ŵ} and {γ, b} are (non-degenerate) edges of Qc. In

particular, neither γ, Ŵ ∈ Dc nor γ, Ŵ ∈ Uc is possible.

Firstly, suppose γ ∈ Dc and Ŵ ∈ Uc. Then δ2 ∈ DI implies a = 0, Ŵ = u1, and

γ = d1 = 1. Now δ3 ∈ DI yields b = d2 and Ŵ = u1 requires u1 < d2 and we have

shown (a).

Secondly, suppose γ ∈ Uc and Ŵ ∈ Dc. Then δ3 ∈ DI implies b = n +1, γ = um ,

and Ŵ = dℓ = n. Now δ2 ∈ DI yields a = dℓ−1 and γ = um requires dℓ−1 < um .

This gives (b). ⊓⊔

Lemma 7.3 (compare Fig. 18). If DI = {δ2, δ3} then either

(a) I = {us} with 1 ≤ s ≤ m, or

(b) I = {us, us+1} with 1 ≤ s < m.

Proof From δ1 ∈ DI , we obtain (a, b)Dc
= ∅, thus a < γ ≤ Ŵ < b and γ, Ŵ ∈ Uc.

Now δ4 ∈ DI implies that {γ, Ŵ} is either degenerate or an edge of Qc. This proves

the claim.

Lemma 7.4 (Compare Fig. 19) If DI = {δ1, δ2, δ3}, then either

(a) I = {dr , dr+1} ⊔ M with 1 ≤ r < ℓ and M ⊆ [dr , dr+1] ∩ Uc or

(b) I = M ⊔ {us, us+1} with 1 ≤ s < m and M = [us, us+1] ∩ Dc = ∅.

Proof δ1 ∈ DI implies (a, b)Dc
= ∅, while δ4 ∈ DI implies that {γ, Ŵ} is either an

edge of Qc or γ = Ŵ. Suppose first γ = Ŵ. Then γ = Ŵ ∈ Dc implies the contradiction

DI = {δ1}, while γ = Ŵ ∈ Uc implies (a, b)Dc
= ∅, contradicting δ1 ∈ DI . We

therefore assume γ = Ŵ and only have to distinguish the cases γ, Ŵ ∈ Dc and

(a) (b)

Fig. 18 Schematic illustrations: the two cases of DI = {δ2, δ3} (Lemma 7.3)

(a) (b)

Fig. 19 Schematic illustrations: the two cases of DI = {δ1, δ2, δ3} (Lemma 7.4)
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(a)

(b)
(c)

Fig. 20 Schematic illustrations: the three cases of DI = {δ1, δ2, δ4} (Lemma 7.5)

γ, Ŵ ∈ Uc, the other cases γ ∈ Dc, Ŵ ∈ Uc and γ ∈ Uc and Ŵ ∈ Dc are not possible

since δ4 ∈ DI .

Firstly, suppose γ, Ŵ ∈ Dc. Then γ = dr and Ŵ = dr+1 for some 1 ≤ r ≤ ℓ − 1,

since δ4 ∈ DI . This implies I = {dr , dr+1}∪
(

[dr , dr+1]∩Uc

)

, which proves claim (a).

Secondly, suppose γ, Ŵ ∈ Uc. Then γ = us and Ŵ = us+1 for some 1 ≤ s ≤ m − 1.

But this implies [us, us+1] ∩ Dc = (dq , dr )Dc
= ∅ and

I =
(

[us, us+1] ∩ Dc

)

∪ [us, us+1]Uc
,

which proves (b). ⊓⊔

Lemma 7.5 is symmetric to Lemma 7.6, the proofs are along the same lines.

Lemma 7.5 (Compare Fig. 20). If DI = {δ1, δ2, δ4}, then either

(a) I = {dr+1, . . . , dℓ} ∪ {um} with dr < um < dr+1 < dℓ, or

(b) I = {dr } ∪ M with 1 < r < ℓ and ∅ = M ⊆ [dr , dr+1] ∩ Uc or

(c) I = {d1} ∪ M with M ⊆ [d1, d2] ∩ Uc and M\{u1} = ∅.

Proof Since δ1 ∈ DI , we have (a, b)Dc
= ∅, that is, a, b are not consecutive numbers

in Dc. From δ3 ∈ DI , we deduce that {γ, b} is an edge of Qc and γ, Ŵ ∈ Uc is therefore

impossible unless γ = Ŵ. Moreover, δ4 ∈ DI implies that γ = Ŵ is impossible. We

now have two cases to distinguish.

Firstly, suppose γ = um and b = n + 1. Then Ŵ = dℓ = n and δ2 ∈ DI implies

(a, Ŵ)Dc
= ∅. Together with a = max{d ∈ Dc|d < um} we have a = dr for some

1 ≤ r ≤ ℓ − 2 with um < dr+1 and I = (dr , n + 1)Dc
∪ [um, um]Uc

, this shows (a).

Secondly, we suppose γ = dr and b = dr+1 for some 1 ≤ r ≤ ℓ − 1 and

Ŵ ∈ (γ, b) ∩ Uc. If γ = 1 then δ2 ∈ DI implies Ŵ = u1, so we distinguish the

cases γ = 1 and γ = 1. Suppose first that γ=dr with r > 1. If [dr , dr+1] ∩ Uc =∅
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(a)

(b)
(c)

Fig. 21 Schematic illustrations: the three cases of DI = {δ1, δ3, δ4} (Lemma 7.6)

then we immediately have the claim for every non-empty M ⊆ [dr , dr+1] ∩ Uc.

If [dr , dr+1] ∩ Uc = ∅ then γ = Ŵ ∈ Dc which is impossible. Thus we have

shown (b). Suppose now that γ = d1 = 1. Then a = 0, b = d2, and δ2 ∈ DI implies

Ŵ ∈ Uc\{u1}. This proves (c). ⊓⊔

Lemma 7.6 (Compare Fig. 21). If DI = {δ1, δ3, δ4}, then either

(a) I = {d1, . . . , dr−1} ∪ {u1} with d1 < dr−1 < u1 < dr , or

(b) I = {dr } ∪ M with 1 < r < ℓ and ∅ = M ⊆ [dr−1, dr ] ∩ Uc or

(c) I = {dℓ} ∪ M with M ⊆ [dℓ−1, dℓ] ∩ Uc and M\{um} = ∅.

Lemma 7.7 If DI = {δ2, δ3, δ4}, then

I = {us, . . . , ut } with s + 1 < t and (us, ut ) ∩ Dc = ∅.

Proof From δ1 ∈ DI , we obtain (a, b)Dc
= ∅, in particular, a = dr and b = dr+1 for

some 1 ≤ r ≤ ℓ − 1. Thus γ, Ŵ ∈ Uc and because of δ4 ∈ DI we have γ = us and

Ŵ = ut for some 1 ≤ s < s + 1 < t ≤ um . But then I = M for some M ⊆ [us, ut ]Uc

with us, ut ∈ M . ⊓⊔
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