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Abstract

We introduce and study Minkowski games. These are two player games, where the
players take turns to choose positions in Rd based on some rules. Variants include
boundedness games, where one player wants to keep the positions bounded, and the
other wants to escape to infinity; as well as safety games, where one player wants to
stay within a prescribed set, while the other wants to leave it.

We provide some general characterizations of which player can win such games,
and explore the computational complexity of the associated decision problems. A
natural representation of boundedness games yields coNP-completeness, whereas the
safety games are undecidable.

1 Introduction

Minkowski games In this paper we define and study Minkowski games. A Minkowski
play is an infinite duration interaction between two players, called Player A and Player B,
in the space Rd. A move in a Minkowski play is a subset of Rd. Player A has a set of
moves A and Player B has a set of moves B. The play starts in a position a0 ∈ Rd and
is played for an infinite number of rounds as follows. For a round starting in position a,
Player A chooses A ∈ A and Player B chooses a vector b in a + A, where + denotes the
Minkowski sum. Next, Player B chooses B ∈ B and Player A chooses a vector a′ in b+B.
Then a new round starts in the position a′. The outcome of a Minkowski play is thus an
infinite sequence of vectors a0b0a1b1 . . . anbn . . . obtained during this infinite interaction.
Each outcome is either winning for Player A or for Player B, and this is specified by a
winning condition.

We consider two types of winning conditions. First, we consider boundedness: an
outcome a0b0a1b1 . . . anbn . . . is winning for Player A in the boundedness game if there
exists a bounded subset Safe ⊆ Rd such that the outcomes stays in Safe, i.e. for all i ≥ 0,
ai ∈ Safe and bi ∈ Safe, otherwise the play is winning for Player B. Second, we consider

∗This work was supported by the ERC inVEST (279499) project.
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safety: given a subset Safe ⊆ Rd, an outcome is winning for Player A if the outcome stays
in Safe, otherwise the play is winning for Player B.
A and B could have arbitrary cardinality, but unless stated otherwise we will con-

sider finite sets A = {A1, A2, . . . , AnA
} and B = {B1, B2, . . . , BnB

}. Also, unless stated
otherwise, both Safe in the safety Minkowski games and the moves in general will be
bounded.

The Minkowski games are a natural mathematical abstraction to model the interaction
between two agents taking actions, modeled by moves, with imprecision as the adversary
resolves nondeterminism by picking a vector in the move chosen by the other player.1

Perhaps more importantly, the appeal of Minkowski games comes also from their simple
and natural definition. We provide in this paper general results about these games and
study several of their incarnations in which moves are given as (i) bounded rational poly-
hedral sets, (ii) sets defined using the first-order theory of the reals, or (iii) represented
as compact or overt sets as defined in computable analysis [19]. Note that by Borel deter-
minacy [13] all these games are determined, i.e. either of the players has a strategy that
is winning for sure. Our results are as follows.

Results We establish a necessary and sufficient condition for Player A to have a winning
strategy in a boundedness Minkowski game with finitely many moves (Theorem 13) and
give a simple proof (in comparison with Borel determinacy [13]) that these games are deter-
mined. We then turn our attention to computation complexity aspects of determining the
winner of a game, i.e. who has a winning strategy. The necessary and sufficient condition
that we have identified leads to a coNP solution when the moves are given as bounded
rational polyhedral sets, and we provide matching lower bounds (Theorem 20). These re-
sults hold both for moves represented by sets of linear inequalities and moves represented
as the convex hulls of a finite set of rational points. Additionally, we show that for every
fixed dimension d, determining the winner can be done in polynomial time (Corollary 30).
When the moves are defined using the first-order theory of the reals, determining the win-
ner of a boundedness game is shown to be 2ExpTime-complete (Proposition 31). Finally,
in the computable analysis setting, the problem is semi-decidable (Proposition 33), and
this is the best that we can hope for.

We characterize the set of winning positions in a safety Minkowski game, even with
infinite A and B, as the greatest fixed point of an operator that removes the points where
Player B can provably win (in finitely many rounds). We show that this greatest fixed point
can be characterized by an approximation sequence of at most ω steps (Proposition 36),
for finite A but even for infinite B. This leads to semi-decidability in the general setting
of computable analysis (Proposition 42). Then we show that identifying the winner in
a safety Minkowski game is undecidable even for finite sets of moves that are given as
bounded rational polyhedral sets (Theorem 43). As a consequence, we consider a variant
of the safety Minkowski games, called structural safety Minkowski games, where Player A

must maintain safety from any starting vector within the set Safe. We show that deciding
the winner in this variant is coNP-complete when the moves are defined as bounded

1See further discussions on the practical appeal of these games for modeling systems evolving in multi-
dimensional spaces when we report on related works.
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rational polyhedral sets (Theorem 48).

Motivations and related works Infinite duration games are commonly used as mathe-
matical framework for modeling the controller synthesis problem for reactive systems [18].
For reactive systems embedded in some physical environment, games played on hybrid
automata have been considered, see e.g. [10] and references therein. In such a model,
one controller interacts with an environment whose physical properties are modeled by
valuations of d real-valued variables (vectors in Rd). Most of the problems related to the
synthesis of controllers for hybrid automata are undecidable [10]. Restricted subclasses
with decidable properties, such as timed automata and initialized rectangular automata
have been considered [12, 9]. Most of the undecidability properties of those models rely
on the coexistence of continuous and discrete evolutions of the configurations of hybrid
automata. The one-sided version of the model of Minkowski games (where B = {{0}}) can
be seen as a restricted form of an hybrid games in which each continuous evolution is of
a unique fixed duration and space independent (such as in linear and rectangular hybrid
automata). It is usually called discrete time control in this setting. While discrete-time
control problems are known to be undecidable for linear hybrid automata, they are de-
cidable for (bounded) rectangular automata [10]. We show in Remark 47 below how this
positive result can be transferred to a subclass of Minkowski games.

To the best of our knowledge, the closest models to Minkowski games that have been
considered in the literature so far are Robot games defined by Doyen et al. in [7] and
Bounded-Rate Multi-Mode Systems introduced by Alur et al. in [2, 1]. Minkowski games
generalize robot games: there the moves are always singletons given as integer vectors.
While we show that the Safety problem is undecidable for bounded safety objectives, it
is easy to show that this problem is actually decidable for robot games. However, in [7]
they investigate reachability of a specific position rather than safety conditions as we do
here. Reachability was proven undecidable in [15] even for two-dimensional robot games.
Boundedness objectives have not been studied for Robot games.

Bounded-Rate Multi-Mode Systems (BRMMS) are a restricted form of hybrid systems
that can switch freely among a finite number of modes. The dynamics in each mode
is specified by a bounded set of possible rates. The possible rates are either given by
convex polytopes or as finite set of vectors. There are several differences with Minkowski
games. First BRMMS are asymmetric and are thus closer to the special case of one-sided
Minkowski games. Second, the actions in BRMMS are given by a mode and a time delay
δ ∈ R while the time elapsing in our model can be seen as uniform and fixed. The ability
to choose delays that are as small as needed makes the safety control problem for BRMMS
with modes given as polytopes decidable while we show that the safety Minkowski games
with moves defined by polytopes are undecidable. The discrete time control of BRMMS,
which is more similar to the safety Minkowski games, has been solved only for modes given
as finite sets of vectors and left open for modes given as polytopes. Our undecidability
results can be easily adapted to the discrete time control of BRMMS and thus solves
the open question left in that paper. Boundedness objectives have not been studied for
BRMMS.
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Structure of the paper Section 2 collects various basic mathematics, typically from
linear algebra, that we are using in the paper. It also defines the Minkowski games.
Section 3 defines and studies auxiliary games, which will be used to decompose every more
complex Minkowski game into a simpler Minkowski game and a (also simpler) auxiliary
game. Section 4 characterizes the winner of a boundedness Minkowski game in terms
of simple convex geometry, and it describes the winning strategies. Section 5 studies the
algorithmic complexity of finding the winner in the various settings. Section 6 collects a few
properties of the winning region of the safety problem, depending on various restrictions
on the game. Section 7 shows, among others things, that finding the winner of a safety
Minkowski game is undecidable, even for a simple subclass. In Section 8 we consider
structural safety games, and prove coNP-completeness for the associated decision problem.
Finally, Section 9 mentions a few open questions.

2 Preliminaries

Linear constraints Let d ∈ N>0, and X = {x1, x2, . . . , xd} be a set of variables. A
linear term on X is a term of the form α1x1 + α2x2 + . . . αdxd where xi ∈ X, αi ∈ R

for all i, 1 ≤ i ≤ n. A linear constraint is a formula α1x1 + α2x2 + . . . αdxd ∼ c,
and ∼∈ {<,≤,=,≥, >}, that compares a linear term with a constant c ∈ R. Given
a valuation v : X → R, that can be seen equivalently as a vector in Rd, we write v |=
α1x1+α2x2+. . . αnxn ∼ c iff α1v(x1)+α2v(x2)+. . . αdv(xd) ∼ c. Given a linear constraint
φ ≡ α1x1+α2x2+ . . . αdxd ∼ c, we write [[φ]] = {v ∈ Rd | v |= α1x1+α2x2+ . . . αdxd ∼ c}.
A linear constraint is rational, if all αi and c are rational numbers.

Polyhedra, polytopes, convex hull Given a finite set H = {φ1, φ2, . . . , φn} of linear
constraints, we note [[H]] = {v ∈ Rd | ∀φ ∈ H : v |= φ} the set of vectors that satisfies all
the linear constraints in H. Such a set is a convex set and is usually called a polyhedra. In
the special case that is bounded, then it is called a polytope. We call a polytope rational,
if all φi can be chosen rational. When a polytope is closed, then it is well-known that it
can be represented not only by a finite set of linear inequalities that are all non-strict but
also as the convex hull of a finite set of (extremal) vectors. The convex hull of a subset of
a R-vector space is noted and defined as follows:

CH(V) :=

{

n
∑

i=0

αixi | n ∈ N ∧
n
∑

i=0

αi = 1 ∧ ∀i(xi ∈ V ∧ αi ≥ 0)

}

Carathéodory’s theorem says that for all V ⊆ Rd, every point in CH(V) is a convex
combination of at most d + 1 points from V. As a consequence, the n ranging over N in
the definition of the convex hull can safely be replaced with fixed d.

Let P be a closed polytope. P has two families of representations: itsH-representations
are the finite sets of linear inequalities H such that [[H]] = P , and its V -representations are
the finite sets of vectors V such that CH(V) = P . Some algorithmic operations are easier
to perform on one representation or on the other. Unfortunately, in general there cannot
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exist a polynomial time translation from one representation to the other unless P = NP .
Nevertheless, such a polynomial time translation exists for fixed dimension:

Theorem 1 ([4]) Let P be a rational closed polytope of fixed dimension d ∈ N. There
exists a polynomial time algorithm that given a H-representation of P , compute a V -
presentation of P , and conversely, there exists a polynomial time algorithm that given a
V -representation of P , compute a H-presentation of P .

We denote by Ver(P) the extremal points, i.e., the vertices of a polytope P . It is the
minimal set whose convex hull equals P . Note that a closed polytope is rational iff all its
vertices are rational points.

Minkowski sum For subsets A,B ∈ Rd their Minkowski sum A + B is defined as
{a + b | a ∈ A ∧ b ∈ B}. The Minkowski sum inherits commutativity and associativity
from the usual sum of vectors. The set {0} is the neutral element, but there are no inverse
elements in general. If A = {a} then A+B (resp. B+A) is written a+B (resp. B+a) in a
slight abuse of notation. It is straightforward to prove that CH(A)+CH(B) = CH(A+B).
Especially, if A and B are convex, so is A+ B. While A+ A may be a strict superset of
2A := {2a | a ∈ A} in general, for convex A we find A+A = 2A.

Topological closure The topological closure of a set S is denoted by S.

Minkowski games - Strategies We have described in the introduction how the play-
ers interact in a Minkowski games by choosing in each round a move and by resolving
nondeterminism among the moves chosen by the other player. We now formally define the
notions of strategies for each player together with the associated compatible outcomes.

When playing Minkowski games, players are applying strategies. In a game with moves
A and B, strategies for the two players are defined as follows. A strategy for Player A is a
function

λA : (Rd)∗ → (A ∪ (Rd)∗)× B → Rd

that respects the following consistency constraint: for all finite sequences of positions
ρ ∈ (Rd)∗ that ends in v ∈ Rd, and moves B ∈ B, λA(ρ,B) ∈ v + B. Symmetrically, a
strategy for Player B is a function

λB : (Rd)∗ → (B ∪ (Rd)∗)×A → Rd

with the symmetric consistency constraint.
A play a0b0a1b1 . . . anbn . . . , that starts in v0 = a0, is consistent with strategies λA and

λB if for all i ≥ 0, we have that:

bi = λB(a0b0a1b1 . . . ai, λA(a0b0a1b1 . . . ai))

and
ai+1 = λA(a0b0a1b1 . . . aibi, λB(a0b0a1b1 . . . aibi)).

Given two strategies λA and λB , one for each player, and a position v0 ∈ Rd, we note
Outcomev0(λA, λB) the unique play that starts in v0 and which is consistent with the two
strategies.
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Winning conditions and variants of Minkowski games By fixing the rule that
determines who wins a Minkowski play, we obtain Minkowski games. Here we consider
three types of Minkowski games.

Definition 2 A boundedness Minkowski game is a pair 〈A,B〉 of sets of moves in Rd for
Player A and Player B. A play in a boundedness Minkowski game starts in some irrelevant
a0 ∈ Rd, and the resulting play a0b0a1b1 . . . anbn . . . is winning for Player A if there exists
a bounded subset Safe of Rd such that ai, bi ∈ Safe for all i ∈ N, otherwise Player B wins
the game. The associated decision problem asks if Player A has a strategy λA which is
winning against all the strategies λB of Player B.

Definition 3 A safety Minkowski game is defined by 〈A,B,Safe, v0〉, where A and B are
sets of moves for Player A and Player B, Safe ⊆ Rd (bounded unless stated otherwise), and
v0 ∈ Safe is the initial position. A play in a safety Minkowski game starts in v0, and the
resulting play a0b0a1b1 . . . anbn . . . is winning for Player A if ai, bi ∈ Safe for all i ∈ N,
otherwise Player B wins the game. The associated decision problem asks if Player A has a
strategy λA which is winning against all the strategies λB of Player B.

Definition 4 A structural safety Minkowski game is defined by 〈A,B,Safe〉, where A,
and B are sets of moves for Player A and Player B, and Safe ⊆ Rd. In such a game, the
interaction between the two player starts from any position v0 ∈ Safe, and the resulting
play a0b0a1b1 . . . anbn . . . is winning for Player A if ai, bi ∈ Safe for all i ∈ N, otherwise
Player B wins the game. The associated decision problem asks if Player A has a strategy to
win the safety game wherever it starts in Safe and against all the strategies of Player B.

A game is single-sided if B = {{0}}, i.e. whenever Player B has only one trivial move.
We use single-sided Minkowski games to show that several of our lower-bounds hold for
this subclass of games.

3 Auxiliary games

We will make use of two kinds of auxiliary games in proving our results on Minkowski
games. These games might be of independent interest, although we only prove sufficient
results for our purposes here. Our first auxiliary game captures the difference between
a set and its convex hull for controlling some trajectory in Rd. Player B plays points in
some set CH(B) ⊆ Rd, which Player A has to approximate as well as possible while playing
points in B.

Definition 5 In the convex approximation game for B ⊆ Rd with error margin E ⊆ Rd,
in each turn j Player B plays some vj ∈ CH(B), then Player A follows with some uj ∈ B.

If for all j ∈ N,
∑j

i=0(vi − ui) ∈ E, then Player A wins, else Player B wins.

The precise nature of the error margins E allowing Player A to win is not important
for us, important is that for bounded B there is some bounded E enabling Player A to
win.

6



Lemma 6 2 For B ⊆ Rd we find that B + dCH(B) = (d+ 1)CH(B).

Proof As CH(B) is convex we find that (d + 1)CH(B) equivalently may denote the
d+1-fold Minkowski sum of CH(B) with itself or the result of the product with the scalar
d+ 1. Thus, the inclusion B + dCH(B) ⊆ (d+ 1)CH(B) is trivial.

For the other direction, assume that b ∈ (d+1)CH(B). Then (d+1)−1b ∈ CH(B). By
Charathéodory’s theorem, there are d+1 points bi ∈ B and scalars αi ≥ 0 for i ∈ {0, . . . , d}
with

∑d
i=1 αi = 1 and

∑d
i=1 αibi = (d+ 1)−1b, i.e. b = (d+ 1)

∑d
i=1 αibi. W.l.o.g. assume

that αd ≥ αi for all i ≤ d. Then in particular αd ≥ (d+ 1)−1. Now we can write:

b = bd + d

[

(d+ 1)αd − 1

d
bd +

d−1
∑

i=0

d+ 1

d
αibi

]

The expression in square brackets is a convex combination of the bi, thus we can conclude
b ∈ B + dCH(B). �

Proposition 7 Pick c ∈ d · CH(B). Player A has a winning strategy in the convex ap-
proximation game for B ⊆ Rd with error margin d · CH(B) + {−c}.

Proof We describe a strategy of Player A that ensures
∑j

i=0(vi − ui) ∈ dCH(B) in-
ductively. The case t = 0 is satisfied since 0 ∈ dCH(B) + {−c} by choice of c. By
induction hypothesis, we find that vj +

∑j−1
i=0 (vi−ui)+ c ∈ CH(B)+ dCH(B). By Lemma

6, there exists some uj ∈ B and r ∈ dCH(B) such that vj +
∑j−1

i=0 (vi − ui) + c = uj + r,

i.e. r − c =
∑j

i=0(vi − ui) ∈ dCH(B) + {−c} as desired. �

If we place some restrictions on the set B, we can obtain better bounds. Essentially,
our condition is that B contains the boundary of CH(B).

Proposition 8 Let B be closed and satisfy d(x,B) = d(x,CH(B)) for each x /∈ CH(B).
Let ρ := maxx∈CH(B) d(x,B) and B(0, ρ) ⊆ E. Player A has a winning strategy for the
convex approximation game for B with error margin E.

Proof We describe a strategy of Player A that ensures
∑j

i=0(vi − ui) ∈ B(0, ρ) induc-

tively. The case j = 0 is trivially satisfied. Assume that
∑j−1

i=0 (vi−ui) ∈ B(0, ρ), and that

Player B chose vj in round j. Player A will play some uj ∈ B with d(
∑j−1

i=0 (vi−ui)+vj , uj) =

d(
∑j−1

i=0 (vi − ui) + vj , B).

It remains to show that
∑j

i=0(vi−ui) ∈ B(0, ρ), i.e. that d(
∑j−1

i=0 (vi−ui)+vj, uj) ≤ ρ.

If
∑j−1

i=0 (vi − ui) + vj ∈ CH(B), this is true by definition of ρ. Else, by our various

2This result was provided by an anonymous contributor in the following answer posted to
math.stackexchange.com: http://math.stackexchange.com/q/1814457.
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assumptions:

d(

j−1
∑

i=0

(vi − ui) + vj, uj) = d(

j−1
∑

i=0

(vi − ui) + vj , B)

= d(

j−1
∑

i=0

(vi − ui) + vj ,CH(B))

≤ d(

j−1
∑

i=0

(vi − ui) + vj , vj)

= d(

j−1
∑

i=0

(vi − ui), 0) ≤ ρ

�

Our second class of auxiliary games is (up to some details) a special case of the convex
approximation games:

Definition 9 In the d-dimensional +1/ − 1-game with threshold r, Player A plays posi-
tions ni ∈ {1, . . . , d} and Player B plays stochastic d-dimensional vectors vi ∈ Sd. Player A

wins if for all j ∈ N and all k ∈ {1, . . . , d} we find that |{i ≤ j | ni = k}|−
∑j

i=0(vi)k ≥ r.

This means that in each round Player A is putting a unit token on one out of d positions,
while Player B is removing fractions of token summing up to one unit from the positions.
Player B attempts to get some position below f , Player A wants to prevent this.

Proposition 10 Player A has a winning strategy in the d-dimensional +1/−1-game with
threshold −d.

Proof Consider the convex approximation game for:

B := {(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)}

Pick c = (1, 1, . . . , 1). Then by Proposition 7 Player A can force all components of the
vectors

∑j
i=0(vi − ui) to not exceed d − 1. Since in a +1/ − 1-game, Player A moves

first, whereas in a convex approximation game Player B moves first, we need to adjust this
bounds by adding the maximum deviation possible through a single round: 1. �

Proposition 11 Player B has a winning strategy in the d-dimensional +1/−1-game with
threshold −H(d− 1) (the d− 1-th harmonic number).

Proof For k < d, in the k-th round there are at least (d− k) positions never played by
Player A so far. Player B plays each of these with weight 1

d−k
each. In round (d− 1), this

gives total weight −
∑d−1

i=1 i−1 = −H(d− 1) to the position never played by Player A. �
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We leave the question open to precisely determine the following values:

τd = − sup{r | Player A wins the + 1/ − 1-game with threshold r}

What we will use is only that there are thresholds allowing Player A to win.

4 General results on the boundness problem

To start this section, we consider the special case of one-sided boundedness Minkowski
games and provide a sufficient (and necessary) condition for Player A to win. The proof
showcases some ideas we will then use to fully characterize the general case. The char-
acterization in the general case in particular implies that the condition for the one-sided
case is necessary.

Proposition 12 We consider a one-sided boundedness Minkowski game 〈A, {0}〉 where
A = {A1, . . . , An} and such that 0 ∈ CH((xi)1≤i≤n) for all tuples (xi)1≤i≤n in A1×· · ·×An.
Then Player A wins the boundedness game.

Proof We describe the current state by some list of pairs (xi, αi)i≤n such that xi ∈ Ai

and αi ∈ [0, 1]. We keep two invariants satisfied throughout the play: First, it will always
be the case that the current position is equal to

∑

i≤n αixi, which by boundedness of each
Ai implies that Player A wins. Second, we maintain the invariant that there is some k ≤ n
with αk = 0. Initially, the choice of the xi is arbitrary, and all αi are 0. This ensures that
the strategy we describe for Player A is well-defined.

On his turn, Player A plays some Ak for k with αk = 0. Player B reacts with some
x′k ∈ Ak, and we set xk := x′k and αk := 1.

If immediately after the move, no αi is currently 0, we write a convex combination
0 =

∑

i≤n βixi, which is possible by assumption. Let r := maxi≤n
βi

αi
, and then update

αi = αi − r−1βi. By the choice of the βi, this leaves
∑

i≤n αixi unchanged. The choice of
r ensures that αi ∈ [0, 1] remains true, and more over, after the updating process, there is
some k ≤ n with αk = 0. Thus, the invariant is true again after the updating process. �

We introduce some notation to formulate the main lemma of this section,which is then
summarized by Theorem 13. For some set of moves B let CH(B) := {CH(B) | B ∈ B} and
B := {B | B ∈ B}. We say that a strategy for Player B in a Minkowski game is simple, if
it prescribes choosing always the same B ∈ B, and if the choice ai ∈ Ai depends only on
the choice of Ai ∈ A by Player A.

Theorem 13 • Boundedness Minkowski games are determined;

• the winner is the same for 〈A,B〉 and 〈CH(A),CH(B)〉;

• if Player B has a winning strategy, she has a simple one;

• Player A wins iff 0 ∈ (CH{ai | i ≤ n}) + CH(B) for all (ai)i≤n with ai ∈ Ai and
B ∈ B.

Proof The claims follow from Lemma 14 below. �
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Note that the determinacy of the boundedness Minkowski games also follows from
Borel determinacy [13] (and also from techniques in [20]) since the set of the winning
plays for Player A is a Σ0

2 set (for the usual product topology over discrete topology).

Lemma 14 The following are equivalent for a boundedness Minkowski game 〈A = {A1, . . . , An},B〉:

1. Player A has a winning strategy in 〈A,B〉.

2. Player A has a winning strategy in 〈A,CH(B)〉.

3. Player A has a winning strategy in 〈A,B〉.

4. Player B has no winning strategy in 〈A,B〉.

5. Player B has no simple winning strategy in 〈A,B〉.

6. Player B has no winning strategy in 〈CH(A),B〉.

7. Player B has no winning strategy in 〈A,B〉.

8. For all (ai)i≤n with ai ∈ CH(Ai) and B ∈ B we find that:

0 ∈ (CH{ai | i ≤ n}) + CH(B)

9. For all (ai)i≤n with ai ∈ Ai and B ∈ B we find that:

0 ∈ (CH{ai | i ≤ n}) + CH(B)

Proof That 1. and 2. are equivalent is shown in Lemma 15 below. That 1. and 3. are
equivalent is shown in Lemma 16 below. The implication from 1. to 4. is trivial, so is
4.⇒ 5.. That ¬9. implies ¬5. is Lemma 17. Using the equivalences of 1., 2. and 3. we see
that it suffices to show that 8. implies 1. in the special case where all B ∈ B are closed and
convex. This is the statement of Lemma 18. That 8. implies 9. is trivial, that 9. implies
8. is shown in Lemma 19. That 4.,6.,7. are mutually equivalent then follows. �

Lemma 15 Player A has a winning strategy in 〈A,B〉 iff she has a winning strategy in
〈A,Bconv〉.

Proof Every strategy for Player A in 〈A,B〉 is also a valid strategy in 〈A,Bconv〉, and if
the strategy is winning in the former game, it is winning in the latter. Thus, we only need
to show how to transform a winning strategy s′ for Player A in 〈A,Bconv〉 to a winning
strategy s for Player A in 〈A,B〉.

We do this by using an auxiliary convex approximation game for each B ∈ B. In the
convex approximation game for B, Player A will consider the choices y′ ∈ CH(B) prescribed
to her by the strategy s′ in 〈A,Bconv〉 as the moves of her opponent, and will determine
moves y ∈ B according to some winning strategy for some suitable bounded set EB (which
she has by Proposition 7). The strategy s now chooses y for 〈A,B〉.

If s′ enforces that the play remains within some set E, then by linearity, s enforces
that the play remains within E +

⊕

B∈B EB , which by finiteness of B is again a bounded
set. �
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Lemma 16 Player A has a winning strategy in 〈A,B〉 iff she has a winning strategy in
〈A,Bcl〉.

Proof Every strategy for Player A in 〈A,B〉 is also a valid strategy in 〈A,Bcl〉, and if
the strategy is winning in the former game, it is winning in the latter. Thus, we only
need to show how to transform a winning strategy s′ for Player A in 〈A,Bcl〉 to a winning
strategy s for Player A in 〈A,B〉.

For this, let s agree with s′ on which moves A ∈ A Player A is choosing, and be such
that if s′ picks some y′ ∈ B ∈ Bcl in round n, then s picks some y ∈ B with d(y, y′) < 2−n.
As the notion of a play is linear, if s′ enforces that the play stays within some set E, then
s enforces that the play stays within E +B(0, 2). �

Lemma 17 Consider a boundedness Minkowski game 〈A = {a1, . . . , an},B〉 such that
there are ai ∈ Ai, B ∈ B such that:

0 /∈ (CH{ai | i ≤ n}) + CH(B)

Then Player B has a simple winning strategy by always choosing the witnesses.

Proof Let u be the convex projection of 0 onto (CH{ai | i ≤ n}) + CH(B). After each
round, the position will move by |u| in direction u, hence the play will diverge. �

Lemma 18 Consider a boundedness Minkowski game 〈A = {A1, . . . , An},B〉 such that
every B ∈ B is closed and convex, and for all ai ∈ CH(Ai), B ∈ B we find that:

0 ∈ (CH{ai | i ≤ n}) +B

Then Player A has a winning strategy.

Proof We will reduce the boundedness Minkowski game satisfying these conditions to a
+1/−1-game. Central to the reduction is that we can describe the current position in the
boundedness Minkowski game in the form x1a1 + . . .+ xnan + p with xi ≥ 0, ai ∈ CH(Ai)
and p being some fixed vector. Initially, we choose xi = n, the ai ∈ CH(Ai) arbitrarily,
and p such that the resulting expression equals v0. The values xi will be considered as the
positions in the +1/− 1-game.

If Player B picks some a′i ∈ Ai, then xiai + a′i = (xi + 1)
[

xi

xi+1ai +
1

xi+1a
′
i

]

, which the

expression within [ ] being an element of CH(Ai). Thus, the choice of Ai by Player A can
be considered as choosing the i-th position in the +1/− 1-game.

Given some move B ∈ B and the current value of the ai, we know that there is some
b ∈ B with b = −

∑n
i=1 αiai, where αi ≥ 0,

∑n
i=1 αi = 1. Player A will choose such a b,

which corresponds to updating the xi to xi−αi. Thus, the choice by Player B can be seen
as Player B making a move in the +1/− 1-game3.

By Proposition 10, Player A has a strategy in the +1/ − 1-game that ensures that
xi ≥ 0 remains true. This in turn implies that the play in the Minkowski game remains
bounded, i.e. Player A wins. �

3Player B can not induce all moves available to her in the +1/ − 1-game by picking some B ∈ B, but
this is irrelevant for our purpose, as we are concerned with winning strategies of Player A.
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Lemma 19 Let B be compact and convex. If there are ai ∈ CH(Ai), i ≤ n such that
0 /∈ CH{a1, . . . , an}+B, then there are a′i ∈ Ai with 0 /∈ (CH{a′1, . . . , a

′
n}) +B.

Proof First, note that 0 /∈ (CH{a1, . . . , an}) + B is an open property in the ai, hence
it remains true under small perturbations of the ai. Thus, replacing Ai with Ai does not
change anything.

Second, 0 /∈ (CH{a1, . . . , an}) + B is equivalent to CH{a1, . . . , an} ∩ −B = ∅. It is
known that in Rd, disjoint compact convex sets are separated by hyperplanes. Let P
be a hyperplane separating Rd into L ⊇ CH{a1, . . . , an} and U ⊇ −B. Now since ai ∈
L∩CH(Ai), we can conclude that L∩Ai 6= ∅. Pick a′i ∈ L∩Ai. Then L ⊇ CH{a′1, . . . , a

′
n},

hence 0 /∈ (CH{a′1, . . . , a
′
n}) +B. �

5 Computational complexity of the boundedness problem

In the previous section, we have provided general results on boundednessMinkowski games.
Here we study the computational complexity of the associated decision problem 4. To
formulate complexity results, we need to consider classes of games that are defined in
some effective way. We consider here three ways for the representation of sets of moves:
by finite sets of linear constraints (or the convex hull of a finite set of vectors), by formulas
in the first-order theory of the reals (that strictly extend the expressive power of linear
constraints), and as compact sets or overt sets (closed sets with positive information) in
the sense of computable analysis.

5.1 Moves defined by linear constraints or as convex hulls

We prove the following main result in this section:

Theorem 20 Given a boundedness Minkowski game 〈A,B〉 where moves in the sets of
moves A and B are defined by finite sets of rational linear constraints or as convex hulls
of a finite sets of rational vectors, deciding the winner is coNP-complete. The hardness
already holds for one-sided boundedness games.

We establish this result by showing how to reduce the 3-SAT problem to the comple-
ment of the boundedness Minkowski game problem. For that we need some intermediate
results. A simple strategy λB for Player B is called a vertex strategy, if the ai ∈ Ai chosen
by λB are always some vertex of Ai.

Corollary 21 If Player B has a winning strategy in a boundedness Minkowski game 〈A,B〉
with closed moves in A then she has a winning vertex strategy.

Proof By Lemma 14 (4. ⇔ 6.), Player B wins 〈A,B〉 iff she wins 〈{Ver(A) | A ∈
A},B, a0〉. By Lemma 14 (¬4. ⇒ ¬5.) applied to the latter game, she then even has a
simple winning strategy in 〈{Ver(A) | A ∈ A},B, a0〉. But this is just the definition of a
vertex strategy. �

4For all our complexity results, all the encoding of numbers and vectors that we use are the natural
ones, i.e. integer or rational numbers are encoded succinctly in binary.
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As a consequence of the previous corollary and of the determinacy of boundedness
Minkowski games (Corollary 13), to show that Player A has a winning strategy, it is
sufficient to show that he can spoil all the vertex strategies of Player B. This is an important
ingredient of the reduction below.

Lemma 22 There is a polynomial time reduction from the 3SAT problem to the comple-
ment of the boundedness problem for one-sided Minkowski games with moves defined by
closed polytopes.

Proof First of all, let us point out that the proof that we provide below works for both
the H-representation and the V -representation. This is because the moves that we need
to construct are all the convex hull of exactly three vectors. So the H-representation of
such a convex hull can be obtained in polynomial time.

Let Ψ = {C1, C2, . . . , Cn} be a set of clauses with 3 literals defined on the set of
Boolean variables X = {x1, x2, . . . , xm}. Each Ci is of the form ℓi1 ∨ ℓi2 ∨ ℓi3 where each
ℓij is either x or ¬x with x ∈ X.

To define the set of moves A for Player A, we associate a move Ai with each clause Ci.
The move is a subset of Rd, where d = 2 · |X| = 2 ·m, defined from Ci as follows. We
associate with each variable xk ∈ X two dimensions of Rd: 2k − 1 and 2k, and to each
literal ℓij a vector noted Vect(ℓij) defined as follows. If the literal ℓij = xk, then the vector
Vect(ℓij) has zeros everywhere but in dimension 2k − 1 and 2k where it is respectively
equal to 1 and −1. If the literal ℓij = ¬xk, then the vector Vect(ℓij) has zeros everywhere
but in dimension 2k − 1 and 2k where it is respectively equal to −1 and 1. So, for all
literals ℓ1 and ℓ2, Vect(ℓ1) + Vect(ℓ2) = 0 if and only if ℓ1 ≡ ¬ℓ2 or ℓ2 ≡ ¬ℓ1. Finally, the
move associated with the clause Ci = ℓi1 ∨ ℓi2 ∨ ℓi3 is

Ai = CH(Vect(ℓi1),Vect(ℓi2),Vect(ℓi3)).

It remains to prove the correctness of our reduction. By Corollary 21, Player B has
a winning strategy iff she has a winning vertex strategy, so we only need to consider the
latter. We call a vertex strategy λv

B of Player B valid, iff there are no i1, i2 such that
λv
B(Ai1) = −λ

v
B(Ai2). We will argue first that Player B has a valid vertex strategy iff there

is a satisfying assignment for Ψ. Then we argue that a vertex strategy for Player B is
winning iff it is valid. The two parts together with Corollary 21 yield the desired claim
that Player B has a winning strategy iff Ψ is satisfiable.

Claim: There is a valid vertex strategy iff there Ψ is satisfiable.
Given a satisfying truth assignment, we can pick some vertex strategy such that the

vertex chosen always corresponds to some true literal. In particular, we never chose vertices
corresponding to both x and ¬x – but by construction of the moves, this ensures that the
vertex strategy is valid. Conversely, a valid vertex strategy is never choosing vertices
corresponding to both x and ¬x. Thus, we can obtain a truth assignment by making all
literals corresponding to vertices chosen by the strategy true, and choosing arbitrarily for
the remaining literals. This truth assignment satisfies Ψ by construction.

Claim: A vertex strategy is valid iff it is winning.
Assume that a vertex strategy λv

B is not valid, and that moves Ai1 , Ai2 witness this.
Then if Player A alternates between playing Ai1 and Ai2 , the resulting game remains
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bounded and is hence won by Player A. If Player B plays some valid vertex strategy λv
B ,

and Player A plays infinitely often some move Ai, then the position will diverge in the two
dimensions associated with the literal λv

B(Ai). By the pigeon hole principle, Player A has
to play some move infinitely often. It follows that a valid vertex strategy is a winning
strategy. �

We have now established the hardness part of Theorem 20. The coNP-membership
part is covered by the following lemma.

Lemma 23 Negative instances of the boundedness Minkowski games expressed with moves
defined as sets of rational linear inequalities or convex hull of finite sets of rational vectors
can be recognized by a nondeterministic polynomial time Turing machine.

Proof To show that Player A has no winning strategy, by Lemma 14 (1.⇔ 8.⇔ 9.), it
suffices to exhibit a1 ∈ Ver(A1), a2 ∈ Ver(A2), . . . , anA

∈ Ver(AnA
), and one B ∈ B, such

that
0 6∈ CH(a1, a2, . . . , anA

) +B.

If each Ai is given by a set of linear constraints, each vertex in Ver(Ai) has a binary
representation which is polynomial in the description of Ai, and so those points can be
guessed in polynomial time. If the Ai are given as convex hulls of a finite set of points,
we can obviously guess a vertex in polynomial time, too.

Finally, let us show that we can check in deterministic polynomial time that

0 6∈ CH(a1, a2, . . . , anA
) +B.

If B is given via rational linear inequalities, this is equivalent to decide if the following set
of linear constraints is unsatisfiable:

∧i=nA

i=1 0 ≤ αi ≤ 1

∧
∑i=nA

i=1 αi = 1

∧x =
∑i=nA

i=1 αiai
∧y ∈ B
∧0 = x+ y

If B is given as CH(b1, . . . , bk) with rational bj , then we need to decide whether:

0 /∈ CH(a1 + b1, a2 + b1, . . . , anA
+ bk)

Thus, the problem reduces to deciding feasibility of rational systems of inequalities,
which is known to be decidable in polynomial time. �

5.2 Fixed dimension and polytopic moves

This section shows that given d ∈ N and a Minkowski game 〈A,B〉 with closed polytopic
moves in Rd, deciding which player has a winning strategy can be done in deterministic
polynomial time. Note that for a fixed d we can translate V -representations of (closed)
polytopes into H-representations, and vice-versa (see Theorem 1), so w.l.o.g. we focus
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here on the V -representation of polytopes. In this setting, by Lemma 14 it suffices to
consider games with finite moves, since the extremal points of a polytope are finitely
many. The degree of the polynomial (upper-)bounding the algorithmic complexity will be
2d + 2 in general, and d + 1 for single-sided games. By Lemma 14 again, Player B has a
winning strategy iff there exist a1 ∈ A1, . . . , an ∈ An (the moves in A) and B ∈ B such
that 0 /∈ CH(a1, . . . , an)+CH(B). Trying out all the tuples (a1, a2, . . . , an) cannot be done
in polynomial time. Instead let us rephrase the condition using a hyperplane separation
result.

Observation 24 Player B has a winning strategy iff there exist a1 ∈ A1, . . . , an ∈ An,
B ∈ B, and an hyperplane separating {a1, . . . , an}+B from 0.

Trying out all the infinitely many hyperplanes is also unfeasible, so we will show how to
restrict the search space to a small finite set of hyperplanes. Let us first give a very rough
intuition. If a separating hyperplane exists, we can ”push” it away from 0 while retaining
its separating property. Once a critical point (which cannot be passed without losing
the property) is hit, the hyperplane can still be rotated around the point (or axis of two
points, etc.). Ideally, the hyperplane would eventually settle while containing d affinely
independent points from ∪A + B, so it would suffice to check all the possible settling
positions. There is a difficulty, though: rotating may go on and on without ever settling
if ∪A + B does not contain d affinely independent points. This difficulty is overcome by
adding finitely many ”dummy” points to ∪A + B. Typically, adding the canonical basis
will do just fine.

Theorem 25 Let 〈A,B〉 be a Minkowski game with finite moves in Rd, and let C =
{e1, . . . , ed} be the canonical basis of Rd. The game is won by Player B iff there exist
B ∈ B and affinely independent x1, . . . , xd ∈ (∪A+B) ∪ C s.t. for all A ∈ A there exists
a ∈ A s.t. the affine hull of x1, . . . , xd separates a+B from 0.

Before proving Theorem 25 we recall some basics in linear/affine algebra and prove a
few lemmas. For all E ⊆ Rd let LS(E) := {

∑n
i=0 αixi | ∀i(xi ∈ E ∧αi ∈ R)} be the linear

span of E, and let AH(E) := {
∑n

i=0 αixi | ∀i(xi ∈ E∧αi ∈ R)∧
∑n

i=0 αi = 1} be its affine
hull. Clearly CH(E) ⊆ AH(E) ⊆ LS(E) for all subsets E ⊆ Rd. A set of points is called
affinely independent if no point is in the affine hull of the others. Affine hulls are affine
spaces, i.e. sums x+L where x ∈ Rd and L is a linear subspace of Rd. Also, x+L = y+L
for all y ∈ x+ L. In particular, AH(E) = x+ LS(E − x) for all x ∈ E. The dimension of
x+ L is defined as the dimension of L, so for all x1, . . . , xn ∈ Rd

dimAH(x1, . . . , xn) = rank(x2 − x1, . . . , xn − x1) (1)

and dimCH(x1, . . . , xn) := dimAH(x1, . . . , xn). It is straightforward to show

LS(x1, . . . , xn) = AH(0, x1, . . . , xn) (2)

Observation 26 states two inequalities about the rank of a finite set of vectors, and
Lemma 27 characterizes when the second one is an equality.

Observation 26 rank(x1, . . . , xn) ≤ 1+rank(x2−x1, . . . , xn−x1) ≤ 1+rank(x1, . . . , xn).

Proof First inequality: if x1, . . . , xk are linearly independent, so are x2−x1, . . . , xk−x1.
Second one: AH(x1, . . . , xn) ⊆ AH(0, x1, . . . , xn) = LS(x1, . . . , xn) by (2). �
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Lemma 27 0 ∈ AH(x1, . . . , xn) iff rank(x1, . . . , xn) = rank(x2 − x1, . . . , xn − x1).

Proof 0 ∈ AH(x1, . . . , xn) iff AH(x1, . . . , xn) = AH(0, x1, . . . , xn), i.e. iff AH(x1, . . . , xn) =
LS(x1, . . . , xn) by (2), i.e. iff rank(x2 − x1, . . . , xn − x1) = rank(x1, . . . , xn) by (1). �

Lemma 28 below says that points from a larger set can be added to a smaller set while
fulfilling two seemingly contradictory requirements: adding few enough points to preserve
a small convex hull, and adding enough points to generate a large linear span.

Lemma 28 For all S ⊆ E ⊆ Rd, if 0 /∈ CH(S), there exists S′ ⊆ E such that 0 /∈
CH(S ∪ S′) and LS(S ∪ S′) = LS(E).

Proof Let x1, . . . , xn ∈ E \ LS(S) be as many linearly independent points as possible,
so LS(S∪S′) = LS(E), where S′ := {x1, . . . , xn}. For all y1, . . . , yk ∈ S, if 0 =

∑n
i=1 αixi+

∑k
j=1 βjyj is a convex combination, so is 0 =

∑k
j=1 βjyj by linear independence. It shows

that 0 /∈ CH(S ∪ S′). �

Lemma 28 above corresponds to, informally, a careful pushing and rotating the hyper-
plane. It is used in one of the cases in the proof of Lemma 29 below.

Lemma 29 For all S ⊆ E ⊆ Rd such that 0 /∈ CH(S) and rank(E) = d, there exist
affinely independent x1, . . . , xd ∈ E such that AH(x1, . . . , xd) separates S from 0.

Proof If 0 /∈ AH(E) then dimAH(E) = d − 1 by Lemma 27 and Observation 26, and
any d affinely independent points in E witness the claim. Let us assume that 0 ∈ AH(E),
so dimCH(E) = d by Lemma 27. By Lemma 28 we can assume wlog that LS(S) = Rd,
so dimAH(S) ∈ {d, d − 1} by Observation 26. If dimAH(S) = d, among the vertices of a
well-chosen facet of CH(S) there are d affinely independent points witnessing the claim.
If dimAH(S) = d− 1 then 0 /∈ AH(S) by Lemma 27, so any d affinely independent points
from S witness the claim. �

Proof [of Theorem 25] The ”if” implication is clear by Observation 24, so let us assume
that the game is won by Player B. Let A1, . . . , An be the elements of A. By Lemma 14,
there exist a1 ∈ A1, . . . , an ∈ An and B ∈ B such that 0 /∈ CH(a1, . . . , an) + CH(B),
which is equal to CH({a1, . . . , an} + B). By Lemma 29 there exist affinely independent
x1, . . . , xd ∈ (∪ni=1Ai+B)∪{e1, . . . , ed} such that AH(x1, . . . , xd) separates {a1, . . . , an}+B
from 0, i.e. each ai +B from 0. �

Algorithm 1 invokes Theorem 25 to decide the winner of a Minkowski game with finite
moves.

Corollary 30 Consider Minkowski games with moves A1, . . . , An for Player A and B1, . . . , Bm

for Player B that are finite sets of rational vectors. The algorithmic complexity of deciding
the winner of the game is bounded from above by a multivariate polynomial of degree 2d+2
with leading term

∑

i,j |Ai|
d+1|Bj |

d+1.

Proof The time required for the rank computation on Line 5 of Algorithm 1 is a function
of d so we can ignore it. Given j, Line 9 is reached at most (

∑

i |Ai||Bj| + d)d(
∑

i |Ai|)
times, and the time required to decide separation on Line 9 is of the form f(d)|Bj |, so the
time required by the whole algorithm is of the form

∑

j |Bj |(
∑

i |Ai||Bj | + d)d(
∑

i |Ai|),

which is equivalent to
∑

i,j |Ai|
d+1|Bj |

d+1. �

16



1 Function FindWinner is
input : d ∈ N, polytopes A1, . . . , An, B1 . . . , Bm ⊆ Qd

output: the winner of the corresponding Minkowski game

2 Let finite C be the canonical basis of Rd;
3 for 1 ≤ j ≤ m do
4 for x1, . . . , xd ∈ (∪ni=1Ai +Bj) ∪ C do
5 if Rank(x2 − x1, . . . , xd − x1) = d− 1 then
6 w← 0;
7 for 1 ≤ i ≤ n do
8 for ai ∈ Ai do
9 if Sep(x1, . . . , xd, ai +Bj) then w ← w + 1;

10 end for

11 end for
12 if w = n then return ”Player B wins” ;

13 end if

14 end for

15 end for
16 return ”Player A wins”;

17 end

18 Function Rank is
input : vectors x1, . . . , xk ∈ Qd for some d ∈ N.
output: the rank of {x1, . . . , xn}

19 end

20 Function Sep is
input : points x1, . . . , xk ∈ Qd, finite Y ⊆ Qd

output: whether the hyperplane including {x1, . . . , xd} separates Y from 0
21 end

Algorithm 1: FindWinner
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5.3 Moves defined in the first-order theory of the reals

In this subsection we show that if the moves are definable in the first-order theory of the
reals, then so is Condition 8. in Lemma 14. As the first-order theory is decidable, so is
the question of who is winning a given boundedness Minkowski game with such moves.

We consider first-order formulas with binary function symbols + and ·, constants 0
and 1 and binary relation symbol <. A move A ⊆ Rd is defined by some formula φA with
d free variables x1, . . . , xk iff A = {(x1, . . . , xk) ∈ Rd | φ(x1, . . . , xn)}. If φ defines A, then

φconv = ∃a11, . . . , a
1
d+1, . . . , a

d
d+1, α1, . . . , αd+1

d+1
∧

i=1

φ(a1i , . . . , a
d
i )

∧
d+1
∑

i=1

αi = 1 ∧
d+1
∧

i=1

0 ≤ αi ∧
d
∧

j=1

(

xj =

d+1
∑

i=1

αia
j
i

)

defines CH(A). Also, the formula

φcl = ∀ε ε > 0⇒

(

∃a1, . . . , ad φ(a1, . . . , ad) ∧
d
∧

i=1

ai < xi + ε ∧ xi < ai + ε

)

defines A. It then follows that Condition 8. in Lemma 14 is expressible as some formula
φwin obtained from the formulas φA, φB defining the moves in A and B. Moreover, the
length of the formula φwin is polynomially bounded in the sum of the length of the φA,
φB.

Proposition 31 Deciding the winner of a boundedness Minkowski game with moves de-
fined in the first-order theory of the reals is 2EXPTIME-complete.

Proof As explained above, deciding whether Player A wins reduces to deciding whether
φwin is true, and by [3], this can be done in 2EXPTIME. For hardness, note that de-
ciding truth of a formula φ is 2EXPTIME-hard by [5]. This reduces to our prob-
lem by considering the one-dimensional one-sided Minkowski game 〈0, {A}, {0}〉 where
A = {x | (x = 0 ∧ φ) ∨ (x = 1 ∧ ¬φ)}. Clearly, Player A wins 〈0, {A}, {0}〉 iff φ is true. �

5.4 The computable analysis perspective

If we represent the sets involved in the boundedness Minkowski games via polyhedra or
first order formula, we have only restricted expressivity available to us. Using notions
from computable analysis [19], we can however consider computability for all bounded-
ness Minkowski games with closed moves – and as Lemma 14 demonstrated, this is not
a problematic restriction. As the involved spaces are all connected, we cannot expect
decidability, and instead turn our attention to semidecidability, i.e. truth values in the
Sierpinski space S.

We do have to decide on a representation for the sets, though. Pointing to [17] for
definitions and explanations, we have the spaces A(Rd) of closed subsets, K(Rd) of compact
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subsets and V(Rd) of overt subsets available. In A(Rd), a closed subset can be seen as
being represented by an enumeration of rational balls exhausting its complement. The
space K(Rd) adds to that some K ∈ N such that the set is contained in [−K,K]d. In
V(Rd), a closed subset is instead represented by listing all rational balls intersecting it.

A relevant property is that universal quantification over compact sets from K(Rd) and
existential quantification over overt sets from V(Rd) preserve open predicates. We can use
the former to find that:

Proposition 32 The Minkowski sum + : A(Rd) +K(Rd)→ A(Rd) is computable.

Proof /∈ : Rd×A(Rd)→ S is an open predicate by definition. Now note that y /∈ A+B
iff ∀z ∈ B y − z /∈ A. �

The Minkowski sum of two closed sets is not computable as a closed set: consider some
A ∈ A(N). Then 0 ∈ A + (−A) iff A 6= ∅. If + were computable, the former would be a
Π0

1-property, whereas the latter is Π0
2-complete, and we find a contradiction.

It was already shown in [11, Proposition 1.5] (also [21]) that convex hull is a computable
operation on compact sets, but not on closed sets. Put together, we find that:

Proposition 33 Consider boundedness Minkowski games, where moves A ∈ A are given
as overt sets (i.e. in V(Rd)) and moves B ∈ B are given as compact sets (i.e. in K(Rd)).
The set of games won by Player B constitutes a computable open subset.

Proof By Lemma 14, Player B can win iff for A = {A0, . . . , An} we find that there
exists ai ∈ Ai and B ∈ B

0 /∈ (CH{ai | i ≤ n}) + CH(B)

As B is given as a compact set, we can compute (CH{ai | i ≤ n}) + CH(B) ∈ A(Rd).
As before, /∈ : Rd × A(Rd) → S is an open predicate, and existential quantification over
overt sets preserves open predicates. Thus, the entire requirements define a computably
open subset of the space of Minkowski games. �

6 The winning region of the safety problem

We now turn our attention to safety Minkowski games. Given some move sets A, B and
the safe zone Safe, we want to understand for which initial positions v0 ∈ Safe Player A

has a winning strategy in the safety Minkowski game 〈A,B,Safe〉. In a minor abuse of
notation, we speak of the safety Minkowski game 〈A,B,Safe〉, and call the set of v0 such
that Player A has a winning strategy the winning region W .

Let us first note that these games are determined by Borel determinacy [13] (and also
from techniques in [8]) since the set of the winning plays for Player A is a closed set (for
the usual product topology over discrete topology).

We give three kinds of general results: first, the winning region is the greatest fixed
point of an operator that removes the points where Player B can provably win (in finitely
many rounds); second, topological and finiteness assumptions about the game implies
topological properties of the winning region and of its boundary; third, the winning region
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is stuck inside Safe, i.e. for all non-zero translation, there is a translation in the same
direction, with smaller module, and not sending W fully inside Safe.

Let 〈A,B,Safe〉 be a safety game. Given E a target set, f(E) is defined below as the
positions from where Player A can ensure to fall in E after one round of the game.

Definition 34 For all E ⊆ Rd let

f(E) := {x ∈ Rd | ∃A ∈ A,∀a ∈ A,∀B ∈ B,∃b ∈ B,x+ a+ b ∈ E}

and let g(E) := f(E) ∩ Safe.

Note that the fixed-point characterization of the winning region requires no assump-
tion.

Lemma 35 The winning region W of Player A is the greatest fixed point of g, even for
infinite A and B.

Proof First note that every fixed point of g is included in W , since starting from there
allows Player A to stay there for one round, and therefore forever. Therefore it suffices to
show that g(W ) = W , which holds since being in W is equivalent to being in Safe and
able to reach W in one round. �

At the cost of a finiteness assumption on A below, we invoke the Kleene fixed point
theorem and show that the winning region can be computed in ω many steps.

Proposition 36 Let S0 := Rd, let Sn+1 := g(Sn) for all n, and let Sω := ∩n∈NSn. Sω is
the greatest fixed point of g, even for infinite B.

Proof First note that f , then g are monotone. To prove the lemma it suffices to
invoke (the dual of) the Kleene fixed point theorem, after proving (the dual of) the Scott
continuity, namely that if (En)n∈N satisfy En+1 ⊆ En ⊆ Rd for all n, then g(∩nEn) =
∩ng(En). We prove it for f below, then it holds clearly for g, too.

f(∩nEn) ⊆ ∩nf(En) by monotonicity. Conversely, let x ∈ ∩nf(En), so for all n there
is An ∈ A such that x + a + B ∩ En 6= ∅ for all a ∈ An and B ∈ B. By finiteness of A
there is a constant subsequence (A) of (An), defined by some ϕ, so x+ a+B ∩Eϕ(n) 6= ∅
for all a ∈ A and B ∈ B. So x ∈ f(∩nEn), since ∩nEϕ(n) = ∩nEn. �

The example below shows that the restriction to games with finitely many moves for A
is necessary in Proposition 36. The game is essentially a single player game, i.e. Player B
has no non-trivial choices to make.

Example 37 Consider the 5-dimensional safety Minkowski game 〈Ainit∪Aup∪Adown, {{0}},Safe〉,
where:

• Safe = [0, 1]2 × CH({(x, x, 1) ∈ [0, 1]3} ∪ [0, 1] × {(0, 0)}).

• Ainit = {(0,+1,+2−k , 0, 0) | k ∈ N}

• Aup = {(+2−k, 0, 0,+2−k ,+1) | k ∈ N}
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• Adown = {(+2−k, 0, 0,−2−k ,−1) | k ∈ N}

Then Sω = [0, 1) × {(0, 0, 0, 0}, but W = ∅.

Proof Every finite non-losing play has to start with some move from Ainit, which sets
the third component to some particular 2−k0 . Afterwards, moves from Aup and Adown for
the same value k = k0 have to alternate, otherwise the safety constraint is immediately
violated. As any such move increased the first component by 2−k0 , we find that after some
finite number of moves the first component exceeds 1, and the game is lost. However, this
number can be chosen arbitrarily large based on the choice of k0. �

As a tangential remark, note that the example above could be adapted to a game with
only finitely many moves, but cooperative players by joining all moves of the same type
into one, and letting Player B choose k. Thus, considering non-zero sum games would also
change the fixed point iteration.

Below, compactness of the winning region follows from topological and finiteness as-
sumptions. Other assumptions (note the symmetry) make the interior of Sω unreachable
by Player A from its boundary. If W = Sω, this gives its boundary the status of ”almost-
tie” region.

Proposition 38 1. Let the elements of (possibly infinite) B be closed. If Safe is com-
pact, so are the Sn and Sω.

2. Let the elements of (possibly infinite) A be compact. In every game 〈A,B,Safe, v0〉
with v0 ∈ Sω \ S̊ω, Player A cannot force any end-of-the-round position inside S̊ω.

Proof

1. Let E be a closed set and let x /∈ f(E). For all A ∈ A let aA and BA be such
that x + aA + BA ∩ E = ∅. Since BA and E are closed, there is rA > 0 such that
B(x, rA) + aA +BA ∩E = ∅. Let r := minA rA. For all y ∈ B(x, r) for all A ∈ A we
find y+ aA +BA ∩E = ∅. It shows that Rd \ f(E) is open, so f preserves closeness,
and so does g. Therefore Sn is compact (closed and bounded) for all n, and so is Sω

by intersection.

2. It suffices to show that ∀A ∈ A∃a ∈ A∃B ∈ B∀b ∈ B,x+ a+ b /∈ S̊ω, so let A ∈ A.
Towards a contradiction, let us assume that ∀a ∈ A,∀B ∈ B∃b ∈ B,x+ a+ b ∈ S̊ω.
Let us fix B ∈ B for now, so ∀a ∈ A,∃ba ∈ B,x + a + ba ∈ S̊ω. Since S̊ω is
open, ∀a ∈ A,∃ba ∈ B∃ra > 0, x + a + ba + B(0, 2ra) ⊆ S̊ω. The open balls
{B(a, ra)}a∈A form a cover of A, so by compactness let finitely many a1, . . . , ak be
such that the B(ai, rai) still cover A. For all a ∈ A we can thus define i(a) :=
min{i | a ∈ B(ai, rai)} and b′a := bai(a) . Let r := mini{rai}. For all a ∈ A and

δ ∈ Rd such that ‖δ‖ < r, we have x+ δ+ a+ b′a = x+ δ+ ai(a) + (a− ai(a))+ bai(a) .
Since ‖a − ai(a)‖ < rai(a) by definition of the cover and ‖δ‖ < r ≤ rai(a) , we find

x+ δ+a+ b′a ∈ S̊ω. So ∀y ∈ B(x, r)∀a ∈ A∃b ∈ B, y+a+ b ∈ S̊ω. Just before letting
B range over B again, let rB := r. Since B is finite, let r′ := minB∈B{rB}. Therefore
∀y ∈ B(x, r′)∀a ∈ A∀B ∈ B∃b ∈ B, y + a+ b ∈ S̊ω, so x ∈ S̊ω, contradiction.

�
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Finally, we give geometrical properties of the winning region wrt Safe. Lemma 39,
requiring no assumption, says the following: seen as a physical object, W cannot move by
(continuous) translation to another position while always remaining entirely in Safe.

Lemma 39 For all t ∈ Rd\{0}, either R+ ·t+W ⊆W , or for all ǫ > 0 there is 0 < ǫ′ ≤ ǫ
such that (ǫ′ · t+W ) ∩ SafeC 6= ∅.

Proof The proof has two parts. First, let us prove the following claim about general
sets: if S ⊆ T ⊆ Rd are such that ∀t ∈ Rd(t+S ⊆ T ⇒ t+S ⊆ S), then for all t ∈ Rd\{0},
either R+ · t+S ⊆ S, or for all ǫ > 0 there is 0 < ǫ′ ≤ ǫ such that (ǫ′ · t+S)∩TC 6= ∅. Let
t ∈ Rd \ {0} and let x+ ǫ0 · t /∈ S for some ǫ0 > 0 and x ∈ S. Towards a contradiction, let
ǫ1 > 0 be such that (S + ǫ · t) ⊆ T for all 0 < ǫ ≤ ǫ1. Let n ∈ N be such that ǫ0

n
≤ ǫ1. On

the one hand ǫ0
n
· t + S ⊆ S, so kǫ0

n
· t + S ⊆ S for all k ∈ N, by induction on k. On the

other hand there exists a natural 0 < k ≤ n such that ¬(kǫ0
n
· t + S ⊆ S), contradiction,

and the claim is proved.
Let us now prove that for all t ∈ Rd, if (t+W ) ⊆ Safe then t+W ⊆W . If (t+W ) ⊆ Safe,

Player A can stay in Safe when starting in t+W , simply by using a winning strategy for
W up to translation by t. So t+W ⊆W . Invoking the above claim shows the lemma. �

The following is a corollary of Lemma 39: it says that if Safe is bounded and convex,
the image of W by any non-zero translation is no longer included in Safe.

Corollary 40 If Safe is bounded and convex, (t+W ) ∩ SafeC 6= ∅ for all t ∈ Rd \ {0}.

Proof Towards a contradiction, let t ∈ Rd \ {0} be such that (t+W ) ∩ SafeC = ∅. By
Lemma 39 let 0 < ǫ < 1 be such that (ǫ · t+W ) ∩ SafeC 6= ∅, which is witnessed by some
x ∈W such that ǫ · t+ x /∈ Safe. By convexity t+ x /∈ Safe, contradiction. �

7 Computational complexity of the safety problems

We start our investigation of the computational complexity of determining the winner in
safety Minkowski games by considering the general setting of computable analysis, as we
did in Subsection 5.4 for the boundedness games. We point again to [17] for notation and
definition, and in particular make use of the characterizations of V(Rd) and K(Rd) via the
preservation of open predicates under quantification. We obtain:

Observation 41 Consider finite A of moves from V(Rd) and finite B of moves from
K(Rd). Let Safe ∈ A(Rd). Then the function g from Definition 34 is well-defined and
computable from the parameters as a function g : A(Rd)→ A(Rd).

Proposition 42 Given a safety Minkowski game 〈A,B,Safe, v0〉 with A being a finite set
of overt sets (i.e. from V(Rd)), B being a finite set of compact sets (i.e. from K(Rd)) and
Safe being given as an element of A(Rd), we can semidecide (recognize) if Player B has a
winning strategy.

Proof By Observation 41, we can compute the function g : A(Rd) → A(Rd) defined
in Definition 34. As A(Rd) is effectively closed under countable intersection, we then can
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compute Sω ∈ A(R
d). By Proposition 36, this is the greatest fixed point of g, and by

Lemma 35, the greatest fixed point is the winning region of Player A. Thus, Player B wins
iff v0 /∈ Sω, and by definition of A(Rd), this is semidecidable. �

In the remainder of this section, we prove that safety Minkowski games are undecidable
even if moves and safe zone are defined as a set of rational linear inequalities.

Theorem 43 There is d ∈ N, a rational convex polytope Safe and a finite family A of
rational closed convex polytopes all in Rd such that it is undecidable, whether Player A

has a winning strategy in the one-sided safety Minkowski game 〈A,Safe, v0〉, given v0 as a
rational vector.

To establish this theorem, we provide a reduction from the control state reachability
problem for two counter machines to the problem of deciding if Player B has a winning
strategy in a safety Minkowski game. As the first step, we introduce a slightly more
general version of one-sided Minkowski games, and demonstrated a reduction to one-sided
safety Minkowski games:

Definition 44 A safety-reachability one-sided Minkowski game is given by a tuple 〈A,Safe,Goal, v0〉,
where 〈A,Safe, v0〉 is some d-dimensional safety one-sided Minkowski game, and Goal ⊆
Safe. It is played like the safety Minkowski game, and if Player A wins 〈A,Safe, v0〉, then
he wins 〈A,Safe,Goal, v0〉. If the play enters Goal prior to leaving Safe for the first time,
also Player A wins. Else Player B wins.

Proposition 45 Given a d-dimensional safety-reachability one-sided Minkowski game
〈A,Safe,Goal, v0〉, we define the associated d+ 1-dimensional safety one-sided Minkowski
game 〈A′,Safe′, v′0〉 as follows:

1. v′0 := 〈v0, 0〉

2. Safe′ := CH ((Safe× {0}) ∪ (Goal× {1}))

3. A′ := {A× {0} | A ∈ A} ∪ {{(0, . . . , 0, 1)}, {(0, . . . , 0,−1)}}

Now Player A (resp. Player B) has a winning strategy in the original game iff he (resp. she)
has one in the associated game.

Proof Every play in 〈A′,Safe′, v′0〉 where Player A never chooses one of the moves in
{{(0, . . . , 0, 1)}, {(0, . . . , 0,−1)}} is also a valid play in 〈A,Safe,Goal, v0〉 after projection,
and Player B has no additional options to deviate in the latter. Moreover, if the play is
won for Player A in 〈A′,Safe′, v′0〉, then it is also winning for her in 〈A,Safe,Goal, v0〉.

By construction of Safe′, the first time Player A uses a move from {{(0, . . . , 0, 1)}, {(0, . . . , 0,−1)}},
it has to be {(0, . . . , 0, 1)}, and the first d components of the position need to fall into
Goal. Thus, in the corresponding play in 〈A,Safe,Goal, v0〉, Player A has already won.
Conversely, if the play reaches Goal in 〈A,Safe,Goal, v0〉, then Player A can continue the
play in 〈A′,Safe′, v′0〉 by alternating the moves {(0, . . . , 0, 1)} and {(0, . . . , 0,−1)} and win.

�
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We recall some preliminaries on two-counter machines:.

2CM and the control state reachability problem A two-counter machine, 2CM
for short, is defined by a finite directed graph (Q,E) with labeled edges. Vertices have
out-degree 0, 1 or 2. If the out-degree is 1, the corresponding edge is labeled with one
of INCi, DECi for i ∈ {0, 1}. If the out-degree is 2, one outgoing edge is labeled with
isZero?i and the other with isNotZero?i for some i ∈ {0, 1}. There is a designated starting
vertex q0 ∈ Q.

A finite or infinite path through the graph is a valid computation starting from n0 and
n1 if the following is true: the path starts at q0. If one starts with c0 := n0 and c1 := n1

and increments (decrements) ci by 1 whenever encountering a label INCi (DECi), then
at the moment an edge labeled with isZero?i (isNotZero?i) is passed, we find that ci = 0
(ci 6= 0). Moreover, we demand that a decrement command is never encountered for a
counter with value 0.

Theorem 46 ([14, Theorem Ia]) There is a 2CM such that it is undecidable whether
there exists an infinite valid computation starting from n0 and n1 (where n0 and n1 are
the input).

We will slightly modify the 2CM to simplify the construction. We subdivide every
edge by adding another vertex on it. If the original edge was labeled INCi (DECi), then
the two new edges will be labeled INCai and INCbi (DECai and DECbi). If the original
edge was labeled isZero?i or isNotZero?i, we move the label to the newly-added vertex.

Now we are ready to reduce the non-halting problem of modified 2CM’s to the existence
of a winning strategy for Player A in a safety-reachability one-sided Minkowski game.
The general idea of the reduction is as follows. First, Player A is forced to simulate the
computation of the 2CM in order to avoid violating the safety condition of the safety
Minkowski game. The value of each counter ci, i ∈ {1, 2}, is coded in some dimension yi
such that when the counter ci is equal to k ∈ N then the value of yi =

1
2k
. The role of

Player B is restricted to assist Player A to multiply or divide the xi by 2. Her failure to
operate as intended will let the play reach Goal. Additionally, each vertex Q is associated
with one dimension that will be non-zero iff the computation is currently in that vertex.

All the moves and invariants that we use are definable by finite sets of linear constraints.

Defining the reduction We are given a modified 2CM with vertex set Q (called control
states) and edges E. The associated safety-reachability Minkowski game will be played in
R4+|Q|. The first 4 dimensions are (x0, y0, x1, y1), where the yi encode the counter values,
and the xi are auxiliary values. The remaining |Q| dimensions shall be indexed with the
states q.

Every instruction e ∈ E corresponds to some move Ae for Player A. The move Ae will
always decompose as Ae = Axy

e × {a
Q
e }. If e is an edge from qi to qf , then aQe ∈ R|Q| will

have −1 at component qi, +1 at component qf and 0 elsewhere.
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Label of e Value of Axy
e Label of e Value of Axy

e

- {(0, 0, 0, 0)}
INCa0 CH{(0, 0), (1,−1)} × {(0, 0)} DECa0 CH{(0, 0), (1, 0)} × {(0, 0)}
INCa1 {(0, 0)} × CH{(0, 0), (1,−1)} DECa1 {(0, 0)} × CH{(0, 0), (1, 0)}
INCb0 CH{(0, 0), (−1, 0)} × {0, 0} DECb0 CH{(0, 0), (−1, 1)} × {(0, 0)}
INCb1 {0, 0} × CH{(0, 0), (−1, 0)} DECb1 {(0, 0)} × CH{(0, 0), (−1, 1)}

It remains to define the sets Safe and Goal. For that, let Qi
z be the set of states labeled

with isZero?i, and let Qi
n be the set of states labeled with isNotZero?i. Let Qo be the set

of unlabeled states with non-zero outdegree. Let eq be the |Q|-dimensional vector having
1 in component q and 0 elsewhere.

Safe := CH[





⋃

q∈Qo

[0, 1]4 × {eq}



 ∪





⋃

q∈Q0
n

[0, 1] × [0, 0.7] × [0, 1]2 × {eq}





∪





⋃

q∈Q1
n

[0, 1]3 × [0, 0.7] × {eq}



 ∪





⋃

q∈Q0
z

[0, 1] × {1} × [0, 1]2 × {eq}





∪





⋃

q∈Q1
z

[0, 1]3 × {1} × {eq}



]

Goal := Safe∩ ({(x, y) ∈ R2 | y 6= x 6= 0} ×R2+|Q| ∪R2 ×{(x, y) ∈ R2 | y 6= x 6= 0} ×R|Q|)

The starting position of the game is as follows: (0, 2−n0 , 0, 2−n1 , 0, . . . , 0, 1, 0, . . . , ),
where n0 and n1 are the starting values for the counters, and the unique 1 in the latter
part is found at the index corresponding to the starting state of the 2CM.

Correctness of the reduction We claim that Player A has a winning strategy in the
constructed game, iff the (modified) 2CM has a valid infinite computation path. As moves
correspond to edges, every sequence of moves chosen by Player A in the game can be seen
as a sequence of edges for the 2CM.

First we argue that every sequence of edges which is not a path induces a losing
strategy in the game. As the values of the components associated with the control states
must remain between 0 and 1, and every move has components −1, +1 somewhere and
0 elsewhere it follows that every non-losing sequences of moves ensure that exactly one
state-component qi of the position is 1, and the others are 0. Every move coming from an
edge not having the initial state qi will lose immediately.

Next, we shall explain how the moves for INCai and INCbi together cause the desired
effect. If the current relevant part of the position is (0, 2−k), then after the move INCai

Player B may pick any (x, y) ∈ (0, 2−k)+CH{(0, 0), (1,−1)}, in other words, Player B picks
some t ∈ [0, 1] and sets the position to (t, 2−k − t). If Player B picks t = 0, then Player A
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can repeat the same move. By the definition of Goal, the only other safe choice for Player B
is to pick t = 2−k−1, i.e. to set the position to (2−k−1, 2−k−1). The move associated with
INCbi follows, which means that Player B gets to pick some (2−k−1 − t, 2−k−1). Again,
choosing t = 0 lets Player A repeat her move, and the only other choice compatible with
avoiding Goalis to move to (0, 2−k−1).

The construction for DECai, DECbi works similarly: starting at (0, 2−k) for k 6= 0,
Player Bcan only remain, enter Goal or move to (2−k, 2−k) if Player A plays a move corre-
sponding to DECai. The subsequent DECbi move allows Player B to remain, enter Goal or
to move to (0, 2−k+1). If a DECai, DECbi-pair is encountered starting at (0, 1), Player B
can force the play to leave Safe, corresponding to our convention that decrementing a
counter at value 0 terminates the computation of the 2CM.

Finally, we need to discuss (conditional) halting: by the construction of Safe, if a
vertex with out-degree 0 is reached, or a vertex labeled with an unsatisfied condition, then
the play is losing for Player A. Thus, winning strategies of Player A correspond exactly to
infinite non-halting computations of the 2CM.

Remark 47 (On the existence of a finite bisimilarity quotient) In line with the
undecidability result above, it can be shown that safety Minkowski games with safety region
and moves defined by linear inequalities have in general no finite bisimilarity quotient. In
contrast, it is an easy exercise to establish, by application of definitions and results in [10],
that every safety Minkowski game with a safety region and moves defined as finite union of
rational multi-rectangles has a finite bisimilarity quotient. This finite bisimilarity quotient
can then be used to show that the fixed point defining the set of winning states for Player A
is effectively computable. Rational multi-rectangular sets in Rd are defined as finite union
of sets defined by constraints of the form

∧i=d
i=1 xi ∈ [ai, bi] where ai, bi ∈ Q are the rational

bounds of an closed non-empty interval in R.

8 Structural safety games

The undecidability result of the previous section for safety game with polytopic sets mo-
tivates the study of structural safety Minkowski games. In a (one-sided) structural safety
game, there is no designated initial state and Player A is asked to be able to maintain
the system safe starting from any point in the safe region. It is not difficult to see that
this stronger requirement makes the game equivalent to a ”one round” game. Indeed, if
Player A can maintain safety from all positions within Safe, then it means that after one
round of the game, the game is again within Safe, from which Player A can win for one
more round, etc.

We establish in this section the exact complexity of the structural safety games when
moves and the set Safe are polytopic.

Theorem 48 Given a one-sided structural safety Minkowski game 〈A,B,Safe〉 where
moves and the set Safe are rational polytopic, it is coNP-Complete to decide if Player A
has a winning strategy from all positions in Safe.
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To prove this theorem, we first show that when Player B wins the structural safety
Minkowski game then there exists a position v0 and vertex strategy that is winning. This
establishes membership of the decision problem to coNP.

Lemma 49 Given a one-sided structural safety Minkowski game 〈A,Safe〉 where moves
in A and the set Safe are rational polytopic, if there is no winning strategy for Player A

then there exists a rational position v ∈ Safe with polynomial size binary representation
and a vertex strategy of Player B that is winning for Player B.

Proof As there is no winning strategy for Player A in the structural safety game then, by
definition, there exists v ∈ Safe such that for all A ∈ A, v+A 6⊆ Safe. As Safe is convex, it
must be the case that for each A, there exists a ∈ Ver(A) such that v+a 6∈ Safe. Let us note
V this set of vertices. As all vertices a ∈ V are such that v + a is outside Safe, it must be
the case that v+a violates at least one of the linear constraints that define Safe. Let φa be
one such constraint defining Safe and violated by v+a for move A. So we can deduce that
the following system of inequalities is satisfiable: x ∈ Safe∧

∧

a∈V x+a 6∈ [[φa]]. Because all
the vertices a are definable by polynomial size binary representations and all constraints
in the inequalities φa are defined with polynomial size binary presentable coefficients, then
by classical results on solutions of systems of linear inequalities, see e.g. [16], there exists
a value v for x with a polynomial size binary representation. �

The hardness is established by the following lemma.

Lemma 50 There is a polynomial time reduction from the 3SAT problem to the comple-
ment of the structural safety problem for one-sided Minkowski games with moves defined
by rational closed polytopes.

Proof Let Ψ = {C1, C2, . . . , Cn} be a 3SAT instance where each clause Ci ≡ ℓi1∨ℓi2∨ℓi3
are literals built from the set of variables X = {x1, x2, . . . , xm}. A literal ℓij is positive
if it is of the form x for some x ∈ X, and it is negative if it is of the form ¬x for some
x ∈ X. We associate with each clause Ci, a move Ai ⊆ R2m and each propositional
variable xj ∈ X is associated with two dimensions related to real-valued variables xj1, xj2
in the sequel. The move Ai is defined as the convex hull of the the three vectors v(ℓij)
defined as follows:

v(ℓij)(k) =







0 if k 6= 2i− 1 ∧ k 6= 2i
1 if k = 2i− 1 ∧ ℓij is positive, or k = 2i ∧ ℓij is negative
−1 if k = 2i− 1 ∧ ℓij is a negative, or k = 2i ∧ ℓij is positive

and Safe is defined by the following set of linear constraints:
∧

xj∈X

−1 ≤ xj1 ≤ 1 ∧ −1 ≤ xj2 ≤ 1 ∧ xj1 + xj2 = 0

We proof the correctness of our reduction as follows. First, we establish that if Ψ
is satisfiable then Player B wins the one-sided structural safety game that we have con-
structed.

Let f : X → {0, 1} be a valuation of the propositional variables in X such that f |= Ψ.
We construct v0 as follows: for all xj ∈ X, v0(xj1) = 1 if f(xj) = 1, and otherwise
v0(xj1) = −1, and v0(xj2) = 1 if f(xj) = 0, and otherwise v0(xj2) = −1.
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Now, let us show that for all modes Ai ∈ A, we have that

(v0 +Ai) ∩ Safe 6= ∅.

This is the case because Ai is associated with Ci. As f |= Ψ, we know that there
is a literal ℓij such that f |= ℓij. Assume that ℓij = xk (the case for ¬xk is sym-
metric). Because f(xk) = 1, we have that v0(xk1) = 1. Now, Ai contains a vertex
a = (0, . . . , 0, 1,−1, 0, . . . , 0), i.e. a(k1) = 1, and a(k2) = −1. Clearly, v0(xk1)+a(xk1) = 2
and so if Player B chooses a ∈ Ai, the next position is outside of Safe.

Second, assume that there is v and λv
2 : A → R2m a vertex strategy of Player B. This

is w.l.o.g. by Lemma 49. Note that we can further assume that v(xk1) 6= 0, and v(xk2) 6= 0
for all k, 1 ≤ k ≤ m. This is because if v(xk1) = 0 then v(xk2 = 0 and so by definition of
Safe and the moves, it is the case that those two dimensions are not responsible for the
violation of safety. So we can assume that all dimension in v are nonzero.

Now, we define f v : X → {0, 1}, f v(xk) = 1 if and only if v(xk1) > 0. Let us now prove
that f v |= Ψ. Let Ci be a clause ℓi1 ∨ ℓi2 ∨ ℓi3. We know that v + λv

2(Ai) 6⊆ Safe. This
means that there is a vertex aij of Ai such that v + aij 6∈ Safe. This vertex corresponds
to the literal ℓij and f v |= ℓij by construction of the moves and Safe. �

9 Open questions

By comparing the results from Subsections 5.1 and 5.2, we see that while deciding the win-
ner in a boundedness Minkowski game is coNP-complete in general, it becomes polynomial-
time if the dimension of the ambient space is fixed. Thus, it makes a good candidate for
an investigation in the setting of parameterized complexity [6]. Is the problem fixed-
parameter tractable? Is it hard for some W[n]-class?

In Section 7, we showed that from some dimension d onwards, it becomes undecidable
to determine the winner in a safety Minkowski game defined via sets of linear constraints
defining open and closed convex polytopes. This gives immediate rise to two questions:
first, what happens for small dimensions? Given that our construction needs essentially
two dimensions per instruction, and two per counter, an optimal value is presumably
obtained by using universal machine having more than 2 counters. Second, what happens
if we restrict our attention to games defined via sets of linear constraints that are all non
strict (defining closed convex polytopes only)?
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