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Abstract 

Many connectionist learning models are implemented using a gradient descent 

in a least squares error function of the output and teacher signal. The present model 

Fneralizes. in particular. back-propagation [1] by using Minkowski-r power metrics. 

For small r's a "city-block" error metric is approximated and for large r's the 

"maximum" or "supremum" metric is approached. while for r=2 the standard back

propagation model results. An implementation of Minkowski-r back-propagation is 

described. and several experiments are done which show that different values of r 

may be desirable for various purposes. Different r values may be appropriate for the 

reduction of the effects of outliers (noise). modeling the input space with more 

compact clusters. or modeling the statistics of a particular domain more naturally or 

in a way that may be more perceptually or psychologically meaningful (e.g. speech or 

vision). 

1. Introduction 

The recent resurgence of connectionist models can be traced to their ability to 

do complex modeling of an input domain. It can be shown that neural-like networks 

containing a single hidden layer of non-linear activation units can learn to do a 

piece-wise linear partitioning of a feature space [2]. One result of such a partitioning 

is a complex gradient surface on which decisions about new input stimuli will be 
made. The generalization, categorization and clustering propenies of the network are 

therefore detennined by this mapping of input stimuli to this gradient swface in the 

output space. This gradient swface is a function of the conditional probability 

distributions of the output vectors given the input feature vectors as well as a function 

of the error relating the teacher signal and output. 
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Presently many of the models have been implemented using least squares error. 

In this paper we describe a new model of gradient descent back-propagation [I] using 

Minkowski-r power error metrics. For small r's a "city-block" error measure (r=I) is 

approximated and for larger r's a "maximum" or supremum error measure is 

approached, while the standard case of Euclidian back-propagation is a special case 

with 1'*2. Fll"St we derive the general case and then discuss some of the implications 

of varying the power in the general metric. 

2. Derivation of Minkowski-r Back-propagation 

The standard back-propagation is derived by minimizing least squares error as 

a function of connection weights within a completely connected layered network. 

The error for the Euclidian case is (for a single input-output pair), 

1 .. 2 
E = - L O'j-Yj) , 

2 . 
J 

(1) 

where Y is the activation of a unit and y represents an independent teacher signal. 

The activation of a unit 0') is typically computed by nonnalizing the input from other 

units (x) over the interval (0,1) while compressing the high and low end of this range. 

A common function used for this normalization is the logistic, 

1 
Yj=---

1 + e-Xt 
(2) 

The input to a unit (x) is found by summing products of the weights and 

corresponding activations from other units, 

(3) 

where Yle represents units in the fan in of unit i and Whi represents the strength of the 

connection between unit i and unit h. 

A gradient for the Euclidian or standard back-propagation case could be found 

by finding the partial of the error with respect to each weight, and can be expressed in 

this three tenn differential, 
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dE dE dyi dX; 
-.----

dw/ti dyi ax; aw., (4) 

which from the equations before turns out to be, 

(5) 

Generalizing the error for Minkowski-r power metrics (see Figure 1 for the 

family of curves), 

1 .... )' 
E = - L I (Yi - Yi I 

r . 
• 

(6) 
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Figure 1: Minkowski-r Family 

Using equations 24 above with equation 6 we can easily find an expression for the 

gradient in the general Minkowski-r case, 

dE I .... I ,-1 1) (y ..... ) 
~ = ( Yi - Yi) Yi( -Yi ",.sgn i - Yi 
aw,.; 

(7) 

This gradient is used in the weight update rule proposed by Rumelhart, Hinton and 

Williams [1], 
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dE 
whi(n+l) = (X- + wAi(n) 

dWAi 
(8) 

Since the gradient computed for the hidden layer is a function of the gradient for the 

output, the hidden layer weight updating proceeds in the same way as in the 

Euclidian case [1], simply substituting this new Minkowski-r gradient. 

It is also possible to define a gradient over r such that a minimum in error 

would be sought. Such a gradient was suggested by White [3, see also 4] for 

maximum likelihood estimation of r, and can be shown to be, 

dIO£E) = (1-1Ir)(1Ir) + (llr)2/og (r) + (lIr) 2",(1lr) + (1/r) 21Yi-Yi 1 

-(1/r)(IYi -Yil)'/og(IYi -Yi I) (9) 

An approximation of this gradient (using the last term of equation 9) has been 

implemented and investigated for simple problems and shown to be fairly robust in 

recovering similar r values. However, it is important that the r update rule changes 

slower than the weight update rule. In the simulations we ran r was changed once for 

every 10 times the weight values were changed. This rate might be expected to vary 

with the problem and rate of convergence. Local minima may be expected in larger 

problems while seeking an optimal r. It may be more infonnative for the moment to 

examine different classes of problems with fixed r and consider the specific rationale 

for those classes of problems. 

3. Variations in r 

Various r values may be useful for various aspects of representing infonnation 

in the feature domain. Changing r basically results in a reweighting of errors from 

output bits l . Small r's give less weight for large deviations and tend to reduce the 

influence of outlier points in the feature space during learning. In fact, it can be 
shown that if the distributions of feature vectors are non-gaussian, then the r=2 case 

1. It is possible to entcltain r values that are negative, which would give largest weight to small errors 
close to zero and smallest weight to very large emn. Values of r lea than 1 generally are non-metric. 
i.e. they viola1e 81ieast one of the meuic axioms. For example. r<O violates the triangle inequality. 
Fa' aome problems this may make sense and the need for a metric em:r weighting may be unnecessary. 

These issues are not explored in this paper. 
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will not be a maximum likelihood estimator of the weights [5]. The city block case, 

r=1, in fact, arises if the underlying conditional probability distributions are Laplace 

[5]. More generally. r's less than two will tend to model non~gaussian distributions 

where the tails of the distributions are more pronounced than in the gaussian. Better 

estimators can be shown to exist for general noise reduction and have been studied in 

the area of robust estimation procedures [5] of which the Minkowski-r metric is only 

one possible case to consider. 

r<2. It is generally recommended that 1'=1.5 may be optimal for many noise 

reduction problems [6]. However, noise reduction may also be expected to vary with 

the problem and nature of the noise. One example we have looked at involves the 

recovery of an arbitrary 3 dimensional smooth surface as shown in Figure 2a, after 

the addition of random noise. This surface was generated from a gaussian curve in the 

2 dimensions. Uniform random noise equal to the width (standard deviation) of the 

surface shape was added point-wise to the surface producing the noise plus surface 

shape shown in Figure 2b. 

b 

Figure 2: Shape surface (2a), Shape plus noise surface (2b) and recovered Shape 
sUrface (2c) 

The shape in Figure 2a was used as target points for Minkowski-r back~propagation2 
and recovered with some distortion of the slope of the shape near the peak of the 

2. All simulation runs, unless otherwise stated, used the same learning rate (.05) and smoothing value (.9) 
and stopping critmon defined in tenns of absolute mean deviation. The number of iterations to meet 
the stopping criterion varied considerably as r was changed (see below). 
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surface (see Fiaure 2c). Next the noise plus shape surface was used as target points 

for the learning procedure with r=2. The shape shown in Figure 3a was recovered, 

however. with considerable distortion iaround the base and peak. The value of r was 

reduced to 1.5 (Figure 3b) and then finally to 1.2 (Figure 3c) before shape distortions 

were eliminated. Although, the major properties of the shape of the surface were 

recovered. the scale seems distorted (however, easily restored with renormalization 

into the 0.1 range). 

Figure 3: Shape surface recovered with r=2 (3a), r=1.5 (3b) and r=1.2 (3c) 

r>2. Large r's tend to weight large deviations. When noise is not possible in 

the feature space (as in an arbitrary boolean problem) or where the token clusters are 
compact and isolated tllen simpler (in the sense of the number and placement of 

partition planes) genenuization surfaces may be created with larger r values. For 

example, in the simple XOR problem, the main effect of increasing r is to pull the 

decision boundaries closer into the non-zero targets (compare high activation regions 

in Figure 4a and 4b). 

In this particular problem clearly such compression of the target regions does not 

constitute simpler decision surfaces. However, if more hidden units are used than are 

needed for pattern class separation, then increasing r during training will tend to 

reduce the number of cuts in the space to the minimum needed. This seems to be 
primarily due to the sensitivity of the hyper-plane placement in the feature space to 

the geometry of the targets. 

A more complex case illustrating the same idea comes from an example 

suggested by Minsky & Papen [7] called "the mesh". This type of pattern 

recognition problem is also. like XOR, a non-linearly separable problem. An optimal 
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Figure 4: XOR solved with r=2 (4a) and r=4 (4b) 

solution involves only three cuts in feature space to separate the two "meshed" 
cluSten (see Figure Sa). 

f14W'" 1 

b 

Figure 5: Mesh problem with minimwn cut solution (5a) and Performance Surface(5b) 

Typical solutions for r=2 in this case tend to use a large number of hidden units to 
separate the two sets of exemplars (see Figure 5b for a perfonnance surface). For 
example t in Figure 6a notice that a typical (based on several runs) Euclidian back
prop starting with 16 hidden units has found a solution involving five decision 
boundaries (lines shown in the plane also representing hidden units) while the r=3 

case used primarily three decision boundaries and placed a number of other 
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boundaries redundantly near the center of the meshed region (see Figure 6b) where 

there is maximum uncertainty about the cluster identification. 
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Figure 6: Mesh solved with r=2 (6a) and r=3 (6b) 

Speech Recognition. A final case in which large r's may be appropriate is data 

that has been previously processed with a transformation that produced compact 

regions requiring separation in the feature space. One example we have looked at 

involves spoken digit recognition. The first 10 cepstral coefficients of spoken digits 

("one" through "ten") were used for input to a network. In this case an advantage is 

shown for larger r's with smaller training set sizes. Shown in Figure 7 are transfer 

data for 50 spoken digits replicated in ten different runs per point (bars show standard 

error of the mean). Transfer shows a training set size effect for both r=2 and r=3, 

however for the larger r value at smaller training set sizes (10 and 20) note that 

transfer is enhanced. 

We speculate that this may be due to the larger r backprop creating discrimination 

regions that are better able to capture the compactness of the clusters inherent in a 

small number of training points. 

4. Conver&ence Properties 

It should be generally noted that as r increases. convergence time tends to grow 

roughly linearly (although this may be problem dependent). Consequently, 

decreasing r can significantly improve convergence, without much change to the 

nature of solution. Further, if noise is present decreasing r may reduce it 

dramatically. Note finally that the gradient for the Minkowski-r back-propagation is 

nonlinear and therefore more complex for implementing learning procedures. 
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Figure 7: Digit Recognition Set Size Effect 

5. Summary and Conclusion 

A new procedure which is a variation on the Back-propagation algorithm is 

derived and simulated in a number of different problem domains. Noise in the target 

domain may be reduced by using power values less than 2 and the sensitivity of 

partition planes to the geometry of the problem may be increased with increasing 

power values. Other types of objective functions should be explored for their 

potential consequences on network resources and ensuing pattern recognition 

capabilities. 
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