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1 Introduction

Let A ⊂ SLn(R) be the diagonal subgroup, and identify SLn(R)/ SLn(Z) with
the space of unimodular lattices in Rn. In this paper we show that the closure
of any bounded orbit

A · L ⊂ SLn(R)/ SLn(Z)

meets the set of well-rounded lattices. This assertion implies Minkowski’s con-
jecture for n = 6, and yields bounds for the density of algebraic integers in
totally real sextic fields.

The proof is based on the theory of topological dimension, as reflected in
the combinatorics of open covers of Rn and T n.

Minkowski’s conjecture. Let |x| and N(x) denote the Euclidean length and
norm functions on Rn, given by

|x|2 = |x1|2 + · · · + |xn|2 and N(x) = |x1 · x2 · · ·xn|.

Note that N(x) is preserved by the action of the diagonal subgroup

A =

{( a1

. . .
an

)
: ai > 0, a1a2 · · · an = 1

}
⊂ SLn(R).

The following conjecture is due to Minkowski [Ko, p.18]:

∗Research partially supported by the NSF and the Guggenheim Foundation. 2000 Mathe-
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Conjecture 1.1 For any unimodular lattice L ⊂ Rn, we have:

sup
x∈Rn

inf
y∈L

N(x − y) ≤ 2−n.

Equality holds if and only if L = a · Zn for some a ∈ A.

This conjecture is known for n = 2, 3, 4 and 5 by work of Minkowski, Remak,
Dyson and Skubenko respectively [Min, §11], [Re], [Dy], [Sk2], [Sk1]. Motivated
by the study of algebraic integers, its number-theoretic consequences include:

Conjecture 1.2 Let K be a totally real number field over Q, of degree n and
discriminant DK . Then for every x ∈ K there exists an algebraic integer y ∈
OK such that ∣∣NK

Q (x − y)
∣∣ ≤ 2−n

√
DK .

Well-rounded lattices. Given a lattice L ⊂ Rn, let |L| and N(L) denote the
infimum of |y| and N(y) respectively over all nonzero y ∈ L. A vector y ∈ L is
minimal if |y| = |L|, and L is well-rounded if its minimal vectors span Rn.

By the inequality between the arithmetic and geometric means, we have

N(x)1/n ≤ |x|/√n (1.1)

for all x ∈ Rn. Therefore, to prove Minkowski’s conjecture for a given value of
n, it suffices to establish:

(Wn) For any lattice L ⊂ Rn, there exists an a ∈ A such that a ·L is
well-rounded; and

(Cn) The covering radius of any well-rounded unimodular lattice sat-
isfies

sup
x∈Rn

inf
y∈L

|x − y| ≤ √
n/2.

Equality holds if and only if L = g · Zn for some g ∈ SOn(R).

This strategy is used in the proofs cited above.

Compact orbits. In 1956, Birch and Swinnerton-Dyer showed that any coun-
terexample to Minkowski’s conjecture with minimal dimension must satisfy
N(L) > 0 [BiS]; equivalently, A · L must have compact closure in the space
of lattices SLn(R)/ SLn(Z).

In this paper we will show:

Theorem 1.3 If the orbit closure

A · L ⊂ SLn(R)/ SLn(Z)

of a lattice L ⊂ Rn is compact, then it meets the locus of well-rounded lattices.

Corollary 1.4 If the covering conjectures (Ck) hold for all k ≤ n, then Minkowski’s
conjecture is also true for all lattices in Rk, k ≤ n.
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Since the covering conjectures are known for k ≤ 6 [Wd], we obtain:

Corollary 1.5 Minkowski’s conjecture holds for n = 6.

Topology of the torus. The proof of Theorem 1.3 is based on the following
topological result.

Theorem 1.6 There is no open covering T k = U1∪· · ·∪Uk of the k-torus such
that the map

H1(V, Z) → H1(T
k, Z)

has rank at most (i − 1) for every component V of Ui.

In the special case where every map H1(V, Z) → H1(T
k, Z) has rank 0, this

theorem follows from Lebesgue’s characterization of the topological dimension
of Rk.

To apply the result above to lattices, assume for simplicity that A ·L is not
just bounded but actually compact. Then:

• The stabilizer AL of L in A is isomorphic to Zn−1,

• A/AL is diffeomorphic to a torus of dimension k = (n − 1), and

• L arises from a totally real number field via a standard construction (§3).

For each a ∈ A/AL, there is a unique subspace M(a) ⊂ Rn spanned by the
minimal vectors of the lattice a · L. If dimM(a) = n for some a, then a · L is
well-rounded and we are done.

Otherwise, the torus T k = A/AL is covered by sets S1, . . . , Sk, such that
dimM(a) = i for all a ∈ Si. The subspace M(a) varies continuously over Si,
yielding a monodromy map

π1(Si, a) → SL(M(a)). (1.2)

The monodromy acts by diagonal matrices, so the image of (1.2) is an abelian
group no larger than Zi−1.

On the other hand, the natural map π1(Si, ∗) → π1(T
k) has the same kernel

as (1.2), so its rank is also at most i − 1. By thickening the sets Si slightly, we
obtain a covering of T k by open sets U1, . . . , Uk whose existence is ruled out by
Theorem 1.6. This completes the proof of Theorem 1.3 in the case where A · L
is compact.

To handle the general case, we extend Theorem 1.6 to open coverings of
Rk, using the Čech-deRham complex of bounded differential forms (§5). We
also study those subspaces M ⊂ Rn which satisfying infA ‖ det(a · M)‖ > 0
(§6). These discussions reveal that many features of the case where A · L is
compact carry over to the case where A · L is only bounded, allowing us to
deduce Theorem 1.3 and Corollary 1.4 in §7 and §8.

The case n = 2. To give a picture of the theorem’s underlying geometry, we
sketch a proof that A · L meets the well-rounded locus whenever L is a lattice
in the plane.
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Recall that the set of 2-dimensional lattices can be parameterized by the
upper halfplane H ⊂ C, via the correspondence

τ 7→ Lτ = Z ⊕ Zτ.

The lattice Lτ is well-rounded if and only if τ belongs to W = SL2(Z) ·C, where
C is the circular arc exp(2πi[π/3, π/2]) ⊂ C. The locus W is a spine for the
action of SL2(Z) on H; it is a tree connecting the fixed-points of the elliptic
elements in SL2(Z), and each of its complementary regions is contained in a
horoball (see Figure 1).

Now it is easy to check that the orbit A · Lτ of a given lattice is simply a
hyperbolic geodesic through τ ∈ H. Since no complete geodesic can be entirely
contained in a horoball, A ·Lτ must meet W , and therefore a ·L is well-rounded
for some a ∈ A.

Figure 1. The well-rounded spine for SL2(Z).

The well-rounded lattices in Rn also form a compact spine for the space

SOn(R)\ SLn(R)/ SLn(Z),

and have been used to study its cohomology [So], [Ash], [AM]. It would be
interesting to have a more complete description of the way geodesic flats can
meet the well-rounded spine in higher dimensions.

Notes and references. The torus covering Theorem 1.6 above aims to isolate
the topological core of Minkowski’s conjecture. Intricate topological and com-
binatorial arguments also appear in the proofs for n = 3, 4, 5 by Remak, Dyson
and Skubenko.

For a short proof of Minkowski’s conjecture for n = 3, see [Da]. A simplified
treatment of the case n = 5, using the result of Birch and Swinnerton-Dyer
cited above, is given by Bambah and Woods in [BW]. Related problems and
results are discussed in [GL, Chapter 7].

I would like to thank G. Nebe for introducing me to Minkowski’s conjecture,
in connection with her paper [BN] with E. Bayer-Fluckiger.

4



Notation. The open ball of radius R about p ∈ Rn will be denoted by Bn(p, R).
We will also use the abbreviations Bn(R) = Bn(0, R), Sn−1(R) = ∂Bn(R),
Bn = Bn(1) and Sn−1 = Sn−1(1). We let diag(a1, . . . , an) denote a matrix in
A specified by its diagonal entries.

2 Topology of the torus

Let U be an open covering of a topological space. The order of U is the great-
est integer n such that some (n + 1) distinct elements of U have nonempty
intersection. (Equivalently, the order is the dimension of the nerve of U.)

One can also consider the homology of multiple intersections. In this section
we will establish:

Theorem 2.1 Let U be an open covering of the torus T n = Rn/Zn. Suppose
that for any component V of the intersection U1 ∩ U2 ∩ · · · ∩ Uk of 1 ≤ k ≤ n
distinct elements of U, the image of the map

H1(V, Z) → H1(T
n, Z)

has rank at most (n − k). Then U has order at least n.

Corollary 2.2 There is no open covering T n = U1∪· · ·∪Un such that the map

H1(V, Z) → H1(T
n, Z)

has rank at most (i − 1) for every component V of Ui.

Proof. Apply the theorem above to the covering U = {U1, . . . , Un}.

Dimension and cohomology. We begin by sketching the proof of Theorem
2.1 in two special cases.

1. First suppose every intersection U1 ∩ · · · ∩ Uk is contractible. Then the
cohomology H∗(T n, Z) agrees with Čech cohomology H∗(U, Z) [BT, Thm.
15.8]. Since Hn(U, Z) ∼= Hn(T n, Z) ∼= Z, the covering U must have order
at least n.

2. Now suppose just that H1(U, Z) maps to zero in H1(T
n, Z), for every

U ∈ U. Since T n is compact, we can slightly shrink the elements U ∈ U

so they become subcomplexes of a finite triangulation of T n. Then by our
homological assumption, each U ∈ U lifts to a bounded open set under the
universal covering map π : Rn → T n. The components of (π−1(U), U ∈ U)
therefore give a covering V of Rn by open sets of uniformly bounded
diameter. By Lebesgue’s characterization of the topological dimension of
Rn [HW, Thms. IV.2, V 8], V has order at least n, so the same is true of
U.
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Examples. Theorem 2.1, unlike the special cases just sketched, also yields
information when elements of U are homologically nontrivial. For example, if
T 2 is covered by a pair of open annuli U1, U2, it implies U1 ∩ U2 must also
contain an essential annulus. Similarly, Corollary 2.2 implies the 3-torus admits
no covering

T 3 = U1 ∪ U2 ∪ U3

such that the components of U1 are homeomorphic to balls and the components
of U2 and U3 are homeomorphic to solid tori (B2 × S1).

We remark that the hypotheses of Theorem 2.1 imply the map

Hn−k−1(U1 ∩ · · · ∩ Uk, Z) → Hn−k−1(T
n, Z)

is zero for 1 ≤ k ≤ n. This condition, however, is too weak to control the order
of U; for example, it holds for the covering T n = U1 ∪ U2 where U1 = T n − {p}
and U2 is a ball about p.

The Čech-deRham complex. To set the stage for the proof of Theorem 2.1,
we recall the definition of the Čech-deRham complex C∗(U, Ω∗) (see [BT, §8]).

C0(U, Ωn)
δ−−−−→ C1(U, Ωn)

δ−−−−→ · · · Cn(U, Ωn)

d

x d

x d

x

C0(U, Ωn−1)
δ−−−−→ C1(U, Ωn−1)

δ−−−−→ · · · Cn(U, Ωn−1)

...
...

...

d

x d

x d

x

C0(U, Ω0)
δ−−−−→ C1(U, Ω0)

δ−−−−→ · · · Cn(U, Ω0)

Figure 2. The Čech-deRham complex.

Let U = {Ui} be an open covering of a smooth manifold M . For any set of
distinct indices I = {i1, . . . , ip}, let UI = Ui1 ∩ Ui2 ∩ · · · ∩ Uip

. Let Ωq denote
the sheaf of smooth q-forms on T n, and let

Cp(U, Ωq) =
∏

|I|=p+1

Ωq(UI)

be the space of Čech p-chains with values in Ωq. The double complex C∗(U, Ω∗)
comes equipped with a deRham differential d and a Čech differential δ, satisfying
d2 = δ2 = 0 (Figure 2). The diagonal complex

Ar =
⊕

p+q=r

Cp(U, Ωq)

then admits a differential D = d + (−1)qδ satisfying D2 = 0.
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Theorem 2.3 The cohomology groups Hr
D(C∗(U, Ω∗)) of the diagonal complex

are isomorphic to the deRham cohomology groups Hr
DR(M).

This result, which can be regarded as a generalization of the Mayer-Vietoris
theorem, follows easily from the fact that the horizontal rows in Figure 2 are
exact sequences; see [BT, Prop. 8.8].

Covering spaces. Now suppose M is connected, with universal cover M̃ → M .
Then π1(M) acts on the vector space Ωq(M̃), making it into a flat vector bundle
over M .

Let Fq denote the sheaf of flat sections of this bundle. Then for any con-
nected open set U 6= ∅ in M we have

Fq(U) ∼= Ωq(MU ),

where MU = M̃/π1(U) → M is the covering space of M determined by π1(U).
The natural lifting s : U → MU induces a restriction map Fq(U) → Ωq(U), and
thus an element ω ∈ Fq(U) can be regarded as a form on U equipped with an
extension to MU .

The restriction map Fq → Ωq respects both the Čech and deRham differen-
tials, so it determines a chain map

Cp(U,Fq) → Cp(U, Ωq).

Using the differential D = d+(−1)qδ on both sides, we then get a map between
the cohomology groups of the corresponding diagonal complexes.

Theorem 2.4 The natural map Hr
D(C∗(U,F∗)) → Hr

D(C∗(U, Ω∗)) is a surjec-
tion for every r.

Proof. By Theorem 2.3, every class x ∈ Hr
D(C∗(U, Ω∗)) is represented by a

closed form ω ∈ Ωr(M). Lifting this form to the universal cover, we obtain a
cocycle y = (ω̃|Ui) ∈ C0(U,Fr) mapping to x.

Proof of Theorem 2.1. Let U be a covering of T n satisfying the hypotheses
of the Theorem.

We claim the sequence

Cp(U,Fq−1)
d→ Cp(U,Fq)

d→ Cp(U,Fq+1) (2.1)

is exact, for any p, q ≥ 0 satisfying p + q = n. To see this, suppose (ωI ∈
Fq(UI), |I| = p + 1) is an element of the central term above, with dωI = 0 for
all I. Let V be a component of UI . Then by hypothesis, the image of H1(V, Z)
in H1(M, Z) has rank at most n − (p + 1) = q − 1. Thus the covering space
MV → M determined by π1(V ) is isomorphic to T k × Rn−k with k < q. In
particular, we have

Hq
DR(MV ) ∼= Hq

DR(T k × Rn−k) = 0,
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so any closed form ω ∈ Ωq(MV ) ∼= Fq(V ) is exact. Applying this fact to each
component of UI , we obtain a form ηI ∈ Fq−1(UI) satisfying dηI = ωI ; therefore
the sequence (2.1) is also exact.

Now assume U has order less than n. We claim that Hn
D(C∗(U,F∗)) = 0.

Indeed, let [y] be an n-dimensional cohomology class, represented by y =
∑n

0 yp

with yp ∈ Cp(U,Fn−p). Since Dy = 0, we have dy0 = 0, and therefore y0 = dz0

by exactness of (2.1). Thus after replacing y with y − Dz0 (which does not
change its cohomology class), we can assume y0 = 0 (see the diagram below).

0

d

x

y0
δ−−−−→ 0

d

x d

x

z0
δ−−−−→ y1

δ−−−−→ · · ·

Once y0 = 0 we also have we have dy1 = 0, and therefore we can similarly
modify y by a coboundary Dz1 to make y1 = 0. Continuing in this way, we
ultimately obtain a cycle yn ∈ Cn(U,F0) representing the cohomology class [y].
But if the order of U is less than n, then UI is empty whenever |I| = n+1; thus
yn = 0, and therefore Hn

D(C∗(U,F∗)) = 0.
On the other hand, the preceding theorems show that Hn

D(C∗(U,F∗)) maps
surjectively to Hn

DR(T n) = R; therefore U has order greater than or equal to n.

Remark. By passing from Ωp to Fp, we keep track of the fact that all the
forms arising in the proof are defined not just on the intersections UI , but also
on suitable covering spaces of T n.

3 Lattices and number fields

In this section we review the construction of lattices using totally real fields,
and show:

Theorem 3.1 For any unimodular lattice L ⊂ Rn, the following conditions are
equivalent:

1. A · L is compact.

2. L arises from a full module M in a totally real field K/Q.

3. We have N(L) > 0, and {N(y) : y ∈ L} is a discrete subset of R.
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Lattices. A lattice is a discrete subgroup L ⊂ Rn isomorphic to Zn; it is
unimodular if | det(L)| = vol(Rn/L) = 1. The space of all unimodular lattices
can be identified with the homogeneous space

G/Γ = SLn(R)/ SLn(Z)

via the bijection [g] 7→ g · Zn = L.

Compactness. We define |L| and N(L) to be infimum of |y| and N(y) respec-
tively over nonzero elements y ∈ L. By Mahler’s criterion [Rag, 10.9],

E ⊂ SLn(R)/ SLn(Z) is compact ⇐⇒ inf{|L| : L ∈ E} > 0.

Similarly, since N(y)1/n ≤ |y|/√n, we can assert:

A · L is compact ⇐⇒ N(L) > 0. (3.1)

The function N(L) is also sometimes denoted mH(L) [BiS], [BW].

Compact orbits. Number fields can be used to give concrete examples of
lattices such that A · L is compact.

Let K be a totally real number field of degree n and discriminant DK over
Q. The n distinct embeddings of K into R give an embedding

v : K →֒ Rn, (3.2)

sending the ring of integers OK to a lattice of determinant
√

DK . More gen-
erally, if M ⊂ K is a full module, i.e. an additive subgroup isomorphic to Zn,
then

L = α · v(M) ⊂ Rn

is a unimodular lattice, where α = | det v(M)|−1/n.
The module M is invariant under the order

o = {x ∈ K : xM ⊂ M}

(a subring of finite index in OK), and hence L is invariant under the subgroup
AL ⊂ A corresponding to the totally positive units

o
∗
+ = o

∗ ∩ v−1(Rn
+).

By Dirichlet’s theorem [BoS, Ch. 2, §4.3], the unit group o∗+ is isomorphic to
Zn−1. Thus A/AL is a compact torus, so A · L ⊂ SLn(R)/ SLn(Z) is compact
as well.

Note that by replacing M with xM for suitable x ∈ K, we can always reduce
to the case where M is an ideal in o. Then we have

N(v(x)) = |NK
Q (x)| ∈ Z

for all x ∈ M . Consequently {N(y) : y ∈ L} is discrete and N(L) > 0.
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Proof of Theorem 3.1. (1) =⇒ (2). Suppose A · L is compact, and let AL

denote the stabilizer of L in A. Then L ⊗ Q is a module over the commutative
algebra K = Q[AL] ⊂ Mn(R). The matrices in A have only real eigenvalues,
so K is a direct sum of m totally real fields, and therefore the rank of o∗K is
n − m. But the matrix group AL

∼= Zn−1 embeds in the unit group o
∗
K , so

m = 1 and K itself is a totally real field. Thus L ⊗ Q is a 1-dimensional vector
space over K, so the lattice L itself is obtained from a full module M ⊂ K by
the construction above.

The implication (2) =⇒ (3) is immediate from discreteness of the norm
NK

Q (x) on M .
To see (3) =⇒ (1), observe that the map g 7→ N(gx) = φ(x) gives a proper

embedding of A\G into the space of degree n polynomials on Rn. There is a
finite set E ⊂ Zn such that φ|E determines φ. Consequently, if the values of
N(x) on L = g ·Zn are discrete, then [g] ·Γ is closed in A\G, and therefore A ·L
is closed in G/Γ. Since N(L) > 0, by (3.1) the orbit A · L is actually compact.

Notes and references. For more on compact A-orbits, minimal sets and
totally real fields, see [LW] and [Oh]. Lattices such that A · L is closed are
characterized in [TW]. Further references for number-theoretic constructions of
lattices include [CoS], [Ba1], [Ba2] and [BN].

We remark that Margulis has proposed:

Conjecture 3.2 For n ≥ 3, A · L ⊂ SLn(R)/ SLn(Z) is compact if and only if
A · L is compact.

See [Mg, Conj. 9]. This conjecture is equivalent to the assertion that any lattice
with N(L) > 0 arises from a number field. The case n = 3 implies Littlewood’s
conjecture, that lim inf n · ‖nα‖ · ‖nβ‖ = 0 for all real numbers α, β. Related
material appears in the paper [CaS] on products of three linear forms, dating
from the same period as the work [BiS] on Minkowski’s conjecture.

4 Proof for compact orbits

In this section we prove:

Theorem 4.1 Let L ⊂ Rn be a lattice such that A·L is compact in SLn(R)/ SLn(Z).
Then a · L is well-rounded for some a ∈ A.

This case is sufficient for applications to number fields, and the framework of
its proof provides a guide to the general case (where A · L is only assumed to
be bounded).

Convex hulls. To organize the minimal vectors of a ·L as a ∈ A varies, we will
use a convex hull construction introduced by Skubenko [Sk2]; see also [BW].

We begin with some terminology. Let B ⊂ Rn be a nonempty, closed,
convex set. The relative interior B◦ of B is taken with respect to the smallest
hyperplane S ⊃ B; it is always nonempty.
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Let φ : Rn → R be a nonzero linear form, with φ|B bounded below. If φ|B
assumes its minimum on a nonempty subset F ⊂ B, then F is a face of B, dual
to the support function φ. Any point p ∈ ∂B is contained in a unique open face
F ◦.

The convex hull of a set E ⊂ Rn, denoted hull(E), is the smallest closed,
convex set containing E. A convex set is a polyhedron if it is the convex hull of
a finite set of points. We say ∂B is a polyhedral complex if every face of B is a
convex polyhedron.

2 4 6 8 10 12

1

2

3

4

5

6

7

8

Figure 3. The convex hull of L2 in R2
+.

The convex hull of L
2. Now let L be a lattice in Rn, and let a = diag(a1, . . . , an) ∈

A. To find the minimal vectors of a · L, consider the convex hull B of

L2 = {y2 : y ∈ L, y 6= 0} ⊂ Rn
+,

where y2 = (y2
1 , . . . , y2

n). Define a linear form φa : Rn → R by

φa(x) =
∑

a2
i xi.

Then for any y ∈ L, we have φa(y2) = |ay|2. This readily implies:

Theorem 4.2 The form φa|B achieves its minimum on the polyhedral face

F = hull(y2
1 , . . . , y

2
m)

of B, where a · (±y1, . . . ,±ym) are the minimal vectors of a · L.

Note: the set (y2
1 , . . . , y

2
m) = F ∩ L2 includes the extreme points of F , but

additional points may also appear.

Corollary 4.3 If L − {0} is disjoint from the coordinate axes of Rn, then ∂B
is a polyhedral complex.

Proof. In this case every support function for B is given by φ(x) = λφa(x), for
some a ∈ A and λ > 0.
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Compare [BW].

Example. The locus B = hull(L2) for L = Z(1, 1) ⊕ Z(γ+, γ−), γ± = (1 ±√
5)/2, is shown in Figure 3. The vertices of ∂B are the powers (ǫn, ǫ−n) of the

totally positive fundamental unit ǫ = (3 +
√

5)/2.

Stratification. Any point x ∈ ∂B lies in a unique open face F ◦, with F =
hull(y2

1 , . . . , y
2
m) as above. Let

M(x) = 〈y1, . . . , ym〉 ⊂ L ⊗ R (4.1)

be the real vector space spanned by the corresponding points of L. Then for any
support function φa that achieves its minimum on F ◦, the span of the minimal
vectors of a · L is the space a · M(x).

The level sets of the function δ(x) = dimM(x) determine a stratification

∂B =
n⋃

1

S̃i, S̃i = {x ∈ ∂B : δ(x) = i}.

Each stratum is a union of open faces of B.

Theorem 4.4 For each i ≤ n, the union S̃1 ∪ · · · S̃i is closed.

Proof. The closure of S̃i is the union of the faces F of ∂B such that F ◦ ⊂ S̃i.
Since we have ∂F ∩ L2 ⊂ F ∩ L2, the lattice points corresponding to any face
G ⊂ ∂F span a subspace of dimension at most i.

Theorem 4.5 If x and y belong to the same connected component of S̃i, then
M(x) = M(y).

Proof. Any two points x and y in the same component of S̃i are joined by
a chain of open faces of ∂B. Thus it suffices to treat the case where x ∈ F ◦,
y ∈ G◦ and F ◦ ∪ G◦ is connected. But in this case either F ⊃ G or G ⊃ F ,
and therefore M(x) ⊃ M(y) or M(y) ⊃ M(x). Since M(x) and M(y) have the
same dimension, they are equal.

Number field case. Now assume A · L is compact, with stabilizer AL ⊂ A.
By Theorem 3.1, L arises from a full module in the totally real field K =

Q[AL] ⊂ Mn(R), and we have N(L) > 0. In particular, y = 0 is the only point
of L lying on a coordinate axis, and therefore ∂B = ∂ hull(L2) is a polyhedral
complex. The natural action of AL on L2 by y2 7→ (ay)2 = a2y2 extends to a
linear action on Rn

+, preserving B.

Theorem 4.6 The quotient space S = ∂B/AL is homeomorphic to the torus
T n−1, with ∂B ∼= Rn−1 as its universal cover.

Proof. The map f(x) = x/N(x) sends B homeomorphically to the hyperboloid
H ⊂ Rn

+ defined by N(x) = 1, and respects the action of AL. Clearly A ∼= Rn−1

acts simply transitively on H , so we have ∂B/AL
∼= H/AL

∼= A/AL
∼= T n−1.

12



Monodromy over a stratum. Note that M(ax) = a · M(x) for any a ∈ AL

and x ∈ ∂B. Thus the stratification ∂B =
⋃

S̃i is invariant under the action of

AL, and descends to give a partition of S into strata Si = S̃i/AL. Each Si is a
finite union of open polyhedral cells. Similarly, δ(x) descends to a function on
S with level sets Si.

Our next result controls the topological complexity of a stratum. Given a
subspace M ⊂ Rn spanned by M ∩ L, let

AM,L = {a ∈ AL : a · M = M}.

Theorem 4.7 If dim(M) = r > 0, then the free abelian group AM,L has rank
at most gcd(r, n) − 1.

Proof. The rational vector spaces LQ = L ⊗ Q and MQ = (L ∩ M) ⊗ Q are
also vector spaces over the field k = Q[AM,L] ⊂ K. Thus s = deg(k/Q) divides
both n = dimLQ and r = dimMQ. Since AM,L embeds into the group of units
O∗

k, its rank is at most s − 1.

Corollary 4.8 For any x ∈ Si, the image of the natural map

ρ : π1(Si, x) → π1(S)

is an abelian group of rank at most gcd(i, n) − 1.

Proof. Choose a point y ∈ S̃i lying over x ∈ Si. Given g ∈ π1(Si, x), let

a = ρ(g) ∈ AL
∼= π1(S). Then z = a · y lies in the same component of S̃i as y,

as can be seen by lifting a path representative of [g]. This implies that

M(y) = M(z) = M(a · y) = a · M(y),

and therefore a ∈ AM(y),L. Consequently the rank of the image of ρ is bounded
by the rank of AM(y),L, which is in turn bounded by gcd(i, n)−1, since dimM(y) =
δ(x) = i.

Theorem 4.9 Every stratum Si of S is the deformation retract of an open set
Ui ⊂ S.

Proof. After refining the polyhedral decomposition of S to a triangulation, we
can regard S as a finite simplicial complex and Si as an open subset of the closed
subcomplex T = S1 ∪ · · · ∪Si. Using barycentric subdivision, one can construct
an open neighborhood V of T which admits a strong deformation retraction
to T [EM, §II.9]. This means there is a homotopy ρ : V × I → V such that
ρt|T = id for all t, ρ0|V = id and ρ1(V ) = T Letting Ui = ρ−1

1 (Si), we obtain
an open subset of S that deforms to Si under the homotopy ρt|Ui.

13



Proof of Theorem 4.1. The preceding result provides a covering of S ∼=
T n−1 by open sets Ui that deformation retract to the strata Si. Then for any
component V of Ui, the map

H1(V, Z) → H1(S, Z)

has rank at most gcd(n, i) − 1 ≤ i − 1, since it has the same image as the map

π1(V, x) ∼= π1(Si, x) → π1(S) ∼= H1(S, Z),

where x ∈ V ∩Si. Consequently Un must be nonempty, for otherwise we would
obtain a open covering of the torus whose existence is ruled out by Corollary
2.2. This shows δ(x) = n for some x ∈ S, and thus a · L is well-rounded for
some a ∈ L.

Remark. The stratification (Si) used above is actually dual to the stratification
used in the proof sketched in the introduction.

5 Topology of Rn

In this section we establish the following covering theorem for Rn.

Theorem 5.1 Let U be an open covering of Rn with inradius r > 0, and let
R > 0. Suppose that every component V of the intersection U1 ∩ U2 ∩ · · · ∩ Uk

of 1 ≤ k ≤ n distinct elements of U is contained in an open set F (V ) isometric
to Bk(R) × Rn−k. Then U has order at least n.

Here U has inradius r if for every p ∈ Rn, there exists a U ∈ U with B(p, r) ⊂ U .
Note that Theorem 2.1 on coverings of T n follows from result above, by

passing to the universal cover.

Bounded cohomology. The proof of Theorem 5.1 will use the cohomology of
bounded differential forms to detect the ‘fundamental class’ of Rn. We begin
with a brief résumé of this theory.

Let M be a Riemannian manifold, and let |v| denote the length of a tangent
vector v ∈ TM . Then the L∞-norm of a smooth k-form on M is given by

‖α‖∞ = sup
|v1|=···=|vk|=1

|α(v1, . . . , vk)|.

We say a form is bounded if both α and dα are in L∞.
Let Ω∗

b(M) denote the space of smooth, bounded forms on M , equipped with
the norm

‖α‖b = ‖α‖∞ + ‖dα‖∞.

Since d2 = 0, we have ‖dα‖b ≤ ‖α‖b. Therefore (Ω∗
b(M), d) is a differential

complex. The bounded cohomology groups of M are given by

Hk
b (M) =

{α ∈ Ωk
b (M) : dα = 0}
dΩk−1

b (M)
·

14



See [Gr] for the analogous case of bounded singular cohomology, and [Pan] for
an exposition of L2-cohomology.

Invariance properties. Any smooth map f : M → N between Riemannian
manifolds that satisfies

‖Df‖∞ = sup
v 6=0

|Df(v)|/|v| < ∞

induces a natural map f∗ : H∗
b (N) → H∗

b (M). In particular, if f is a quasi-
isometric diffeomorphism, f∗ is an isomorphism on bounded cohomology.

The Poincaré lemma. The cohomology groups H∗
b (M) are insensitive to

thickenings of M . To make this precise, let I = (−1, 1) and let M × I be
given the product metric. Let s : M → M × {0} be the natural section of the
projection map p : M × I → M . Then we have:

Lemma 5.2 The groups H∗
b (M × I) and H∗

b (M) are isomorphic. In fact, for
each k there is an operator

K : Ωk
b (M × I) → Ωk−1

b (M × I),

satisfying ‖K‖ ≤ 2, with Id−p∗ ◦ s∗ = (−1)k(dK − Kd).

Proof. We first recall the proof for deRham cohomology [BT, §4]. Any k-form
on M × I can be written as

ω = g(x, t)α + f(x, t) dt ∧ β,

where α = p∗(α′) and β = p∗(β′) are the pullbacks of forms of degree k and
k − 1 on M . Using this decomposition of ω, we define

K : Ωk
b (M × I) → Ωk−1

b (M × I)

by

K(ω) =

(∫ t

0

f(x, s) ds

)
β.

Then the operator K satisfies

ω − p∗ ◦ s∗(ω) = (−1)k(dKω − Kdω), (5.1)

which implies p∗ ◦ s∗ gives an isomorphism on the level of deRham cohomology.
The opposite composition satisfies s∗ ◦ p∗ = Id, and therefore the deRham
cohomology groups of M and M × I are isomorphic.

Now observe that if ω is bounded, then so is Kω. In fact, we have

‖Kω‖∞ ≤ ‖ω‖∞
because |

∫ t

0 f(s) ds| ≤ sup |f |; and by (5.1), we have

‖dKω‖∞ ≤ ‖ω‖∞ + ‖p∗s∗ω‖∞ + ‖Kdω‖∞ ≤ 2‖ω‖∞ + ‖dω‖∞,

which implies ‖Kω‖b ≤ 2‖ω‖b. Therefore K also defines a chain homotopy on
the complex of bounded forms, showing that the bounded cohomology groups
H∗

b (M) and H∗
b (M × I) are isomorphic as well.
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Examples. The bounded cohomology of Rn is nontrivial in every dimension
0 ≤ k ≤ n. For example, the cohomology class [ω] = [dx1 · · · dxn] is nonzero
because

∫
Bn(R)

ω = CnRn as R → ∞, while

∫

Bn(R)

dη =

∫

Sn−1(R)

η = O(Rn−1)

for any bounded (n − 1)-form η. The same reasoning shows [dx1 · · ·dxk] 6= 0.
On the other hand, the bounded cohomology of a ball, Hk

b (Bn), vanishes
for all k > 0. This follows from the fact that Bn is quasi-isometric to In, and
H∗

b (In) ∼= H∗
b (R0). Similarly, for any n-dimensional manifold we have

Hn+i
b (Bj × Mn) = 0 (5.2)

for all i, j > 0.

A uniform vanishing theorem. By iterating Lemma 5.2, we obtain the
following quantitative version of (5.2):

Theorem 5.3 Let ω be a closed, bounded (n + i)-form on N = Bj × Mn,
i, j > 0. Then there is a solution to the equation dη = ω on N satisfying

‖η‖b ≤ C(n + j)‖ω‖b.

The constant C(n + j) is independent of Mn.

Cohomology via covers of Rn. To adapt the Čech-deRham complex to
bounded forms, we must add a uniformity condition to the definition of cochains.
Namely, we define

Cp(U, Ωq
b) =

⊕

|I|=p+1

Ωp
b (UI) (5.3)

to be a direct sum in the category of normed spaces; its elements are those
chains such that

‖(ωI)‖ = sup
I

‖ωI‖b

is finite. Using this norm, the differentials d and δ become bounded operators
on the double complex C∗(U, Ω∗

b). We also obtain a diagonal complex

Ar =
⊕

p+q=r

Cp(U, Ωq
b)

as before, with differential D = δ + (−1)pd.

Theorem 5.4 Let U be an open covering of Rn with inradius r > 0 and finite
order. Then H∗

b (Rn) is isomorphic to H∗
D(C∗(U, Ω∗

b)).

Proof. Because of the inradius and order conditions, we can find a partition of
unity

∑
ρi = 1 subordinate to the cover Ui, with 0 ≤ ρi ≤ 1 and supi ‖dρi‖∞ <

∞. The operators α 7→ ρiα on Ωp
b are then uniformly bounded. Thus one can
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apply the usual proof of the vanishing of the cohomology of fine sheaves [BT,
Prop. 8.5] to show the sequence

C0(U, Ωq
b)

δ→ C1(U, Ωq
b)

δ→ C2(U, Ωq
b)

δ→ · · ·

is exact for every q. Consequently every cohomology class in Hk
D(C∗(U, Ω∗

b)) is
represented by a cochain in C0(U, Ωk

b ), and the theorem follows.

See [Pan, Ch. 4] for a similar result in the L2 case.

Envelopes. Now let U = {Ui} be an open covering of Rn satisfying the con-
ditions of Theorem 5.1. Let I range over index sets with |I| = k, 1 ≤ k ≤ n,
and let V range over the components of UI . By hypothesis, V is contained in
an open set F (V ) ⊂ Rn isometric to Bk(R) × Rn−k.

Let Rk = 10n−k+1R. We will construct open sets E(V ) ⊂ Rn and Mn−k(V ) ⊂
Rn−k such that:

(E1) V ⊂ E(V );

(E2) E(V ) is isometric to Bk(Rk) × Mn−k(V ); and

(E3) V ′ ⊂ V =⇒ E(V ′) ⊂ E(V ), whenever V ′ is a component of
UJ and |J | = k + 1.

We refer to E(V ) as the envelope of V .
To construct E(V ), consider the unique product structure

Rn ∼= Rk × Rn−k (5.4)

extending the isometry F (V ) ∼= Bk(R)×Rn−k. In these coordinates, we define

E(V ) = Bk(Rk) × Mn−k(V ),

where Mn−k(V ) is an Rk-neighborhood of the projection of V to the Rn−k

factor in (5.4).
By construction, the sets V and E(V ) are approximately equal at scale Rk.

More precisely, we have

B(V, Rk/2) ⊂ E(V ) ⊂ B(V, 3Rk). (5.5)

Conditions (E1) and (E2) above are now immediate. To verify (E3), simply
note that if V ′ is a component of UJ , with |J | = k + 1 and V ′ ⊂ V , then (5.5)
implies

E(V ′) ⊂ B(V ′, 3Rk+1) ⊂ B(V, Rk/2) ⊂ E(V ).

Enveloping forms. We define the normed space of enveloping forms for V by

Fq
b (V ) = Ωq

b(E(V )).

These are forms on V equipped with a bounded extension to the envelope E(V ).
We extend the definition to UI by setting

Fq
b (UI) =

⊕
Ωq

b(V ),
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where the sum is over the components of UI ; and finally we define

Cp(U,Fq
b ) =

⊕

|I|=p+1

Fq
b (UI).

As in (5.3), both direct sums above are taken in the category of normed spaces.
The operators d and δ make C∗(U,F∗

b ) into a chain complex, and the re-
striction maps F∗

b (UI) → Ω∗(UI) determine a natural map

H∗
D(C∗(U,F∗

b )) → H∗
D(C∗(U, Ω∗

b)) (5.6)

on the level of cohomology.

Proof of Theorem 5.1. Let U be a covering of Rn satisfying the hypotheses
of the theorem, but with order less than n. We will deduce a contradiction, by
showing the bounded cohomology class

[ω] = [dx1 · · · dxn] ∈ Hn
b (Rn)

is zero.
To begin with, note that [ω] lifts to a class [y0] ∈ Hn

D(C∗(U,F∗
b )), represented

by the cocycle
y0 = (ω|E(V )) ∈ C0(U,Fn).

This class [y0] projects back to [ω] under the composition of (5.6) with the
isomorphism

Hn
D(C∗(U, Ω∗

b))
∼= Hn

b (Rn)

provided by Theorem 5.4. Thus to complete the proof, it suffices to show [y0] = 0
in Hn

D(C∗(U,F∗
b )).

We first show the sequence

Cp(U,Fq−1
b )

d→ Cp(U,Fq
b )

d→ Cp(U,Fq+1
b ) (5.7)

is exact, whenever p + q = n. To see this, suppose (ωV,I) is an element of the
central term above, with ωV,I ∈ Ωq

b(E(V )) and dωV,I = 0. Then for each V ,
the envelope E(V ) is isometric to Bk(Rk) × M q−1(V ), where k = p + 1. Since
Rk ≤ 10n+1R, by Theorem 5.3 can solve the equation ωV,I = dηV,I on E(V )
with a uniform bound

‖ηV,I‖b ≤ C(R)‖ωV,I‖b.

Thus (ηV,I) defines a chain in Cp(U,Fq−1
b ) mapping under d to (ωV,I), and

exactness is established.
It follows, just as in the proof of Theorem 2.1, that the cocycle y0 is coho-

mologous to a cycle yn ∈ Cn(U,F0
b ). But since U has order less than n, this

chain group vanishes, and therefore [y0] = [yn] = 0 in Hn
D(C∗(U,F∗

b )).
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6 Incompressible subspaces

In this section we introduce the theory of incompressible subspaces M ⊂ Rn, in
preparation for studying general lattices with N(L) > 0.

Norm and support. Let ei, i ∈ I = {1, . . . , n} be the standard basis for Rn.
Then the elements eJ = ej1 ∧ ej2 ∧ · · · ejk

give a basis for ∧
k(Rn), as J ranges

over all increasing sequences (j1, . . . , jk) ⊂ I. We define the norm and support
of an element

ω =
∑

|J|=k

mJeJ ∈ ∧
k(Rn)

by ‖ω‖ = sup|J|=k |mJ | and supp(ω) = {J : mJ 6= 0}.
Measured subspaces and discrete groups. A k-dimensional measured sub-
space is a real linear subspace M ⊂ Rn equipped with a nonzero volume element

det(M) ∈ ∧
k(M),

well-defined up to sign.
The set of all such M is naturally parameterized by the space

Gn,k = GLn,k(R)/ SL±
k (R),

where SL±
k (R) is the group of k×k matrices with determinant ±1, and GLn,k(R)

is the space of linear maps g : Rk → Rn of maximal rank. The measured
subspace corresponding to [g] ∈ Gn,k is simply M = g(Rk), with det(M) =
g(e1) ∧ · · · ∧ g(ek).

Note that Gn,k is an R+-bundle over the compact Grassmann variety of
k-planes in Rn. In particular,

E ⊂ Gn,k is compact ⇐⇒ 0 < inf
E

‖ det(M)‖ ≤ sup
E

‖ det(M)‖ < ∞. (6.1)

Compressibility. A measured subspace M ⊂ Rn is compressible if there is a
sequence an ∈ A such that ‖ det(an ·M)‖ → 0. Otherwise M is incompressible.
Note that compressibility depends only on the support of M , and it makes sense
to refer to an incompressible subspace.

The principal result of this section shows that if M is incompressible, then
det(a ·M) is large outside a set of the form Bi ×Rj ⊂ A, with j ≤ gcd(k, n)−1.

Theorem 6.1 Given 0 < k ≤ n, there exist:

• connected subgroups H1, . . . , HN of A, with dimHi ≤ gcd(k, n) − 1, and

• compact sets BR ⊂ A, indexed by R ≥ 1,

such that for any incompressible M ∈ Gn,k with infA ‖ det(a ·M)‖ = 1, we have

{a ∈ A : ‖ det(a · M)‖ ≤ R} ⊂ a0 · BR · Hi (6.2)

for some subgroup Hi and some a0 ∈ A.
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Rank of the stabilizer. We denote the stabilizer of M ∈ Gk,n by

AM = {a ∈ A : a · M = M and det(a|M) = 1};
it is a connected subgroup isomorphic to Rd

+ for some d. The first step in the
proof of Theorem 6.1 is to control the size of AM . Note that the bound we
obtain parallels Theorem 4.7 from the number field case.

Theorem 6.2 If M ⊂ Rn is an incompressible subspace of dimension k > 0,
then we have dim AM ≤ gcd(k, n) − 1.

Proof. We claim that AM = {a ∈ A : a · M = M}. Indeed, if a · M = M
and det(a|M) 6= 1, then either ‖ det(an · M)‖ → 0 or ‖ det(a−n · M)‖ → 0 as
n → +∞, contradicting incompressibility of M .

Now suppose AM has dimension s − 1. Then the eigenspaces of a regular
element of g ∈ AM determine a splitting Rn = ⊕s

1Vi, with ni = dimVi > 0 and∑
ni = n. Since g ·M = M , we can also write M as a direct sum of eigenspaces

Mi = M ∩ Vi, and therefore

AM =

{
a =

s⊕

1

ai · IdVi
:
∏

ani

i = 1

}
.

Note that ki = dim Mi satisfies
∑

ki = k. Since

det(a|M) =
∏

aki

i = 1

for all a ∈ AM , the exponents (ni) and (ki) must be integral multiples of a
common primitive integral vector (pi). Consequently p =

∑s
1 pi divides both

n =
∑

ni and k =
∑

ki, and therefore s = dim AM +1 =
∑s

1 1 ≤ p ≤ gcd(k, n).

Strict incompressibility. We say M is strictly incompressible if the function

‖ det(a · M)‖ : A/AM → R

is proper.
By convex duality, M is incompressible iff there exist αJ ≥ 0 such that

χI =
∑

J∈supp(M) αJχJ , and strictly incompressible if we can take αJ > 0.

(Here χJ : I → {0, 1} is the indicator function of J ⊂ I.)

Examples. Consider the measured subspaces of R4 given by

det(M1) = (e1 + e2 + e3) ∧ e4,

det(M2) = (e1 + e2 + e3) ∧ (e3 + e4), and

det(M3) = (e1 + e2) ∧ (e3 + e4).

Since det(anM1) → 0 for a = diag(2, 2, 2, 1/8), M1 is compressible. The mea-
sured subspace M2 is incompressible, but not strictly so: for a = diag(2, 2, 1/2, 1/2),
‖ det(an · M2)‖ stays bounded as n → ∞, but a · M2 6= M2. The subspace M3

is strictly incompressible.
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Theorem 6.3 If M is incompressible, then there exists a strictly incompressible
measured subspace M ′ with suppM ′ ⊂ suppM .

Proof. We can take M = M ′ if M itself is strictly incompressible.
Otherwise, there is an a ∈ A such that aJ ≤ 1 for all J ∈ supp(M) and

strict inequality holds for some multi-index J ′. This implies ‖ det(anM)‖ is
bounded above by ‖ det(M)‖; it is also bounded below (away from zero), by
incompressibility of M . Thus the compactness criterion (6.1) implies an · M
accumulates on some M ′ ∈ Gn,k.

Since A · M ′ ⊂ A · M , M ′ is also incompressible; and by construction, the
support of M ′ is strictly smaller than that of M (it excludes J ′) . But the
support cannot shrink indefinitely, so after iterating this process a finite number
of steps we obtain a strictly incompressible subspace with supp(M ′) ⊂ supp(M).

Proof of Theorem 6.1. There are only a finite number of possibilities for the
support of a k-dimensional subspace of Rn. Thus we can choose M1, . . . , MN ∈
Gn,k, such that every strictly incompressible M ∈ Gn,k satisfies supp M =
suppMi for some i. Let Hi = AMi

.
Next, consider any M0 in the compact set of incompressible subspaces

Mn,k = {M ∈ Gn,k : ‖ det(M)‖ ≤ 2, and inf
A

‖ det(a · M)‖ = 1}.

By the preceding theorem, we have supp(Mi) ⊂ supp(M0) for some i. Let
U ⊂ Gn,k be the open set defined by

U = {M : det(M) =
∑

mJeJ with min
J∈supp Mi

|mJ | > ǫ},

where ǫ > 0 is chosen so that M0 ∈ U . There there is a constant C > 0 such
that

‖ det(a · M)‖ ≥ C · ‖ det(a · Mi)‖ (6.3)

for all M ∈ U and a ∈ A.
Since Mi is strictly incompressible, the map ‖ det(a · Mi)‖ : A/Hi → R is

proper. Thus there is a compact set BR,U ⊂ A such that

{a ∈ A : ‖ det(a · Mi)‖ ≤ C−1 · R} ⊂ BR,U · Hi.

By (6.3), we then have

{a ∈ A : ‖ det(a · M)‖ ≤ R} ⊂ BR,U · Hi

for all M ∈ U . Since Mn,k is compact, we can take the union of the sets BR,U

over a finite cover to obtain a compact set BR that works simultaneously for
all M0 ∈ Mn,k. It follows that (6.2) holds for any measured subspace with
infA ‖ det(a · M)‖ = 1, by choosing a0 such that a−1

0 M ∈ Mn,k.

Remark. Only certain collections of multi-indices J can arise as J = supp(M)
for some M ⊂ Rn, but the set of J that do arise is very difficult to describe
explicitly [Va].
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7 Proof for bounded orbits

In this section we complete the proof of our main result, by showing:

Theorem 7.1 If L ⊂ Rn is a unimodular lattice with N(L) > 0, then A · L
contains a well-rounded lattice.

The idea of the proof is to define a covering U1, . . . , Un of A ∼= Rn−1 deter-
mined by the span of the minimal vectors of a · L (as in the case of a compact
orbit), and then apply Theorem 5.1 to deduce Un 6= ∅.
Notation. We will write A = O(B) and A ≍ B to indicate that A ≤ CnB and
A/Cn ≤ B ≤ CnA, where Cn depends only on the dimension n.

Metrics. We begin by introducing a translation-invariant metric d(a, b) on A.
Let Lie(A) be the Lie algebra of A, regarded as the space of vectors (t1, . . . , tn) ∈

Rn such that
∑

ti = 0. Let exp : Lie(A) → A be the exponential map, defined
by

exp(t) = diag(et1 , . . . , etn),

let log : A → Lie(A) be its inverse, and finally define

d(a, b) = | log(a) − log(b)|.

Clearly (A, d) is isometric to the Euclidean space Rn−1. We also have
d(a, b) ≍ log ‖a−1b‖, where ‖ diag(a1, . . . , an)‖ = sup |ai| is the operator norm
on A.

Almost minimal vectors. Given a L ⊂ Rn and r ≥ 0, let spanr(L) ⊂ Rn

denote the real vector space spanned by

{y ∈ L : |y| ≤ (1 + r)|L|}.

Note that L is well-rounded iff span0(L) = Rn, and when r > 0 is small, the
generators of spanr(L) are almost minimal vectors for L.

Let dimr(L) = dim spanr(L). Then dimr(L) is an increasing function of r,
with at most (n − 1) jump discontinuities. Away from these jumps, dimr(L) is
stable as L varies; more precisely, if 0 < r < s < t are given, then there is a
neighborhood U of the identity in A such that

dimr(L) ≤ dims(a · L) ≤ dimt(L) (7.1)

for all lattices L and all a ∈ U .

Covering A. We now define a covering (Uk)n
1 of A, depending on a parameter

0 < ǫ < 1, by:

Uk = {a ∈ A : dimr(a · L) = k for all r in a neighborhood of r = kǫ.} (7.2)

Theorem 7.2 The sets U1, . . . , Un give an open covering of A ∼= Rn−1 with
inradius bounded below.
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Proof. The sets (Uk) are open by stability of the function dimr(a · L). To see
they cover, given a ∈ A consider the least k ≥ 1 such that dim(k+1/2)ǫ(a ·L) ≤ k.
Then k ≤ n and dim(k−1/2)ǫ(a · L) ≥ k, so we have

dimr(L) = k for (k − 1/2)ǫ ≤ r ≤ (k + 1/2)ǫ.

Thus a belongs to Uk. Moreover, by (7.1), there is a neighborhood U of the
identity in A, depending only on ǫ, such that a · U ⊂ Uk as well. Thus the
inradius of the covering is bounded below.

Incompressibility. We now bring the ideas of the preceding section into play.
Let P = Zy1 ⊕ · · ·Zyk be a discrete subgroup of Rn, of rank k > 0. Let |P |

and N(P ) denote the minimum of |y| and N(y) over nonzero vectors y ∈ P .
The determinant of P is defined by

det(P ) = y1 ∧ · · · ∧ yk ∈ ∧
k(Rn);

it is well-defined up to sign, and satisfies

‖ det(P )‖ ≍ vol(P ⊗ R/P ).

Since the quotient torus (P ⊗R)/P contains an embedded ball of diameter |P |,
we also have Minkowski’s bound

|P |k = O(‖ det(P )‖). (7.3)

Let Mk : Uk → Gn,k be the function sending a ∈ Uk to the k-dimensional
subspace

Mk(a) = a−1 · spankǫ(a · L),

with its determinant defined by det Mk(a) = det(Mk(a) ∩ L). The vectors in
L spanning Mk(a) are locally constant, so Mk(a) is itself a locally constant
function on Uk.

Theorem 7.3 The measured subspace Mk(a) is incompressible. More precisely,
we have ‖ det(a · Mk(a))‖ = O(1) and

‖ det(b · Mk(a))‖ ≥ c(N(L)) > 0

for all a ∈ Uk and b ∈ A

(Here c(N(L)) is a constant depending only on N(L).)

Proof. Given a ∈ Uk, let M = Mk(a) and let P = M∩L. Then by the definition
of spankǫ(a · L), there are linearly independent lattices vectors y1, . . . , yk ∈ P
such that |ayi| = O(|a ·L|). Since L is unimodular, we have | det(a ·L)| = 1 and
thus |a · L| = O(1) by (7.3); therefore

‖ det(a · M)‖ ≤ ‖(ay1) ∧ · · · ∧ (aym)‖ = O(1).
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For the lower bound, note that N(b ·P ) = N(P ) ≥ N(L) > 0 for any b ∈ A,
and thus √

n · N(L)1/n ≤ |b · P |
by the inequality between the arithmetic and geometric means. Applying (7.3)
again, we find that ‖ det(b ·P )‖ = ‖ det(b ·M)‖ is bounded below by a constant
c(N(L)) depending only on N(L).

Theorem 7.4 There is a constant R > 0 such that every component V of Uk

lies in a region F (V ) ⊂ A isometric to Bi(R)×Rj, where j ≤ gcd(k, n)−1 and
i + j = n − 1.

Proof. Let V be a component of Uk. Since Mk(a) is continuous, it assumes a
constant value M on V . By the preceding result, we can rescale det(M) so that
infA ‖ det(a · M)‖ ≥ 1 and for all a ∈ V we have

‖ det(a · Mk(a))‖ = ‖ det(a · M)‖ ≤ S,

where S depends only on N(L). Then by Theorem 6.1, there is a compact set
KS ⊂ A such that

V ⊂ {a : ‖ det(a · M)‖ ≤ S} ⊂ a0 · KS · H

for some a0 ∈ A and some j-dimensional subgroup H ⊂ A with j ≤ gcd(k, n)−1.
Choose R > 0 such that KS is contained in the ball B(e, R) of radius R about
the identity e ∈ A. Then V is contained in the region

F (V ) = a0 · B(e, R) · H.

Since log(H) ⊂ Lie(A) is isometric to Rj , the region F (V ) is isometric to the
product Bi(R) × Rj , where i + j = dimA = n − 1.

Theorem 7.5 The open set Un ⊂ A is nonempty.

Proof. Suppose to the contrary that Un is empty. Let U be the open covering
of A ∼= Rn−1 by the components of the sets U1, . . . , Un−1. Then the inradius
of U is bounded below. Moreover, if V ′ is a component of the intersection of k
distinct elements of U , then V ′ is contained in a component V of Uj for some
j ≤ n − k. By the preceding result, we have

V ⊂ F (V ) ∼= Bk′

(R) × Rn−1−k′

where n − 1 − k′ ≤ gcd(j, n) − 1 ≤ n − k − 1. Thus k′ ≥ k, and therefore U
satisfies the hypotheses of the covering Theorem 5.1. Consequently U has order
at least n − 1: it contains n distinct elements whose intersection is nonempty.
But any n elements of U must include two distinct components from the same
Ui, whose intersection is empty. This contradiction shows Un 6= ∅.
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Corollary 7.6 For any ǫ > 0, there exists an L′ ∈ A ·L such that dimnǫ(L
′) =

n.

Proof of Theorem 7.1. By the Corollary above, for any m > 0 there is a
lattice Lm ∈ A·L such that dim1/m(Lm) = n. Since N(L) > 0, the sequence Lm

has an accumulation point L′ in the compact set A · L. Then span1/m(L′) = n
for every m > 0, so span0(L

′) = n and L′ is a well-rounded lattice.

8 Minkowski’s conjecture

We conclude by showing the main result implies:

Theorem 8.1 Suppose that for all k ≤ n, the covering radius of any well-
rounded unimodular lattice L ⊂ Rk satisfies

cov(L) ≤
√

k/2,

with equality only when L ∈ SOk(R) · Zk.
Then Minkowski’s conjecture holds for all lattices in Rk, k ≤ n.

Covering radii. We denote the covering radii of a unimodular lattice L with
respect to |x| and N(x) by

cov(L) = sup
x∈Rn

inf
y∈L

|x − y|, and Ncov(L) = sup
x∈Rn

inf
y∈L

N(x − y).

Note that cov(L) is a continuous function of L, while Ncov(L) only satisfies the
semicontinuity property

lim sup Ncov(Li) ≤ Ncov(lim Li). (8.1)

As usual, we have Ncov(L)1/n ≤ cov(L)/
√

n.
Recall that Minkowski’s conjecture (Mn) asserts that all unimodular lattices

L ⊂ Rn satisfy
Ncov(L) ≤ Ncov(Zn) = 2−n, (8.2)

and equality holds iff L ∈ A · Zn. Similarly, conjecture (Cn) asserts that if L is
well-rounded, then

cov(L) ≤ cov(Zn) =
√

n/2, (8.3)

and equality holds iff L ∈ SOn(R) · Zn.
For the proof of Theorem 8.1, we will use the following two results of Birch

and Swinnerton-Dyer.

Theorem 8.2 Minkowski’s conjecture holds for all lattices in a neighborhood
of L = Zn ∈ SLn(R)/ SLn(Z).
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Theorem 8.3 If Minkowski’s conjecture holds for all lattices in Rk, k < n,
then it also holds for all lattices L ⊂ Rn with N(L) = 0.

See [BiS, Theorems 1 and 2].

Proof of Theorem 8.1. Assuming (Ck) holds for all k ≤ n, we will show that
Minkowski’s conjecture (Mk) also holds for all k ≤ n. Proceeding inductively,
we can assume (Mk) holds for k < n, so we need only establish (Mn). By
the result of Birch and Swinnerton-Dyer above, we need only prove (Mn) for
lattices L ⊂ Rn with N(L) > 0. But in this case, Theorem 7.1 shows there is
a well-rounded lattice L′ ∈ A · L; by combining the inequalities (8.1) and (8.3),
we then immediately obtain the bound

Ncov(L) ≤ Ncov(L′) ≤ (cov(L′)/
√

n)n ≤ 2−n (8.4)

required for Minkowski’s conjecture.
It remains to check the case of equality. First, observe that if g ∈ SOn(R)

and
Ncov(g · Zn)1/n = cov(Zn)/

√
n, (8.5)

then g ·Zn = Zn. Indeed, the extreme values of Ncov(Zn) and cov(Zn) are both
attained at the points x = (±1/2, . . . ,±1/2), and if g does not permute these
points then strict inequality holds in (8.5); cf. [Dy, I.3].

Now suppose equality holds in (8.2). Then the two inequalities in (8.4) are
equalities, and consequently L′ = g · Zn = Zn, since these are the cases of
equality in (8.3) and (8.5).

Thus when Ncov(L) = 2−n, the orbit A · L accumulates on the standard
lattice L′ = Zn. Since Minkowski’s conjecture holds in a neighborhood of Zn,
we can only have equality when L ∈ A · Zn, and the proof is complete.
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[Va] P. Vámos. The missing axiom of matroid theory is lost forever. J. London
Math. Soc. 18(1978), 403–408.

[Wd] A. C. Woods. Covering six space with spheres. J. Number Theory 4(1972),
157–180.

Mathematics Department

Harvard University

1 Oxford St

Cambridge, MA 02138-2901

28


