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Abstract

Projective transformation is a mathematical correction (implemented in software) used in the

remote imaging field to produce distortion-free images. We present the application of projective

transformation to correct minor alignment and astigmatism distortions that are inherent in

dispersive spectrographs. Patterned white-light images and neon emission spectra were used to

produce registration points for the transformation. Raman transects collected on microscopy and

fiber-optic systems were corrected using established methods and compared with the same

transects corrected using the projective transformation. Even minor distortions have a significant

effect on reproducibility and apparent fluorescence background complexity. Simulated Raman

spectra were used to optimize the projective transformation algorithm. We demonstrate that the

projective transformation reduced the apparent fluorescent background complexity and improved

reproducibility of measured parameters of Raman spectra. Distortion correction using a projective

transformation provides a major advantage in reducing the background fluorescence complexity

even in instrumentation where slit-image distortions and camera rotation were minimized using

manual or mechanical means. We expect these advantages should be readily applicable to other

spectroscopic modalities using dispersive imaging spectrographs.
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INTRODUCTION

Grating spectrographs equipped with two-dimensional (2D) imaging detectors are widely

used in microspectroscopy and fiber-optic instrumentation because of their ability to capture

many spectra simultaneously.1–6 Ideally, a dispersive imaging spectrograph should record a

two-dimensional image where one axis contains the spatial information and the other axis

contains the spectral information. In practice, recorded images suffer from slight distortions

due to light, which is off the primary optical axis being dispersed, at an angle to the grating

normal. Distortions in dispersive instrumentation arise from monochromatic and chromatic

aberration of collimating and focusing elements, as well as physical misalignment of optical

elements. Most axial transmissive spectrographs use aberration-corrected lenses to minimize

these problems. The Offner spectrograph uses a concentric spherical mirror and grating, for

which the monochromatic aberrations will cancel if the instrument is perfectly aligned and

an aberration-corrected grating is employed.1,7
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Since the first axial transmissive spectrograph for Raman spectroscopy was introduced it has

become a popular design for imaging Raman spectrographs.1 In this paper we use a Raman

system employing an axial transmission spectrograph to illustrate some important correction

techniques. In this configuration, major sources of defects in spectroscopic images include

misalignment of the imaging detector with respect to the optical dispersion axis, uncorrected

slit-image curvature, and other aberrations in the spectrograph.8,9 The spectral and spatial

axes are affected by these problems, and recorded spectroscopic images are slightly

distorted. These distortions may seem slight, but, as we show, they significantly affect the

accuracy and precision of the underlying spectra and the quality of the derived optical

images.

Instrument modification to reduce aberrations and software correction of the acquired signal

are the two major approaches to reduce these problems. A classic example is the use of

toroidal mirrors to reduce astigmatism in the Czerny–Turner spectrograph. Hardware

correction using curved input slits was demonstrated in the early days of high-throughput

spectrographs. Slit-image curvature (or smile) is where “the image of the slit on the CCD

[charge-coupled device] detector has a slope that varies with wavelength”.10 Slit-image

curvature is a prominent artifact in imaging Raman spectrographs, and a number of

corrective approaches have been described.8,11–14 In the axial transmission design,

collection fiber optics can be arranged in an arc with curvature opposite to the slit-image

curvature at the detector plane.8,11 This hardware approach will not correct pushbroom

microspectrometry or other images collected using free-space optics. Other hardware

solutions include curved entrance slits, optical focusing elements specially designed to

minimize chromatic aberration in the image plane over the wavelength interval of interest,

and camera mounting systems that allow fine rotation adjustments of the imaging detector.

Traditional approaches to correct curvature using hardware completely correct curvature at

only a single wavelength, while image transformation allows correction across the entire

spectral image.

Software correction methods vary between instrument manufacturers, applications, and even

members within research groups. Software slit-image curvature correction realigns the data

points in each recorded spectrum such that atomic emission lines appear at the same pixel

position, regardless of the vertical position along the detector. In these methods the pixel

shift due to curvature is measured and the image rows are offset using sinc interpolations to

resample the data accordingly.15 Matlab code for this correction has previously been

published.16 A similar method was developed for planar array IR microspectrometry and has

since been adopted for Raman spectroscopy.17 In these previous works, each spectral row in

the image is corrected horizontally to align pixels in each row to a consistent spectral

position, based on the assumption that the dispersion axis corresponds adequately to the

pixel row axis. Individual spectra are subsequently recovered either from regions where

multiple image rows are binned or from individual rows on the imaging detector.3,18

Distorted images are also encountered in remote sensing, and several software corrections

have been reported.19–22 In remote sensing, images distorted by tilt, surface curvature, and

other distortions are corrected using software to produce orthophotos, in which the

distortions have been removed and the scale is uniform. Projective transformation is used to

align images taken from different perspectives with different optical systems to produce

distortion-free registered images.19,20 This approach is used in satellite imagery to correct

for aberrations in the focusing optics of the camera, as well as for the position and angle of

the camera relative to the planet surface (including the radius of curvature relative to the

field of view). Positions of identifiable markers are measured in recorded images (called

measured control points) and their corresponding ideal positions (ideal control points) are

used to convert the positions of the pixels in the ideal image to positions in the recorded
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image. Finally, the pixel intensities in the ideal image are interpolated from the neighboring

pixel intensities in the recorded image. Bilinear interpolation is typically used for

quantitative applications.

Projective transformation can also be used to correct distortions in spectroscopic images.

One embodiment of distortions in spectroscopic images is an increase in the apparent

complexity of the fluorescence background. Raman spectra are typically accompanied by

background fluorescence, which arises from several sources including auto-fluorescence and

degradation or oxidation byproducts. Stray light or reflections may also be misconstrued as

fluorescence and contribute to the apparent complexity of the background signal.

Fluorescence emission intensities are much lower at near-infrared wavelengths than in the

visible. The relative intensity of fluorescence emission profiles decreases at longer

wavelengths; however, the emission profiles extend into the near infrared with intensities

comparable to those of Raman bands. The near-infrared component of the fluorescence

profiles should have simple shapes, approximated by low-order polynomials, because the

major fluorescence emission features are located at much lower wavelengths.

However, observed backgrounds in near-infrared Raman spectroscopy are often much more

complex than would be expected. These observed fluorescence backgrounds must be

corrected, and they can significantly affect quantitative analysis of Raman spectra.

Fluorescence backgrounds in Raman spectroscopy are often corrected using polynomial

fitting methods. Background-correction methods based on polynomial fitting can be traced

back to at least 1975 and23,24 were incorporated into the Gas chromatography/Infrared

Fourier Transform Software (GIFTS).25 The GIFTS background-correction method was

later included in the commercially available GRAMS spectral processing package by

Thermo-Galactic. Related background-correction methods include fitting a single

polynomial26 and taking the minima of several fitted polynomials (the “adaptive minmax”

method),27 as well as other background-correction methods.28–33 Consistent among all of

the background-correction methods is the principle that the polynomial order required to

remove the spectral background can be taken as a rough indication of the background

complexity.

In this study, we apply projective transformation to correct for subtle distortions inherent in

imaging spectrographs. We show that projective transformation in spectral image

preprocessing improves the quality and reproducibility of simulated and experimental

spectral images. We present a simple process for collection of spatial and spectral patterns

and determination of the control points that is applicable to data collected through imaging

optics (such as microscopes), fiber-optic probes, or any other extended source collection

systems. The conversion of measured control points to ideal control points is achieved by

collecting images with known spatial and spectral patterns. Simulated and experimental

Raman data, from microspectroscopy and fiber-optic spectrographs, are used to determine

the effects of distortion correction on recovered spectra and to demonstrate the utility of a

transform function on the accuracy and reproducibility of recovered spectra. We propose

that even slight instrument misalignment leads to a surprising increase in the apparent

background complexity of spectra.

MATERIALS AND METHODS

Polynomial Projective Transformation Functions

Software distortion correction uses polynomial functions to map and correct the spatial

distortion in images. Ideal and measured control points are selected and ideal positions are

then computed. A polynomial function is calculated to relate the ideal and real control point
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positions. Rotational misalignment of the detector can be corrected with a first-order

polynomial, while slit-image curvature varies with wavelength and is described by both

parabolic and inverse cosine terms. Theory supports the use of a second-order polynomial

because the slit-image curvature is approximated as a function of the square of the vertical

position.12 Mapping functions with higher-order polynomials can be used but are

unnecessary to correct slit-image curvature and rotational misalignment. Polynomial

functions are calculated for the forward and inverse projective transformations. The forward

transform is calculated to convert the measured control point positions to the ideal control

point positions. The inverse transform is calculated by interchanging the control point sets,

to convert the ideal control point positions to the measured control point positions. A

forward transform is used to take the imperfect image and remove distortion, while the

inverse transform produces a distorted image from the ideal image.

Polynomial fits were calculated by minimizing the residuals in fitted control points

according to:

(1)

and

(2)

In Eqs. 1 and 2, x and x′ are the x-positions of control points in the initial and transformed

images and y and y′ are the y-positions of control points in the initial and transformed

images. Coefficients a and b are estimated using a least square error fit of the coupled Eqs. 1

and 2 describing the x and y positions. The system is over-constrained by using more control

points than necessary to calculate the polynomial coefficients. The fitting is iterative, where

the polynomial fit is first calculated, and then control points with fitting error significantly

greater than the average are deselected to improve the fit. This point rejection process is

iterated until no outliers are detected. This process is handled automatically in the Matlab

software routine cp2tform, using the second-order polynomial transformation type. After

functions are calculated to map pixel positions between the real and ideal images, intensities

for each pixel in the ideal image are calculated by interpolating intensities from the

measured image. Interpolated intensities are assigned to the appropriate pixel positions in

the output image. This procedure is equivalent to extending to two dimensions the quadratic

correction in one dimension used in an axial transmissive spectrograph to correct for slit-

image curvature. Instead of a one dimensional fitting of the curvature along the x axis, we fit

quadratic polynomials to both axes simultaneously so that both the x and y axes are

corrected. The procedure is general and will correct errors from any source, provided that

they do not result in defocusing the image on the detector. Extension to higher-order

polynomials is possible.

Determination of Control Points

The first step in projective transformation is to measure control points in the dispersion and

spatial axes. Spatially and spectrally patterned calibration images are recorded and control

points are identified where lines of constant spatial position and lines of constant spectral

position intersect. For microspectrometry, we used a reflective 1951 USAF glass slide

resolution target (NT38-257, Edmund Optics, Barrington, NJ) affixed to a white-light

calibration source to measure the spatial pattern and a neon source to measure the spectral

pattern. For fiber-optic-coupled spectroscopy, we used the spatial pattern arising from the

fiber-optic probe to measure the spatial pattern and a neon source to measure the spectral
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pattern. We developed a simple procedure to determine control points from data acquired by

a Raman microscopy system and a Raman fiber-optic system. The Appendix provides a

more detailed description of the methodology used for the determination of control points.

Simulated Checkerboard Images

A binary checkerboard image was generated using the Matlab (R2008b, The MathWorks,

Natick, MA) function ‘checkerboard’ with intensities 0 and 255 to simulate a horizontal

spectral dispersion axis and a vertical spatial axis. This pattern provides improved contrast

for visualization of the image distortion. The control points used in this simulation were

measured from a fiber-optic-coupled Raman imaging system. From the control points both

the forward and inverse projective transformations were computed. The inverse projective

transformation was first used to simulate a typical pattern generated by a dispersive Raman

instrument. This distorted pattern was then corrected using the forward transform function.

In the projective transformation, pixels in the calculated image were sampled from pixels

within the initial image. However, some output image pixels in the forward-transform

process would require sampling pixels outside the bounds of the input image due to

distortion. Output pixels intensities were identified as “not a number” if they required

interpolation of pixel intensities outside the area of the initial input image. In order to

accommodate the extra-image pixel sampling, we created a checkerboard image larger than

the transformed image. This allowed visualization of curvature over the entire calculated

image, including the edges where intensities would otherwise be undefined. For simulated

and measured Raman data, initial images had the same pixel dimensions as the detector

surface, and undefined points at the edges of the transformed images resulted in the black

edges.

Experimental Raman Data

Raman data were acquired with two different Raman spectrographs: a 785 nm Raman

microscope with a dispersive spectrograph (HoloSpec, Kaiser Optical Systems, Inc., Ann

Arbor, MI) and an 830 nm Raman fiber-optic-coupled instrument with a dispersive

spectrograph (RXN-1, Kaiser Optical Systems, Inc.). Custom-designed fiber-optic probes

were constructed for tissue measurements (FiberTech Optica, Inc., Kitchener ON, Canada).

The fiber-coupled data was collected using a pen-like probe in which the illumination and

collection fibers were interleaved around a ring approximately 5 mm in diameter at the tip.

Raman spectra are collected by positioning the probe approximately 1 to 2 mm from the

sample so that the sample is globally illuminated. Collected images were 1024 × 127 pixels

for the microscopy system and 1024 × 255 pixels for the fiber-optic system. Raman transects

consisted of 127 or 255 spectra and were imported into Matlab for preprocessing using

software routines written in-house.34 Cosmic rays present in the data were removed using

either a GUI-based routine written in-house for microscopy data or an upper-bound

spectrum method for fiber-optic data.34,35 One image frame was collected for the Raman

microscopy system and ten image frames were collected for fiber-optic data. Initial recorded

Raman spectral images and the spectral images after distortion correction using the

appropriate forward projective transformations were compared.

Polynomial spectral baseline correction was performed, and the order of the polynomial

required to correct the baseline was used as an indication of background complexity.27,34 A

Raman transect of intact equine metacarpal bone acquired with the 785 nm Raman

microspectrometer was examined for differences in apparent fluorescence background

complexity before and after the image-distortion correction.34 Raman band intensity ratios

were used for measuring bone properties; the carbonate ν1 to phosphate ν1 (1070 cm−1/958

cm−1) and phosphate ν1 to amide I (958 cm−1/1655 cm−1) were calculated for images with
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and without transformation. Band intensities were measured as the maximum over a range

of five pixels at the band maxima with subtraction of the minima over five pixels at nearby

background regions. Band intensity ratios were then calculated from the specified

wavenumber intensities. Band intensities are less susceptible to residual baseline error and

are less affected by noise than band fitting in spectral images where individual spectral rows

have a low signal-to-noise ratio (less than 10 : 1).36

Simulated Raman Microscopy Images

A Raman spectrum from a fixed and embedded fragment of human iliac crest bone was used

to generate a simulated image, which was inverse- and forward-transformed in the same

manner as the checkerboard image. The single bone spectrum was repeated over the spatial

axis to produce an 811 × 127 pixel Raman image. Each row in the image was independently

weighted to simulate varying reflection from the sample surface and intensity variations

within the line-shaped laser beam. Intensities were weighted from 70 to 100% of the initial

spectral intensity using uniformly distributed random numbers. The inverse projective

transformation was used to generate a Raman transect that mimicked the distortion in

Raman transects collected by the HoloSpec spectrograph. The distorted image was corrected

using the forward transform.

Simulated Raman Fiber-Optic Probe Images

A transcutaneous Raman spectrum from a cadaveric human tibia was used to generate a

simulated fiber-optic probe image, which was transformed using the method described

above. A simulated 811 × 256 pixel image was generated by repeating a single Raman

spectrum across the entire spatial axis. Because spectral images recorded by fiber-optic-

coupled Raman imaging systems have a distinctive striped intensity pattern, it was necessary

to generate spatial profiles similar to the arrangement of 100 µm core fiber-optic bundles at

the spectrograph. Gaussian profiles with a width (standard deviation) of 2 pixels, fiber-to-

fiber spacing of 4.75 pixels, and an intensity of 1 were used to simulate the characteristic

Gaussian intensity profiles of fiber optics. Dimensions corresponded to the spatial profiles

observed from fiber-optic probes where the buffer is stripped from the spectrograph end of

each fiber to efficiently pack fibers into the fixed detector height. Spectral intensities for

each individual simulated fiber optic were randomly weighted to 85–100% of the initial

intensity using uniformly distributed random numbers. This initial simulated Raman fiber-

optic image was inverse transformed to simulate the distorted image and then forward

transformed to correct for the distortion.

RESULTS AND DISCUSSION

Projective transformation extends to two dimensions the correction that is typically only

performed in one dimension to correct slit-image curvature (smile or line curvature). Spatial

and spectral axes are simultaneously corrected using a projective transformation to reduce

distortions from detector misalignment. We show with experimental and simulated Raman

data that minor distortions have large effects on the apparent background complexity of

spectra collected with dispersive spectrographs.

Simulated Checkerboard Data

The principles of projective transformation are shown on high-contrast images using

checkerboard patterns, shown in Fig. 1, as an ideal test image for emphasizing spatial

distortion. The initial undistorted checkerboard image is shown in Fig. 1A. Because there is

no simple method for producing a spectral checkerboard pattern on a spectrograph, an

inverse spatial transform was applied to the checkerboard image to simulate the distortion

present in experimental spectral images. The initial checkerboard pattern was larger than the
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desired output image and the inverse spatial transform resampled an image output area

corresponding to the actual detector size, as shown by the rectangle in Fig. 1A. As shown in

Fig. 1B, the inverse transform distorted the checkerboard image. Horizontal lines in the

checkerboard pattern are slightly rotated and also shifted vertically downwards by 2 pixels

over the 1024 horizontal pixels. This can be seen in the top-right corner of Fig. 1B where the

bottom of a black square is slightly visible. Horizontal and vertical alignment was restored

to the checkerboard image after application of the forward projective transformation, shown

in Fig. 1C. Dark boundaries in the top left and bottom right edges of the image were formed

because the boundaries were truncated by the transform. The bilinear interpolation used in

the projective transformation reduced the spatial and spectral resolution by interpolation

between adjacent pixels.

Experimental Raman Data

We first applied the projective transformation to Raman microscopy images of equine bone,

which does not have uniform fluorescence in the sampling volume. In the example selected

for Fig. 2, the CCD had a rotation angle of −0.69 degrees (corresponding to a 12-pixel shift

across the 1024 spectral axis), indicating poor alignment of the camera with the dispersion

axis. The spectral image was preprocessed using a manual cosmic ray correction step,

subtraction of a reference dark image, and normalization by the measured reference white

intensity. This spectral image was then processed in different ways. Spectra shown in Fig.

2A have a fluorescence background that varied with position in the image. As shown in Fig.

2B, spectra in the transformation-corrected image had almost identically shaped

backgrounds. The adaptive minmax method by Cao et al. was used to correct the baseline

using the iterative method and taking the minimum of four fitted polynomial functions in

each iteration (first- and second-order polynomials were used, both with and without

endpoint constraints).27 This method allows background to be closely fitted with low-order

polynomials without any of the edge effects that are otherwise problematic in polynomial

baseline corrections. Figures 2C and 2D show the baseline-corrected and normalized spectra

corresponding to the spectra in Figs. 2A and 2B. Higher-order polynomials are clearly

required to remove additional background complexity from Fig. 2C.

As shown in Fig. 2B, fluorescence backgrounds in biological specimen spectra are less

complex and more similar to each other at different positions in the field of view. The Cao

baseline-subtraction method was repeated with third- and fourth-order polynomials to

further reduce the residual background. The resulting baselined spectra are shown in Figs.

2E and 2F. The image transform correction has reduced the background complexity, and less

background correction is required to remove the residual background.

There are many methods for selecting the polynomial order for the correction, such as

visually examining the spectra after background correction using different algorithm options

(polynomial orders) and selecting the one that appears to have the simplest background.

Two simple automated (operator-independent) methods can be used to examine the

background-corrected spectra. Principal component analysis (PCA) methods can be used to

determine the number of principal components required to describe the data (fewer principal

components indicating less background). A simple numeric indicator spectral variance can

also be calculated by taking the mean of the standard deviations calculated from each

baselined and normalized spectral row. Numeric results for the data shown in Fig. 2 are

included in Table I, from which it can be seen that results improve only gradually beyond a

third-order correction (indicating that we should select third- and fourth-order polynomials

in the Cao method). The total difference in the variance estimate between the first-order

correction and higher correction orders is much greater for the initial data than for the

transformed data, due to the apparent background complexity.
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The reduction of background complexity improved reproducibility in calculating Raman

intensity ratios. The means and standard deviations of the ratio of the carbonate ν1 to

phosphate ν1 Raman band (1068 cm−1 : 958 cm−1) and the ratio of phosphate ν1 to amide I

(958 cm−1 : 1650 cm−1) were calculated from spectra preprocessed by correcting for cosmic

rays and dark subtracting. Spectra were then processed with and without the projective

transformation. In both cases, the spectra were intensity corrected using a NIST-traceable

intensity calibration source, and band intensity ratios were calculated. The mean values of

the carbonate-to-phosphate ratio are similar (0.174 initially and 0.157 with the transform).

However, the standard deviation in the ratio decreased from ±0.032 to ±0.021 (to 65% of the

initial value) after projective transformation correction. The phosphate-to-amide I ratio

showed a small increase in the mean value (6.55 to 7.19), and the standard deviation was

reduced from ±2.00 to ±1.58 (to 79% of the initial value). Because this image was of a

heterogeneous biological specimen, we would not expect a zero standard deviation.

However, some of the variation is due to instrumental error. By taking 5-point windows in

calculation of the band intensities, we have removed much of the influence of random noise

(standard deviations of the individual band intensities for the two methods all varied by less

than 2%). The decrease in error after application of the image transform is pronounced. The

phosphate-to-amide I ratio is more susceptible to rotational misalignments in the CCD

because the bands span a large wavenumber range and is complicated by a lower CCD

efficiency for the high wavenumber band (1650 cm−1). As a result, the relative standard

deviations are greater for the phosphate-to-amide I ratio. For the carbonate-to-phosphate

ratio, the relative standard deviation dropped from 18.4% to 13.4% after application of the

image transform. For the mineral-to-matrix ratio, the relative standard deviation dropped

from 30.5% to 22.0%.

We expect that the projective transformation method will improve recovery of spectra and

may enable detection of very subtle changes in tissue. Background complexity in biological

Raman images is routinely reduced using the projective transformation correction. In our

laboratory, we have observed reductions in polynomial background complexity required to

correct for background signals. With the projective transformation, we now use much lower

order (first to third) polynomials for background correction as compared to the high-order

(fourth to ninth) polynomials previously required. Low-order polynomials more closely

resemble theoretical approximations of biological fluorescence, which should not have a

complex shape in the near-infrared region.

As previously observed, band position shifts with respect to CCD row position and must be

corrected to compare or sum the spectral information.8,10,11,15,17 Likewise, row-to-row

variations in image intensity combine with very slight image rotation to compound the

effective background complexity of the spectra more than expected. This is exacerbated in

fiber-optic systems because the Gaussian spatial profile of each optical fiber leads to

substantial intensity variations from row to row. Likewise, microscopy of specimens with

variable optical scattering or absorption coefficients over the relevant spatial scale will show

variation of intensity. Biological specimens commonly have optical heterogeneity over

relevant microscopy scales (hence the use of microscopy), and exhibit strong row-to-row

intensity variations. As a result, even slight rotations between the detector axis and grating

dispersion direction influence the effective background complexity.

Compared to microscopy images, 2D images collected with fiber-optic probes can be more

complicated to interpret. Nonuniformity may be increased by tissue heterogeneity over a

large sampling area and by nonuniform collection efficiency. In the example shown in Fig.

3, the CCD had a rotation angle of 0.11 degrees (a misalignment of less than 2 pixels across

the 1024 pixel spectral axis). This misalignment of the CCD to the spectrograph is usually

considered negligible. Figure 3 shows representative spectra of exposed human bone from
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regions in the fiber-optic image that were globally illuminated. The effects of image

distortion correction are striking, even for images collected from an instrument with

vanishingly small distortions. Figure 3A shows spectra from two regions of a fiber-optic

image after preprocessing spectra using traditional preprocessing techniques. A large

variability in background signal is observed and bands in the 200 to 600 pixel region are

obscured because of the large and varying background. After preprocessing spectra using the

corrective transform, shown in Fig. 3B, variability in background is significantly reduced

and enables visualization of bands even before background correction.

Sample heterogeneity contributes to calculated variance. In the examples above it is not

clear how much of the initial variance is due to sample heterogeneity versus instrumental

error. Here the method is demonstrated with a spectral image of Teflon, which is expected to

have homogeneous properties. We demonstrate the effect with measurements of Teflon

using an offset reflection fiber-optic probe (pen-like probe37), without focusing optics so

that the collection cones of the fibers are overlapped. The collection fibers sampled a small

area of the Teflon, such that spectra are expected to be identical. Teflon data were collected

on a spectrograph with a rotational misalignment of less than two pixels across the detector.

Moreover, the peaks located near pixels 350 (732 cm−1) and 700 (1382cm−1) span a short

enough range across the spectral axis to make the rotational misalignment less than 1 pixel.

In Fig. 4, the ratio of Teflon band intensities at 732 cm−1 and 1382 cm−1 was calculated for

each spatial pixel position for an image before performing the transform (left-hand panel)

and after the transform was applied (right-hand panel). As shown in the left-hand panel of

Fig. 4, the value of the 732 cm−1 : 1382 cm−1 intensity ratio was highly variable across the

image (7.32 ± 2.00). After the image transform, the ratio was less variable across the image

(6.81 ± 0.40). The image transform reduced the error in ratios recovered at the edges of the

image, particularly where individual fibers are in better focus and where row-to-row

intensity variations are maximized. The decrease in relative standard deviation of the band

ratio from 27.4% to 5.9% across the single image shows the effect of a corrective transform,

even for images with nearly imperceptible distortion.

To determine whether the improvement in intensity ratio variation is due to interpolation, we

compared the effects of smoothing due to different image correction methods. A major

concern was that the interpolation used in the image transform might smooth the spectral

image and cause an apparent reduction of variability of the intensity ratio. A degree of

smoothing accompanies all software corrections for slit-image curvature and image rotation.

Interpolation is inherent to the band-shifting methods used to correct slit-image curvature.

However, the interpolation is along only one dimension of the CCD. This will smooth

intensity along rows where there is potentially intensity variation due to CCD rotation

misalignment (interpolation between pairs of pixels). Software corrections for rotation use

an image transformation based on sine and cosine pixel position transformations. Like

rotation correction, image transformations using bilinear interpolation combine signal from

groups of four pixels according to position of the new virtual pixel within the four

surrounding pixels from the initial image.

We compared the degree of smoothing associated with different software correction

approaches. A test image was simulated and contained normally (Gaussian) distributed

random numbers with a standard deviation of 1. Four methods were applied to the simulated

test image: (1) curvature correction only, (2) rotation correction only, (3) rotation correction

followed by curvature correction, and (4) projective transformation. The standard deviation

was calculated over all pixels in the image, and the results are shown in Table II. The

reduction in standard deviation is correlated to the total amount of smoothing, with a lower

number associated with a greater smoothing effect.
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The initial image (815 × 127 pixels, corresponding to microscopy data) had a measured

standard deviation of 0.997. Using only slit-image curvature for the measured microscopy

band positions imposed only a moderate amount of smoothing and resulted in a standard

deviation of 0.830. Rotational correction for a −0.69 degree rotation reduced the standard

deviation to 0.647. Sequential rotational and slit-image curvature corrections produced the

greatest level of smoothing, with a standard deviation of 0.570. Projective transformation

produced a standard deviation of 0.687, which was similar to the result produced after only

rotational correction. Moderate data smoothing is observed for the projective transformation

correction, which was expected because the algorithm employs interpolation functions.

However, smoothing alone cannot account for the dramatic improvements in band ratio

standard deviations for Teflon data. Variability of the Teflon image band ratios decreased to

21% of the initial value after the image transform, far more than explained by interpolation

alone (which reduced the standard deviation of the image to 69% of the initial value).

To further demonstrate this, we used PCA to demonstrate that the number of principal

components required to model the data decreased after performing the spectral image

corrections. The fundamental concept is that there are a limited number of chemical species

that additively contribute some spectral component to the experimentally recorded data.

Likewise, the fluorescence background should be composed of one or more fluorophores

generating a background. The number of linear terms required to model the data is indicative

of the number of chemical species contributing to the data. Three different automated

methods were used for determining the number of PCA components required to model the

Teflon spectral image, results from which are shown in Table III. The three methods used to

determine the number of components were significant factor analysis (SFA), residual

percent variance (using a 0.1% threshold), and the average eigenvalue or “eigenvalue-one

criterion”.38 Though the three methods ultimately select different numbers of components,

the transformation-corrected data always resulted in the fewest principal components.

Differences are illustrated by the scree plot in Fig. 5, where the initial and transformed data

differ substantially. The initial image (without preprocessing) required the most components

to model, followed closely by the slit-image curvature corrected image. This trend

continued, with the rotated image being composed of fewer linear terms. The combined

rotation and slit-image curvature corrected image and the image-transformed images were

approximately equal, both being modeled with fewer terms than the other images. Note that

the effects of smoothing are also evident in the scree plots. Increased smoothing results in

lower global minima, and lines in the scree plots are ordered according to the total level of

smoothing in each processing method at higher numbers of PCA components. The method

using rotation followed by slit-image curvature correction has the global minimum in the

scree plot but also imposes the greatest interpolation cost (as seen in the standard deviations

above).

Simulated Raman Data

We used simulated microscopy and fiber-optic images to validate the projective

transformation as a corrective method for imaging spectrographs. Simulated data with

known spectral properties were inverse transformed to introduce distortions that were

observed in experimental data. Forward transformation of the distorted simulated images

allowed recovery of the initial input spectra with no loss of spectral integrity.

Simulated Raman microscopy images are shown in Fig. 6 and the corresponding spectra in

Fig. 7. Importantly, the initial undistorted image was generated using a single spectrum

repeated across the entire spatial axis. Intensities of each spectrum in the image were

randomly scaled. The spectral and spatial axes in the initial spectral image are perfectly

aligned to the image axes, as shown in Fig. 6A. Spectra from the initial image reflect a

constant fluorescence pattern and constant relative band intensities throughout the spatial
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axis, shown in Fig. 7A. After applying the inverse transform, Raman bands are slightly

curved along the vertical axis and the image is slightly rotated clockwise. Distortion in the

image is imperceptible in Fig. 6B, even with the vertical and horizontal lines added for

emphasis; however, there were significant differences in the individual spectra, shown in

Fig. 7B. The forward transform was used to correct the distorted image. Individual spectra

from the corrected image have a fluorescence background consistent with spectra from the

initial undistorted image.

A comparison of spectra in Fig. 7 emphasizes the importance of correcting for distortions

even when they are not visually apparent in the recorded dispersion image. Figure 7A shows

several rows of spectra from the initial image taken from rows near the middle of the image

shown in Fig. 6A. There were significant differences in the apparent fluorescence

background, shown in Fig. 7B, and individual spectra no longer appeared as scaled versions

of a single spectrum. Apparent differences in the fluorescence background of simulated

Raman data result only from collating different spectral regions of spatially adjacent image

rows. Distortion also affected row-to-row variation in spectral band intensities because

different spatial positions contributed to the intensity of a spectral band in a single pixel row.

Figure 7C shows the spectra after the corrective forward transform is applied, where

individual spectra are scaled versions of a single spectrum with the same apparent

fluorescence background. Minor bands, such as the one near pixel 175, were broadened

because of the interpolation process. Exact row positions of spectra in Figs. 6A and 6C were

not identical because the images were truncated and the row positions shift slightly during

image transformation.

Simulated Raman fiber-optic spectral images are shown in Fig. 8 with the corresponding

spectra shown in Fig. 9. The signal from each optical fiber is shown as a horizontal stripe

across the image, with many fibers making up the whole image. Because of the inherent

brightness contrast in our fiber-optics system, rotational misalignment in fiber-optic-coupled

systems is more easily observed than in our Raman microscopy image. Additionally, slit-

image curvature is more pronounced because the fiber-optic probe system is fitted with a

256-row CCD, while the microscope is fitted with a 128-row CCD. In the 256-row detector

system, the vertical angle between incident light and the central optical axis is increased

because a taller input slit is imaged. As a result, the vertical curvature of spectral bands in

Fig. 8B is more evident than in Fig. 6B because of the increased vertical detector size (256

pixels vs. 128 pixels). Figure 8C shows the image after the corrective forward transform is

applied.

Spectra from the simulated Raman fiber-optic probe are shown in Fig. 9. The initial spectra

are scaled versions of a single spectrum. The initial spectrum is shown in Fig. 9A. As shown

in Fig. 9B, spectra no longer appeared identical after application of the inverse transform.

Significantly, background contributions from the fused-silica optical fibers appeared to vary

from spectrum to spectrum. Variations are subtle in Fig. 9B because the spectra are scaled to

accommodate the full intensity range. Differences in the spectra manifest as inconsistencies

in the vertical spacing between spectra along the wavenumber axis. Upon examination, the

most intense Raman features were less than 10% of the background fluorescence intensity

and fluctuations in the background intensity were substantial. These relatively large

fluctuations in background intensity had a significant effect on the intensity of weak Raman

bands in the simulated spectra. The spectra in Fig. 9C are shown after the corrective forward

transform is applied, and spectra are consistent with the initial simulation.

Esmonde-White et al. Page 11

Appl Spectrosc. Author manuscript; available in PMC 2012 January 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



CONCLUSIONS

We have demonstrated that there are large errors caused by minor CCD/spectrograph

misalignments, slit-image curvature, and other residual distortions and aberrations in images

collected with dispersive spectrographs. Imperfections are found even in the best-designed

and properly aligned spectrographs. For the spectrograph on our microscope system, the

camera currently has a barely perceptible rotation angle of 0.12 degrees even after careful

alignment. Such imperfections affect the apparent complexity and variability in the

fluorescence background and introduce substantial error in Raman peak intensity ratios. To

address these problems, we developed a simple method to identify control points along the

spectral and spatial axis in microscopy and fiber-optic spectroscopy systems. Control points

can be used to correct for minor distortions using a projective transformation routine, even

when the distortion is not visually apparent. While this method was tested and validated on

Raman spectroscopy instruments, the same approach can be applied to other techniques

using dispersive spectrographs.

It is important to note that instruments using an imaging detector to recover a single

spectrum using vertical binning over all rows (that are fully resolved along the spatial axis)

are not affected by rotational misalignment, provided that a slit-image curvature correction

method is used to correct horizontal curvature (hardware or software).11,17 One-

dimensional slit-image curvature corrections are sufficient for preventing degradation of

spectral resolution in the case of full vertical binning. Dispersive spectrographs using linear

detector arrays will be affected by any slight rotational misalignments if the individual

detector elements are not taller than the source. Intensity calibration steps should mostly

correct these effects, and only increased variability in signal-to-noise across the spectrum

should be observed.

The projective transformation spectral correction method is a simple method for overcoming

limitations of dispersion spectrograph performance while also enabling improved data

processing methods. This method requires no hardware changes to existing systems. The

required calibration materials are currently used in most laboratories with Raman

spectroscopy systems. Implementation of this method would only require minor changes to

protocols for collection of calibration spectra. The software can be implemented in Matlab

or other widely used image-processing packages. While the procedure to collect calibration

spectra and images for projective transformation may be slightly more complex than typical

calibrations, the projective transform function should be unchanged as long as the optical

alignment remains unchanged. Hence, the correction function can be calculated once when

the instrument is aligned and used until the optical system is realigned or otherwise

modified. A secondary benefit to this technique is that the wavelength axis should be

perfectly aligned after projective transformation correction. If bands in the atomic emission

spectra shift, it is an indication that the instrument alignment has been altered. Thus,

projective transformed calibration spectra will provide direct evidence that the instrument

alignment has changed.

One limitation of this method is that astigmatism and other defocusing aberrations are not

corrected by this one-to-one correspondence mapping method. To do so would require

mapping the instrument point-spread function with respect to detector position. An

additional limitation of the current Matlab implementation is a lack of correction for changes

in intensity resulting from any alterations to the effective detector pixel spacing. Fortunately,

alterations to detector pixel spacing should be corrected by the white-light preprocessing

step used to compensate for detector sensitivity using a reference broadband source.
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We have described a method for correcting geometric errors, but there are other sources of

error. These include spatial overlap from adjacent optical fibers and focusing errors that

degrade the spatial and spectral resolution. Techniques to compensate for these will benefit

from prior correction of the geometric distortions. For example, geometric image correction

reduces the overlap of spectral information between adjacent spectral image rows. This

effect is exacerbated in fiber-optic probes, where the outer cladding is removed to allow for

tight packing of fiber optics at the spectrograph. Using this spatial transform method, the

properly registered spectral images can be fit to measured spatial profiles, allowing closely

spaced fiber optics with minimal signal contamination. Thus, the projective transformation

enables a simple technique to recover fiber-specific data. Preprocessing to mitigate this

problem and others will be described in future publications. This approach is expected to

improve recovery of spectra from close-packed fiber optics and improve the spatial

resolution of imaging spectroscopy.

Acknowledgments

We acknowledge financial support from the National Institutes of Health through research grant R01AR055222

(MDM), a training grant from NIH CTSA grant UL1RR024986 (KEW), and the Wallace H. Coulter Foundation.

We thank Bonnie Nolan and Erin Robertson for preparing human limbs for transcutaneous Raman spectroscopy,

Kathryn Dooley for providing Raman spectra of equine bone, and Gurjit Mandair for providing a human bone

biopsy Raman spectrum. We thank Matthew Schulmerich for insightful discussions and for providing helpful

editorial feedback. We thank Michael Pelletier for insightful email correspondence regarding slit-image curvature

correction for Raman imaging.

APPENDIX

Determination of Control Points

On the Raman microscopy system, spatial patterns were measured using a 1951 USAF bar

target (NT38-257, Edmund Optics, Barrington, NJ). The bar target was affixed onto a NIST-

traceable white-light source (HCA, Kaiser Optical Systems, Ann Arbor, MI) to produce a

distinctive banded spatial pattern over the broad spectral illumination range. Spectral

patterns were measured using a neon atomic emission calibration source (HCA, Kaiser

Optical Systems, Ann Arbor, MI). An appropriate atomic emission source should be selected

for the spectral region under study. We tested the use of other atomic emission sources,

including argon and xenon (Pencil-style calibration lamps, Oriel Instruments, Stratford, CT).

While argon provides more bands for the 830 nm excitation Raman system, the convenience

of the HCA neon source for instrument portability outweighed the slight improvement from

having additional spectral bands and the inconvenience of using atomic emission sources in

the pen-lamp format. Spatial and spectral control points were simultaneously measured on

fiber-optic systems because the collection fiber optics inherently form spatial patterns at the

spectrograph. Vertical bands defining the spatial axis were formed by the overlap of the

atomic emission peaks from collection fiber optics. Control points were identified as

maxima along the vertical profile of each atomic emission line. These can either be selected

automatically by finding maxima in the derivative of the spectral image or by selecting

points manually. The pixel resolution of preliminary control points can be refined to sub-

pixel accuracy by fitting Gaussian functions to find the center of mass of the relevant

spectral image features.

For this work, we selected the control points manually and then used sinc interpolated data

to find the absolute maxima for enhancing the selected control point positions to sub-pixel

accuracy (1/10th of a pixel). Control points were selected along ten neon bands for the 785

nm Raman image correction, at 830.03, 837.76, 841.84, 849.54, 859.13, 863.46, 865.44,

878.06, 885.39, and 886.58 nm. Intense bands that were approximately (horizontally) evenly
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spaced across the region of interest of the CCD image were selected, all of which were

resolved from neighboring emission bands of comparable intensity. Six control points were

selected along the slit axis for each neon band, evenly spaced across the (vertical) CCD axis

at intervals of approximately 16 pixels.

In our experience, many approaches can be used to measure control points, and the optimum

method depends on the exact calibration data measured. Sub-pixel accuracy is desirable for

reducing any error due to the transformation process. We have also used a polynomial fitting

method that could be used to determine the control point position at a higher precision, such

as 1/100th of a pixel. The polynomial fitting method consisted of fitting a 2D polynomial to

a sub-region based on initial crude (integer pixel position) control point positions.

Control points were then generated for an ideal image in which the spectral and spatial axes

are parallel to the x and y axes of the image, respectively. Measured control points were

arranged in a matrix corresponding to their spatial positions, such that rows contained

control points from the same spatial position and columns contained control points from the

same spectral position. Ideal control points were calculated by duplicating the

experimentally measured control point matrix, then replacing the x positions in each column

with the mean x position from that column and replacing the y positions in each row of with

the mean y position from that row. To apply the perspective transformation for correcting

the distortions in the spectral image, control points were fit to a polynomial function as

described in the Materials and Methods section. The ‘cp2tform’ function (Image processing

toolbox version 6.2, The MathWorks, Natick, MA) in Matlab (R2008b, The MathWorks,

Natick, MA) was used to calculate the forward and inverse perspective transformation

functions. Images were transformed using the ‘imtransform’ function (Image processing

toolbox version 6.2, The MathWorks, Natick, MA) with the calculated forward or inverse

transforms. The image processing toolbox functions used here have been present in the

toolbox since at least Matlab release 2008a.

Figures A1 and A2 show examples of the calibration images required for correcting slit-

image distortions and slight imperfections in camera–spectrograph alignment. For

microscopy instrumentation, the distortion pattern was mapped using a bar target pattern

with a white-light calibration source and an atomic emission lamp. Example Raman

microscopy calibration images are shown in Fig. A1. The small image at the left of Fig. A1,

panel A, is an image of the 1951 USAF bar pattern at the microscope stage. Figure A1,

panel A, shows the CCD image of the bar-pattern-masked white-light source where

alternating bright and dark stripes show lines of constant spatial position dispersed across

the spectrograph detector. Lines of constant spatial position were identified as maxima along

each column of pixels after taking the absolute value of the difference between intensities in

vertical pixels. The angle between the dispersion axis and the edge of the spectrograph

detector can be calculated using the boundaries between the bright and dark stripes. In the

example selected for panel A of Fig. A1, the CCD had a rotation angle of −0.69 degrees

(corresponding to a 12-pixel shift), indicating poor alignment of the camera to the dispersion

axis. This large rotation angle was used so that the rotation angle is visible and is much

greater than typical camera rotation in our systems (of about 0.15 degrees or 3 pixels). Panel

B of Fig. A1 shows the neon emission spectrum used to calibrate the spectral axis and

correct for slit-image curvature. A continuous and nearly uniform pattern of atomic emission

spectra was imaged on the CCD detector (the 1951 USAF bar target slide is not used during

acquisition of the neon image). Lines of constant spectral position are found as maxima

along each row of pixels after preprocessing the image by taking maxima in the recorded

image.
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For fiber-optic instrumentation, only a neon emission image was required because the

arrangement of fiber optics at the spectrograph creates the spatial pattern. Panel A of Fig. A2

shows the neon atomic emission spectral calibration image recorded using a fiber-optic

probe consisting of 50 collection fibers each with 100 µm core diameter. Experimentally

measured control points for a fiber-optic system are shown in panel B of Fig. A2.

Unresolved bands in either the spatial or spectral axis were not used as control points.

Control points were calculated as the intersection of the lines of constant spatial and spectral

position. Calculated ideal control points (corresponding to the measured control points from

Figure A2, panel B) are shown in panel C of Fig. A2. Using the control points, the

perspective transformation function was calculated and then interpolation was used to

calculate the corrected image. Our experiments showed that bilinear interpolation provided

more accurate results than nearest-neighbor or bicubic interpolation (data not shown).
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Fig. 1.

Checkerboard patterns created in software (Matlab function ‘checkerboard’). The initial

checkerboard is shown in (A). Two projective transformations were created based on

experimental data using the RXN-1 spectrograph, for the forward transform (a corrective

transform) and the inverse transform (a transform introducing distortions to the image). The

initial checkerboard was transformed with the inverse transform to simulate an image

recorded through the spectrograph optics, as shown in (B). Straight reference lines (black)

have been inserted to improve visualization of curvature and rotational misalignment in the

image. The rotational misalignment is very slight, approximately −2 vertical pixels over

1024 pixels, or −0.1 degrees. The imperfect image of (B) was then forward transformed to

obtain a corrected image, shown in (C).
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Fig. 2.

Raman microscopy image of equine bone. (A) shows representative spectra from the image

after traditional data preprocessing steps including a one-dimensional correction for image

curvature. (B) shows the same spectra after applying the projective transformation. Spectra

show a consistent background after the projective transformation. Noise was also reduced in

the transformed data because the transformation uses an interpolation function. Minor

differences in spectral intensity arise from heterogeneities in sample reflectance and a

nonuniform intensity along the line-shaped laser. The corresponding spectra after

application of “adaptive minmax” background correction with a first- and second-order

polynomial are shown in (C) and (D), and with a third- and fourth-order polynomial are

shown in (E) and (F).
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Fig. 3.

Raman fiber-optic spectra of human distal ulna bone after dissection of overlying soft tissue.

Spectra from two regions of the image that were similarly illuminated were compared using

traditional preprocessing steps including a one-dimensional correction for image curvature

are shown in (A). The effects of signal mixing are exacerbated in fiber-optic images, even

though there is good alignment of the camera with the spectrograph (0.11 degrees,

corresponding to a 2-pixel shift across the 1024 spectral axis). After application of the

projective transformation, shown in (B), variability in the apparent background was reduced.
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Fig. 4.

Intensity ratios of Teflon bands at 732 and 1382 cm−1 after data are dark corrected and

cosmic ray corrected but before using the transform (left), and after the transform (right).

Data were not intensity calibrated. All fibers in the probe sampled a common region of the

Teflon block and the Teflon spectrum measured at all fibers should be identical. Application

of the transform significantly improved the error of measurement, even for an image that

appeared visually aligned with a 2-pixel rotational misalignment.

Esmonde-White et al. Page 20

Appl Spectrosc. Author manuscript; available in PMC 2012 January 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 5.

Residual percent variance demonstrates the number of PCA components required to

represent the data in spectral images using different distortion correction methods. Using the

distortion correction (image transformation) method, fewer components are required to

represent the Teflon spectral image.
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Fig. 6.

A Raman microscopy image, shown in (A), was composed from a single 1024-pixel

spectrum repeated across 128 rows to generate a simulated 128 × 1024 pixel image. An

inverse transform was applied to simulate distortions observed in microscopy data, as shown

in (B). Image curvature and rotation are barely perceptible even with horizontal and vertical

lines added. (C) shows the simulated transect after correction with the forward projective

transformation. Edges of the image were irregularly cropped upon each transform because

the transform cannot resample any pixels that lie outside the image.
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Fig. 7.

Representative spectra from simulated Raman microscopy images are shown corresponding

to the image shown in Fig. 6. (A) shows the initial spectra, and (B) shows spectra after

applying the inverse transform to simulate distortions observed in the imaging spectrograph.

Spectra in (B) appear to have different backgrounds. (C) shows the spectra after correction

using the forward transform.
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Fig. 8.

A Raman fiber-optic image, shown in (A), was generated from a single 1024-pixel spectrum

replicated across 256 rows to generate a simulated 256 × 1024 pixel image. An inverse

transform was applied to the initial image to simulate distortions observed in the imaging

spectrograph, as shown in (B). Similar to the distorted simulated microscopy image, the

curvature and rotation are subtle. Horizontal and vertical lines are added for emphasis. (C)

shows the simulated transect after correction with the forward projective transformation.

Edges of the image were irregularly cropped upon each transform because the transform

cannot resample any pixels that lie outside the image.
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Fig. 9.

Corresponding representative spectra from simulated Raman fiber-optic images are shown

corresponding to the image shown in Fig. 8. (A) shows the initial spectra, and (B) shows

spectra after applying the inverse transform to simulate distortions observed in the imaging

spectrograph. Spectra in (B) appear to have different backgrounds. (C) shows the spectra

after correction using the forward transform. The same image rows were plotted in Figs. 8B

and 8C but do not show data from the same spatial position because the projective

transformation shifts the image in the plots.
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Fig. A1.

Images of the recorded white and neon spectra. In (A), the white-light illumination profile

was collected at the microscope stage. A reflective 1951 USAF bar target was placed on top

of the calibration accessory white light, and the white-light intensity along the sampled line

at the stage was collected. The dark band pattern is a function of the light blocked by the

individual bars in the bar target pattern (the relevant sub-region of the bar target is shown at

the left of A. In (B), the neon image recorded at the microscope stage is shown on a log10

intensity scale (so that the less intense emission lines at longer wavelengths are visible).
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Fig. A2.

Neon image recorded with a fiber-optic probe. In (A), the image is shown as log10(intensity)

so that the less intense emission lines at the right (longer wavelength) regions are visible.

Each curved vertical band is one emission line consisting of 48 individual vertical spots

arising from the illumination of each individual fiber. Control points used for correcting the

image are shown in plots (B) and (C). In (B), positions of the control points measured from

the calibration neon image are plotted. Bands that are not well resolved spectrally or rows in

which one band is incompletely resolved are not selected as control points. In (C), positions

of the ideal control points are shown.
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TABLE III

Three automated methods were used to automatically determine the number of principal components required

to represent the Teflon spectral image.

SFA Residual percent
variance

Eigenvalue-one
criterion

Initial data 11 5 6

Curvature correction 13 4 6

Rotation correction 10 3 4

Rotation and curvature correction 10 2 4

Image transformation 8 2 3
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