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Abstract 18	

Genome	scans	are	widely	used	to	identify	“outliers”	in	genomic	data:	loci	with	different	19	

patterns	compared	with	the	rest	of	the	genome	due	to	the	action	of	selection	or	other	20	

non-adaptive	forces	of	evolution.	These	genomic	datasets	are	often	high-dimensional,	21	

with	complex	correlation	structures	among	variables,	making	it	a	challenge	to	identify	22	

outliers	in	a	robust	way.	The	Mahalanobis	distance	has	been	widely	used	for	this	23	

purpose,	but	has	the	major	limitation	of	assuming	that	data	follow	a	simple	parametric	24	

distribution.	Here	we	develop	three	new	metrics	that	can	be	used	to	identify	outliers	in	25	

multivariate	space,	while	making	no	strong	assumptions	about	the	distribution	of	the	26	

data.	These	metrics	are	implemented	in	the	R	package	MINOTAUR,	which	also	includes	27	
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an	interactive	web-based	application	for	visualizing	outliers	in	high-dimensional	28	

datasets.	We	illustrate	how	these	metrics	can	be	used	to	identify	outliers	from	29	

simulated	genetic	data,	and	discuss	some	of	the	limitations	they	may	face	in	application. 30	

Keywords:	genomic	scans,	Mahalanobis,	kernel	density 31	

Introduction 32	

Knowledge	of	the	genetic	architecture	of	biological	traits	—the	number	of	loci	that	33	

affect	a	phenotype,	the	magnitude	of	their	effect,	and	their	distribution	across	the	34	

genome—not	only	illuminates	the	evolutionary	processes	that	shape	genomes,	but	also	35	

has	important	implications	for	complex	diseases	(McCarthy	and	Hirschhorn	2008),	36	

conservation	(Kohn	et	al.	2006;	Allendorf	et	al.	2010;	Funk	et	al.	2012),	and	breeding	37	

programs	(Goddard	et	al.	2009;	Varshney	et	al.	2009).	With	the	advent	of	next-38	

generation	sequencing	we	now	have	the	ability	to	examine	genomes	at	a	fine	scale;	and,	39	

as	a	result,	we	have	identified	a	large	number	of	genomic	variants	that	are	implicated	in	40	

complex	diseases	(Carlson	et	al.	2004;	Hindorff	et	al.	2009)	and	adaptation	to	the	local	41	

environment	(Savolainen	et	al.	2013).	This	wealth	of	data	is	likely	to	yield	new	insights,	42	

but	it	also	brings	with	it	the	challenge	of	extracting	the	relevant	signal	from	noisy,	43	

complex,	multi-dimensional	data	sets.	This	is	perhaps	one	reason	why	most	of	the	44	

variants	detected	so	far	have	only	managed	to	explain	a	very	small	proportion	of	the	45	

observable	phenotypic	variation	(Yang	et	al.	2010;	Brachi	et	al.	2011). 46	

The	preferred	method	for	detecting	genomic	variants	is	via	genome	scans.	There	are	47	

many	different	approaches	toward	scanning	genomes,	but	all	are	based	on	the	same	48	

premise:	that	the	loci	of	interest	to	the	investigator	are	likely	to	be	statistical	outliers	49	

when	compared	with	the	rest	of	the	genome.	The	particular	choice	of	statistic	will	50	
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depend	on	the	question	being	asked	and	the	experimental	design,	and	may	include	one	51	

or	more	statistics	from	the	following	categories:	tests	for	genetic	differentiation	52	

(Lotterhos	&	Whitlock	2014;	Hoban	et	al.	in	revision),	scans	for	strong	positive	selection	53	

and/or	selective	sweeps	(Hohenlohe	2010;	Vatsiou	et	al.	2016),	genome-wide	54	

association	studies	for	phenotype-associated	loci	(GWAS,	reviewed	in	Carlson	et	al.	55	

2004	and	McCarthy	et	al.	2008),	linkage	mapping	for	quantitative	trait	loci	(QTL,	56	

Savolainen	et	al.	2013),	genetic-environment	associations	(reviewed	in	Rellstab	et	al.	57	

2015),	and	scans	for	differentially	expressed	genes	(Wang	et	al.	2009).	A	number	of	58	

different	genome-scan	test	statistics	may	be	calculated	for	a	single	genomic	dataset	and	59	

these	are	usually	examined	one-at-a-time	(i.e.,	in	univariate	analyses).	Some	test	60	

statistics	may	be	highly	correlated,	while	the	power	of	other	test	statistics	may	vary	for	61	

different	regions	of	the	genome	depending	on	the	details	of	selection,	recombination,	62	

mutation,	and	migration	rates	(Tiffin	and	Ross-Ibarra	2014).	Additionally,	the	power	of	63	

different	approaches	may	vary	among	species	because	of	demographic	history,	and	64	

within	a	species	because	of	sampling	design	(De	Mita	et	al.	2013;	de	Villemereuil	et	al.	65	

2014;	Lotterhos	and	Whitlock	2015).	Finally,	loci	with	intermediate	probabilities	of	66	

detection	will	often	exhibit	the	highest	variance	in	results	from	genome	scans	67	

(Lotterhos	et	al.	in	review). 68	

Given	the	complex	evolutionary	histories	of	most	species,	it	is	doubtful	whether	any	69	

single	statistic	can	fully	capture	the	genomic	signal	of	interest	in	the	majority	of	cases	70	

(Verity	and	Nichols	2014).	Furthermore,	the	uncertainty	in	demographic	history,	71	

coupled	with	the	variation	in	statistical	outcomes	in	different	scenarios,	makes	it	72	

difficult	to	know	which	statistics	have	the	greatest	power	to	detect	selection	and	which	73	
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have	the	highest	false	positive	rates.	These	issues	point	to	a	need	for	composite,	74	

multivariate	outlier	methods	that	integrate	information	across	multiple	test	statistics.	 75	

Multivariate	methods	have	been	utilized	extensively	in	many	biological	applications,	76	

although	in	application	to	genome	scans	the	power	of	the	multivariate	approach	for	77	

detecting	outliers	has	not	yet	been	fully	evaluated.	Because	some	dimension	reduction	78	

methods	such	as	Principal	Component	Analysis	rely	on	assumptions	about	the	data	that	79	

may	be	unjustifiable	in	the	context	of	genome	scans	(O’reilly	et	al.	2012),	these	methods	80	

are	not	ideally	designed	for	the	identification	of	multivariate	outliers	(Pattterson	et	al.	81	

2006).	Some	GWAS	analyses	have	successfully	employed	multivariate	approaches	to	82	

identify	genetic	associations	with	multiple	phenotypes	(O’reilly	et	al.	2012;	Galesloot	et	83	

al.	2014).		Additionally,	multivariate	approaches	have	also	been	used	in	GWAS	meta-84	

analysis	to	simultaneously	consider	multiple	genetic	or	phenotypic	variables	(reviewed	85	

in	Evangelou	and	Ioannidis	2013).	It	is	evident,	however,	that	more	opportunities	exist	86	

for	the	use	of	multivariate	approaches	in	outlier	detection	than	are	currently	being	87	

capitalized	on. 88	

While	there	are	dedicated	software	tools	for	calculating	a	variety	of	test	statistics,	there	89	

does	not	currently	exist	a	unified	platform	for	the	filtering,	visualization,	and	integration	90	

of	test	statistics	in	multivariate	space.	Here	we	describe	a	new	R	package	called	91	

MINOTAUR	(Multivariate	vIsualisatioN	and	OuTlier	Analysis	Using	R)	built	specifically	92	

for	this	purpose.	This	software	package	-	initiated	during	a	hackathon	for	population	93	

genetics	in	R	(https://github.com/NESCent/r-popgen-hackathon)	-	provides	functions	94	

for	detecting	outliers	in	multivariate	space	alongside	procedures	to	manipulate,	95	

summarize,	and	visualize	these	data.	The	R	software	environment	(R	Core	Team	2015)	96	

is	free,	open-source,	and	hosts	a	large	collection	of	tools	for	statistical	analysis,	making	97	
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it	the	ideal	host	for	the	development	and	uptake	of	such	a	platform.	Furthermore,	98	

because	data	visualization	is	an	important	part	of	verifying	and	identifying	outliers,	the	99	

R	Shiny	and	Shiny	Dashboard	environments	(Chang	2015;	Chang	et	al.	2016)	have	been	100	

employed	to	provide	MINOTAUR	users	with	an	interactive	interface	that	streamlines	101	

the	process	of	data	input,	statistical	analysis,	and	graphical	exploration.	Together,	these	102	

tools	have	the	potential	to	increase	the	efficiency	with	which	the	results	of	genome	103	

scans	are	interrogated. 104	

Approaches	to	identifying	multivariate	outliers 105	

In	the	MINOTAUR	package	we	implement	four	composite	measures	that	can	be	used	to	106	

integrate	information	over	multiple	univariate	statistics:	the	Mahalanobis	distance,	107	

harmonic	mean	distance,	nearest	neighbor	distance,	and	kernel	density	deviance.	We	108	

developed	the	latter	three	measures,	which	are	related	to	Mahalanobis	distance	but	109	

make	no	strong	assumptions	about	the	parametric	form	of	the	data,	meaning	they	can	110	

be	applied	to	multivariate	statistics	that	have	complex	correlated	or	even	multimodal	111	

distributions.	Some	of	these	measures	are	heavily	influenced	by	the	distance	of	points	112	

from	the	multivariate	centroid	(Mahalanobis	and	harmonic	mean	distance)	while	others	113	

are	mainly	influenced	by	the	sparseness	of	points	in	the	local	vicinity	(nearest	neighbor	114	

distance	and	kernel	density	deviance),	and	so	we	would	expect	the	measures	to	behave	115	

differently	from	one	another,	and	to	vary	in	their	behavior	depending	on	the	data	at	116	

hand. 117	

The	calculation	of	these	composite	measures	has	been	optimized	for	genome-scale	data	118	

by	using	precompiled	routines,	written	in	C++	and	integrated	into	R	using	the	package	119	

Rcpp	(Eddelbuettel	and	Francois	2011;	Eddelbuettel	2013).	Several	packages	devoted	120	
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to	multivariate	statistics	that	may	be	appropriate	for	genome-scale	data	already	exist	in	121	

R	(see	Supplementary	Table	1),	and	thus	users	are	free	to	utilize	both	existing	statistical	122	

methods	and	the	more	targeted	functions	included	within	the	MINOTAUR	package.	 123	

Mahalanobis	distance.	The	Mahalanobis	distance	is	a	multidimensional	measure	of	the	124	

number	of	standard	deviations	that	a	point	lies	from	the	mean	of	a	distribution.	The	125	

Mahalanobis	distance	of	a	d-dimensional	observation	!" = (!"%, !"', … , !"))
+ 	from	a	126	

distribution	of	N	variables	with	mean	! = (!%, !', … , !))
+ 	and	covariance	matrix	S	is	127	

defined	as	follows	(Mahalanobis	1936):	128	

,- !" = !" − !
+/0%(!" − !)		.	 	 	 	 	 	 	 	 (1)	129	

This	distance	differs	from	the	ordinary	Euclidean	distance	due	to	the	correction	for	130	

covariance	among	observations,	making	it	a	better	distance	measure	for	genome	scan	131	

summary	statistics	because	it	does	not	assume	that	statistics	are	independent	(i.e.,	132	

Euclidean	distance	equals	Mahalanobis	distance	when	S	is	a	diagonal	matrix).	However,	133	

this	distance	does	make	the	assumption	that	points	disperse	smoothly	from	a	single	134	

multivariate	centroid,	and	so	it	will	tend	to	perform	poorly	when	observations	have	a	135	

complex	or	multimodal	distribution. 136	

Harmonic	mean	distance.	In	this	context	the	“harmonic	mean	distance”	of	an	137	

observation	!" 	refers	to	the	harmonic	mean	of	the	distances	between	this	point	and	all	138	

other	points.	The	distance	measure	used	here	is	the	Euclidian	distance	normalized	by	139	

multiplying	by	the	inverse	covariance	matrix.	This	ensures	that	results	are	not	140	

dominated	by	a	few	statistics	with	a	large	spread,	and	also	accounts	for	any	potential	141	

correlation	between	statistics,	analogously	to	the	Mahalonobis	distance.	Mathematically	142	

we	can	define	the	harmonic	mean	distance	as	follows: 143	
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,1 !" = 2 (!" − !3)/
0%(!" − !3)

0%/'

35"

0%

		.	 	 	 	 	 	 (2)	144	

The	harmonic	mean	is	heavily	influenced	by	small	values,	which	in	this	context	means	145	

local	effects	are	amplified.	However,	more	distant	points	also	have	some	effect	on	the	146	

final	value	(unlike	the	nearest	neighbor	distance	described	below),	and	so	the	harmonic	147	

mean	strikes	a	balance	between	local	and	global	effects.	This	has	some	advantages	in	148	

outlier	detection,	as	observations	that	are	both	distant	from	the	main	mass	of	the	data	149	

and	have	few	neighbors	in	the	local	vicinity	will	tend	to	be	outliers. 150	

Nearest	neighbor	distance.	The	nearest	neighbor	distance	of	the	observation	!" 	gives	the	151	

minimum	distance	between	this	point	and	any	other	point.	As	with	the	harmonic	mean	152	

distance,	we	use	the	Euclidian	distance	normalized	by	the	inverse	covariance	matrix.	153	

Mathematically	we	can	write 154	

,6 !" = min
35"

(!" − !3)/
0%(!" − !3) 		.	 	 	 	 	 	 	 (3)	155	

This	statistic	exclusively	measures	local	effects,	being	largest	when	an	observation	is	a	156	

long	way	from	any	other	point.	Because	this	distance	is	only	based	on	two	points	(the	157	

focal	point	and	its	nearest	neighbor),	it	is	not	influenced	by	the	global	distribution	of	the	158	

data,	unlike	the	harmonic	mean	distance. 159	

Kernel	density	deviance.	Kernel	density-based	methods	attempt	to	capture	160	

mathematically	the	distribution	of	the	data	as	the	sum	of	a	number	of	simple	parametric	161	

distributions.	Here	we	apply	these	methods	to	identifying	multivariate	outliers,	defined	162	

as	those	points	with	a	low	density	of	data	around	them	in	multivariate	space.	We	163	

assume	a	multivariate	normal	kernel	: !" 	 	!3 , <
'/)	centered	at	the	point	!3 ,	where	<	is	164	
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the	bandwidth	of	the	kernel,	which	is	scaled	in	each	dimension	by	the	covariance	matrix	165	

of	the	data.	We	then	calculate	the	leave-one-out	log-likelihood	(Leiva-Murillo	and	Artés-166	

Rodríguez,	2012)	of	the	point	!" 	as	follows: 167	

= !" 	 	<) = log A

BCA
D EF	 	EG,H

IJ)GKF 		.		 	 	 	 	 	 	 (4)	168	

In	other	words,	this	is	equal	to	the	log-probability	density	of	the	point	!" 	under	the	169	

kernel	density	distribution	constructed	from	all	points	apart	from	!" .	Our	final	density-170	

based	measure	is	defined	as	follows: 171	

,L !" = −2= !" 	 	<)		,	 	 	 	 	 	 	 	 	 (5)	172	

which	is	sometimes	referred	to	as	the	Bayesian	deviance.	This	will	be	large	whenever	173	

the	density	of	the	point	!" 	is	low,	and	so	the	kernel	density	deviance	can	be	thought	of	as	174	

a	measure	of	the	sparseness	of	points	around	the	focal	point. 175	

One	challenge	when	using	kernel	density	methods	is	choosing	an	appropriate	value	for	176	

the	bandwidth.	Here	we	simply	use	the	bandwidth	for	which	the	total	deviance	of	all	177	

points	is	minimized,	i.e. 178	

<∗ = OPQRSTH −2= !" 	 	<)
6
"U% 		.	 	 	 	 	 	 	 	 (6)	179	

It	can	be	shown	that	this	is	equivalent	to	the	maximum-likelihood	value	of	<	under	the	180	

leave-one-out	criterion.	The	value	<∗	can	be	found	using	the	MINOTAUR	function	181	

kernelDeviance(),	which	takes	a	vector	of	bandwidths	as	input	and	returns	the	total	182	

deviance	of	each.	This	function	can	be	used	to	search	for	the	minimum	value	of	<	183	

manually,	or	via	an	optimization	routine	such	as	optim().	Users	are	also	free	to	use	any	184	

other	bandwidth,	entered	manually,	or	in	the	absence	of	a	user-defined	bandwidth	a	185	
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simple	method	based	on	Silverman’s	rule	is	implemented	as	a	default	(this	assumes	that	186	

data	is	normally	distributed,	and	is	a	simple	function	of	the	standard	deviation	of	the	187	

samples	(Silverman	1986)). 188	

The	MINOTAUR	R	package	-	an	R	Shiny	graphical	user	interface	for	multivariate	189	

outlier	analysis	and	visualization 190	

The	MINOTAUR	package	performs	two	main	functions:	(1)	it	calculates	the	compound	191	

multivariate	outlier	statistics	described	above	and	(2)	it	enables	users	to	harness	the	192	

interactive	graphical	power	of	the	R	Shiny	environment	to	manipulate	and	visualize	193	

their	data	within	the	MINOTAUR	graphical	user	interface	(GUI).	The	GUI	allows	users	to	194	

perform	the	former	task	with	the	click	of	a	button;	however,	outlier	identification	can	195	

also	be	performed	on	the	R	command	line	using	stand-alone	functions	available	in	196	

MINOTAUR,	if	preferred.	Directions	for	downloading	and	installing	the	package	can	be	197	

found	at	the	end	of	this	manuscript. 198	

The	MINOTAUR	GUI	is	designed	to	streamline	the	process	of	genomic	data	analysis	and	199	

outlier	identification,	taking	users	from	data	input	to	graphical	output	within	a	single	200	

platform.	Distinct	panels	are	used	for	each	stage	of	the	analysis,	including	data	input	201	

and	filtering,	outlier	detection	via	the	methods	described	above,	and	plotting	results	202	

(e.g.,	histograms,	scatterplots,	and	Manhattan	plots).	An	overview	of	the	MINOTAUR	GUI	203	

workflow	is	show	in	Figure	1. 204	

In	the	Data	panel,	the	MINOTAUR	GUI	allows	users	to	either	upload	their	own	datasets	205	

or	select	among	a	set	of	four	in-built	example	datasets.	Data	can	be	uploaded	in	a	206	

number	of	file	formats,	including	comma-	or	tab-separated	text	files,	and	Rdata.	207	

Regardless	of	the	file	format,	MINOTAUR	expects	all	incoming	datasets	to	be	arranged	in	208	
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data	frames,	with	each	row	representing	a	different	genetic	locus	and	each	column	209	

representing	a	different	univariate	genome	scan	statistic	(e.g.,	FST,	Tajima’s	D,	etc.)	or	210	

other	piece	of	locus-specific	metadata	(e.g.,	SNP	identifiers,	chromosomes/scaffolds	and	211	

positions,	etc.).	Raw	data	objects	can	be	filtered	within	the	GUI,	meaning,	for	example,	212	

that	columns	not	related	to	outlier	analysis	can	be	dropped	at	an	early	stage. 213	

Four	example	datasets	are	made	available	to	users	within	the	MINOTAUR	package	and	214	

GUI.	The	“HumanGWAS”	dataset	contains	example	output	from	an	unpublished	human	215	

Genome-Wide	Association	Study.	The	simulated	“NonParametricInverse”	and	216	

“NonParametricMultimodal”	datasets	each	contain	an	example	of	nonparametric	data,	217	

one	with	an	inverse	relationship	(Figure	3)	and	one	that	is	highly	multimodal	218	

(Supplemental	Figure	S1).	The	“TwoRefSim”	dataset	contains	population	genetic	data	219	

simulated	under	a	model	of	expansion	from	two	refugia	(Lotterhos	and	Whitlock	2015).	220	

Note	that	the	example	datasets	can	also	be	accessed	outside	the	GUI	by	running	the	221	

data()	command	with	the	appropriate	dataset	name.	For	example,	to	load	the	222	

“HumanGWAS”	dataset,	type	data(HumanGWAS)	and	hit	ENTER.	To	learn	more	about	a	223	

dataset	while	in	the	R	terminal,	add	a	question	mark	before	the	dataset	name	to	load	the	224	

relevant	Help	page;	for	example,	type	?HumanGWAS	and	hit	ENTER.	 225	

In	the	Outlier	Detection	panel,	multiple	univariate	statistics	can	be	integrated	to	produce	226	

the	compound	distance	measures	described	above.	These	measures	can	be	appended	to	227	

the	data	frame	and	visualized	interactively	in	the	Produce	Plots	panel,	which	includes	228	

several	submenus	with	useful	plots	for	visualizing	high-dimensional	datasets,	including	229	

Manhattan	plots,	1D	histograms	and	density-based	2D	Scatterplots.	The	plotting	230	

methods	are	designed	with	large	genomic	datasets	in	mind;	for	example	the	plot2d()	231	

function	included	with	the	package	calculates	the	density	of	points	for	a	given	bin	size	232	
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and	shades	bins	according	to	the	density	of	points	within	them,	and	then	optionally	233	

adds	user-supplied	points	(ideally	a	small	subset	of	points,	for	example	the	outliers	234	

only)	to	the	plot.	Additional	options	allow	users	to	log-scale	statistics	and	control	235	

various	other	visual	settings	commonly	used	when	plotting	data	in	R	(Figure	2).	 236	

Example	applications	of	multivariate	outliers 237	

Evaluation	of	computational	speed.	First,	we	evaluated	the	speed	of	calculating	the	four	238	

compound	distance	measures	for	datasets	with	increasing	numbers	of	loci	(rows)	and	239	

univariate	statistics	(columns).	For	this	example,	variables	were	randomly	generated	240	

from	a	multivariate	normal	distribution.	Table	1	gives	the	“order”	of	complexity	of	these	241	

algorithms,	together	with	measured	run-times	for	a	dataset	composed	of	50,000	loci	242	

and	10	variables	(see	Supplementary	Table	S2	for	extended	run-time	analyses).	Overall,	243	

the	Mahalanobis	distance	is	calculated	in	a	matter	of	seconds,	even	with	particularly	244	

large	datasets.	The	harmonic	mean	distance,	nearest	neighbor	distance,	and	kernel	245	

density	deviance	each	scale	approximately	equally	with	increasing	dataset	sizes,	though	246	

the	maximum	likelihood	estimate	of	the	ideal	bandwidth	for	the	latter	measure	can	add	247	

significant	computation	time. 248	

Example	on	simulated	nonparametric	distributions.	Some	kinds	of	genomic	data	-	for	249	

example	gene	expression	data	-	may	generate	complex	nonparametric	distributions.	250	

Genes	that	have	high	expression	in	one	environment	may	have	low	expression	in	251	

another	environment,	while	investigators	may	be	interested	in	identifying	genes	that	252	

have	moderate	expression	in	both	environments.	To	test	the	performance	of	the	253	

multivariate	outlier	statistics	in	nonparametric	situations,	we	simulated	two	examples	254	

of	nonparametric	distributions.	 255	
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In	the	first	example,	we	simulated	a	distribution	of	two	variables	that	follow	an	inverse	256	

relationship,	with	some	additional	noise.	We	used	contour	plots	to	visualize	the	257	

different	ways	in	which	each	of	the	compound	distance	measures	changes	over	the	two-258	

dimensional	plane	(Figure	3).	In	these	plots,	the	darker	red	lines	indicate	less-259	

significant	values	of	the	test	statistic	and	lighter	yellow	lines	indicate	more-significant	260	

values	of	the	test	statistic.	We	also	looked	at	two	manually	chosen	points	on	the	plane	-	261	

indicated	by	a	blue	square	and	triangle	-	chosen	to	represent	different	sorts	of	outliers.	262	

The	blue	triangle	would	not	be	considered	an	outlier	from	the	perspective	of	either	one-263	

dimensional	distribution	despite	being	a	clear	outlier	from	the	two-dimensional	264	

distribution,	while	the	blue	square	would	be	considered	an	outlier	in	the	first	dimension	265	

but	not	the	second.	In	this	example,	the	nonparametric	distribution	affects	the	relative	266	

ability	of	the	four	statistics	to	identify	each	of	these	outliers	(Figure	4).	The	blue	triangle	267	

would	not	have	the	largest	value	(i.e.,	not	be	the	most	outlying	point)	by	the	268	

Mahalanobis	or	the	harmonic	mean	distance,	while	it	would	have	the	largest	value	by	269	

nearest	neighbor	distance	or	kernel	density	deviance.	In	contrast,	the	blue	square	has	270	

the	largest	value	of	the	test	statistic	by	all	four	methods.	 271	

In	the	second	example,	we	simulated	a	highly	multimodal	distribution	from	a	normal	272	

mixture	model.	In	this	example,	it	can	be	seen	how	the	parametric	assumption	of	the	273	

Mahalanobis	distance	fails	to	capture	the	complexity	of	the	data	(Supplementary	Figure	274	

S1).	In	contrast	to	the	previous	example,	the	harmonic	mean	distance	behaves	similarly	275	

to	the	kernel	density	deviance,	and	nearest	neighbor	distance	has	the	most	complex	276	

contour	landscape. 277	

Example	on	simulated	genomic	data.	To	test	the	power	of	multivariate	statistics	for	278	

genome	scans,	we	applied	them	to	a	published	simulated	dataset	that	was	used	to	test	279	
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different	genome	scan	methods	(Lotterhos	and	Whitlock	2014,	2015).	Briefly,	a	280	

landscape	simulator	was	used	to	simulate	haploid	neutral	and	selected	loci	that	adapted	281	

to	an	environmental	cline	(Lotterhos	and	Whitlock	2015).	The	landscape	consisted	of	282	

360	x	360	demes	and	the	allele	frequency	of	each	deme	changed	each	generation	283	

according	to	recurrence	equations	for	mutation,	migration,	selection	(if	applicable),	and	284	

drift	(Lotterhos	and	Whitlock	2015).	For	the	dataset	used	in	this	example,	a	total	of	285	

9900	neutral	and	100	selected	loci	(simulated	under	varying	strengths	of	selection:	12	286	

loci	with	s	=	0.1,	38	loci	with	s	=	0.01,	and	50	loci	with	s	=	0.005)	were	simulated	under	287	

a	two-refuge	demographic	expansion.	Individuals	were	then	sampled	from	the	288	

landscape	according	to	the	allele	frequency	in	each	deme	at	30	randomly	chosen	289	

locations	on	the	landscape	at	20	individuals	per	location.	For	additional	details	see	290	

Lotterhos	and	Whitlock	(2014,	2015).	 291	

The	simulated	data	were	used	to	create	a	single	nucleotide	polymorphism	(SNP)	table	292	

and	this	data	was	used	to	perform	genome	scans	in	the	programs	Bayenv2	(Günther	293	

and	Coop	2013)	and	LFMM	(Frichot	et	al.	2013,	now	implemented	in	the	R	package	LEA:	294	

Frichot	and	François	2015).	A	total	of	four	univariate	statistics	from	these	two	295	

programs	were	used	in	the	search	for	multivariate	outliers:	(i)	log-Bayes	Factor	(log-BF,	296	

a	measure	of	the	association	between	allele	frequency	and	the	environment	in	297	

Bayenv2),	(ii)	Spearman’s	rho	(a	measure	of	the	association	between	allele	frequency	298	

and	the	environment	in	Bayenv2),	(iii)	V+V	(a	measure	of	genetic	differentiation	among	299	

populations	in	Bayenv2),	and	(iv)	Z-score	(a	measure	of	the	association	between	300	

genotype	and	the	environment	in	LFMM).	These	four	univariate	statistics,	plotted	in	301	

Figure	4,	were	previously	shown	to	have	different	strengths	and	weaknesses	depending	302	

on	sampling	design	and	demographic	history	(Lotterhos	and	Whitlock	2015). 303	
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To	illustrate	the	flexibility	of	the	outlier	functions	implemented	in	MINOTAUR,	we	304	

calculated	multivariate	outliers	in	two	ways,	corresponding	to	two	different	ways	of	305	

calculating	the	covariance	matrix	S	in	equations	(1)	to	(4).	First,	we	used	the	traditional	306	

method	of	calculating	the	covariance	matrix	based	on	all	the	data.	For	high-dimensional	307	

data,	estimation	of	the	multivariate	mean	and	covariance	(location	and	scatter)	are	308	

expected	to	be	robust	to	outliers	as	long	as	the	proportion	of	outliers	in	the	data	is	less	309	

than	1/(k+1),	where	k	is	the	number	variables	in	the	dataframe	(Ro	et	al.	2015).	310	

However,	we	found	that	even	in	this	small	dataframe	of	only	4	variables	and	10,000	loci,	311	

the	1%	of	selected	loci	(a	fraction	of	which	were	true	outliers)	affected	the	estimation	of	312	

the	covariance	matrix.	For	this	reason,	our	MINOTAUR	functions	are	designed	to	allow	313	

the	user	to	input	their	own	covariance	matrix.	To	illustrate	this	use	of	the	function,	we	314	

also	calculated	a	robust	multivariate	location	and	scatter	estimate	with	a	high	315	

breakdown	point,	using	the	‘Fast	MCD’	(Minimum	Covariance	Determinant)	estimator	316	

with	the	function	CovNAMcd	in	the	R	package	rrcovNA	(Rousseeuw	et	al	1999;	Todorov	317	

et	al.	2011).	 318	

To	compare	the	ability	of	the	univariate	statistics	and	the	multivariate	statistics	to	319	

separate	neutral	from	selected	loci,	we	calculated	the	empirical	power.	The	empirical	320	

power	is	based	on	using	all	known	neutral	loci	to	generate	a	null	distribution,	and	then	321	

for	each	locus	an	empirical	p-value	is	calculated	based	on	its	cumulative	frequency	in	322	

this	null	distribution.	To	control	for	false	discovery	rate,	empirical	p-values	were	323	

converted	to	q-values	(in	the	R	package	qvalue:Dabney	and	Storey	2014)	and	loci	with	324	

a	q-value	less	than	0.05	were	retained	as	positive	hits	(a	q-value	of	0.05	has	a	desired	325	

rate	of	5	false	positives	out	of	100	positive	hits). 326	
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For	the	univariate	statistics,	the	empirical	power	was	highest	for	log-BF	(0.54)	and	327	

lowest	for	Z-score	(0.15),	with	Spearman’s	rho	(0.46)	and	V+V	(0.42)	also	showing	328	

moderate	power.	For	the	multivariate	statistics	with	the	default	covariance	estimation,	329	

the	empirical	power	was	high	for	harmonic	mean	distance	and	Mahalanobis	distance	330	

(0.41	for	both),	with	kernel	density	and	nearest	neighbor	distance	performing	poorly	in	331	

this	case	(0.09	for	both)	(Supplementary	Figure	S2).	For	the	user-input	covariance	332	

matrix	estimated	with	a	high	breakdown	point	(i.e.,	less	influenced	by	outliers),	the	333	

empirical	power	was	highest	for	harmonic	mean	distance	and	Mahalanobis	distance	334	

(0.58	for	both),	with	kernel	density	and	nearest	neighbor	distance	still	performing	335	

poorly	(Figure	5).	This	final	example	illustrates	the	potential	of	Mahalanobis	and	336	

harmonic	mean	distance	to	improve	the	signal-to-noise	ratio	in	genome	scans,	because	337	

the	empirical	power	in	this	case	was	higher	than	any	univariate	statistic	alone. 338	

Discussion 339	

Although	the	number	of	packages	for	population	genetic	data	analysis	in	the	R	software	340	

is	rapidly	increasing	(http://popgen.nescent.org/PACKAGES.html),	basic	tools	for	341	

manipulating	and	visualizing	genome-scale	datasets	have	so	far	been	lacking.	342	

MINOTAUR	fills	this	gap	using	the	R	Shiny	Dashboard	package	to	implement	a	GUI	that	343	

makes	it	easy	to	upload,	manipulate,	analyze,	and	visualize	genomic	data. 344	

The	multivariate	metrics	calculated	in	MINOTAUR	contribute	to	a	growing	number	of	345	

multivariate	tools	implemented	in	the	R	environment	(see	Supplementary	Table	S1).	346	

Methods	that	are	influenced	heavily	by	the	distance	of	a	point	from	the	centroid	in	347	

multivariate	space	(such	as	Mahalanobis	and	the	harmonic	mean	distance)	will	perform	348	

differently	compared	with	methods	that	are	influenced	mainly	by	the	sparseness	of	349	
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points	in	multivariate	space	(such	as	nearest	neighbor	distance	and	kernel	density),	as	350	

illustrated	in	the	examples	here.	However,	depending	on	how	the	data	are	distributed,	351	

the	harmonic	mean	distance	may	be	influenced	by	both	these	factors.	For	a	single	352	

simulated	dataset,	we	found	that	robust	use	of	the	Mahalanobis	or	harmonic	mean	353	

distance	(i.e.,	when	the	covariance	matrix	used	was	estimated	with	a	high	breakdown	354	

point)	could	have	higher	power	than	any	single	univariate	statistic	alone.	Although	355	

nearest	neighbor	distance	and	kernel	density	deviance	performed	poorly	on	the	356	

simulated	genomic	data,	they	may	be	useful	in	application	to	other	kinds	of	357	

nonparametric	data,	as	illustrated	in	our	examples	(Figures	3	and	S1).	Further	358	

evaluation,	however,	will	be	needed	on	both	simulated	and	empirical	data	to	determine	359	

whether	multivariate	outlier	approaches	will	improve	the	signal-to-noise	ratio	in	360	

genome	scans. 361	

The	MINOTAUR	package	is	designed	to	complement	existing	tools	for	the	analysis	and	362	

integration	of	genome-scan	data.	Thus,	in	addition	to	providing	its	own	tools	for	363	

genome-scale	analyses,	MINOTAUR	can	serve	as	a	platform	for	the	further	analysis	and	364	

visualization	of	results	generated	by	other	R	packages.	Examples	include	results	from	365	

differential	gene	expression	(LIMMA:	Ritchie	et	al.	2015;	DESeq:	Anders	and	Huber	366	

2010;	SeqGSEA:	Wang	and	Cairns	2014),	outliers	for	genetic	differentiation	(OutFLANK:	367	

Whitlock	and	Lotterhos	2015;	PCAdapt:	Luu	and	Blum	2015),	genetic-environment	368	

associations	(LEA:	Frichot	and	François	2015),	or	genome-wide	association	studies	(e.g.	369	

GenABEL:	Aulchenko	et	al.	2007;	BlueSNP:	Huang	et	al.	2013). 370	

Recent	developments	such	as	the	R	Shiny	and	Shiny	Dashboard	environments	(Chang	371	

2015;	Chang	et	al.	2016)	dramatically	aid	in	the	development	of	R-based	user-friendly	372	

web	interfaces.	Taking	advantage	of	these	tools,	MINOTAUR	is	able	to	offer	a	new	373	
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platform	for	visualizing	and	integrating	genomic	data	that	may	appeal	to	molecular	374	

ecologists,	modellers,	statisticians,	and	public	health	agencies. 375	

Resources 376	

Availability:	Upon	acceptance	for	publication,	MINOTAUR	will	be	distributed	on	CRAN	377	

(http://cran.r-project.org/)	and	be	available	for	R	on	Windows,	Mac	OSX,	and	Linux	378	

platforms.	Currently,	MINOTAUR	can	be	accessed	via	the	following	steps: 379	

• install.packages("devtools", dependencies=TRUE) 380	

• library(devtools) 381	

• install_github("NESCent/MINOTAUR", build_vignettes=TRUE) 382	

• library(MINOTAUR) 383	

• MINOTAUR() 384	

Note	to	reviewers:	If	you	are	facing	issues	with	installation,	try	updating	to	the	newest	385	

version	of	R	and	reinstalling	devtools	from	source.		MINOTAUR	has	been	tested	on	R	386	

version	3.3.0. 387	

Licence:	GNU	General	Public	Licence	(GPL)	>=	2. 388	

Documentation:	Besides	the	usual	package	documentation,	MINOTAUR	is	released	389	

with	a	tutorial	which	can	be	opened	by	typing:	vignette(“MINOTAUR”). 390	

Development:	The	development	of	MINOTAUR	is	hosted	on	GitHub:	391	

(https://github.com/NESCent/MINOTAUR). 392	

 393	
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Tables 525	

Table	1.	Multivariate	outlier	detection	methods	implemented	in	MINOTAUR	and	526	

associated	computational	run	times.	Computational	complexity	is	given	in	“big	O”	527	

notation,	with	N	referring	to	the	number	of	observations	and	k	the	number	of	statistics	528	

(dimensions).	Run	times	were	determined	using	an	Apple	iMac	with	a	3.1	GHz	Intel	529	

Core	i5	processor	and	32	GB	of	RAM	running	Apple	OSX	10.9.5	and	R	version	3.2.3.	Note	530	

that	for	computation	time	the	kernel	density	deviance	includes	both	the	maximum	531	

likelihood	estimation	of	the	optimal	bandwidth	and	the	density	calculations	based	on	532	

the	optimal	bandwidth. 533	

Compound	

measure 
Description R	Function Computational	

complexity	(big	O	

notation) 

Computation	Elapsed	

Time	for	50,000	loci	&	

10	variables	

(hh:mm:ss.ms) 

Mahalanobis	

distance 
Distance	from	

multivariate	

centroid 

Mahalanobis() W(2X') 00:00:00.095 

Harmonic	

mean	distance 
Inverse-weighted	

distance	from	all	

other	points 

harmonicDist() W(2X') 00:04:13.620 

Kernel	density	

deviance 
Local	density	of	

points 
kernelDist() W(2X') 01:40:03.600 

Nearest	

neighbor	

distance 

Distance	to	

nearest	neighbor 
neighborDist() W(2X') 00:04:07.020 

 534	

	 	535	
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Figures 536	

Figure	1.	Graphical	overview	of	the	MINOTAUR	GUI	workflow. 537	

 538	

 539	

Figure	2.	Screenshot	of	MINOTAUR	GUI	highlighting	the	overall	interface	and	the	ability	540	

to	visualize	multivariate	distributions.	The	plot	is	a	Manhattan	plot	of	the	nearest	541	

neighbor	distance	across	loci	for	all	traits	in	the	“HumanGWAS”	example	dataset	542	

provided	as	part	of	MINOTAUR.	The	base	scatter	plot	demonstrates	the	binned	543	

visualization,	where	the	density	of	data	in	an	area	is	apparent	from	the	color.	99.5%	544	

percentile	outliers	are	indicated	with	solid	orange	circles.	Visualization	menus	have	545	

been	collapsed	to	simplify	the	image.	Additional	plots	can	also	be	stacked	below	to	546	

enable	comparisons	across	multiple	plots	(not	shown). 547	
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 548	

 549	

Figure	3.	Comparison	of	multivariate	distance	measures	for	nonparametric	example	550	

data.	Black	dots	show	the	simulated	data,	in	which	the	two	statistics	(dimensions)	are	551	

assumed	to	follow	an	inverse	relationship	with	some	additional	noise.	Solid	lines	show	552	

the	distance	measure	computed	at	each	point	in	the	plane,	arranged	in	10%	quantiles	553	

(e.g.	the	inner	ring	shows	the	10%	of	locations	with	the	smallest	distance).	The	blue	554	

square	and	triangle	show	particular	outlier	points	referred	to	in	the	main	text. 555	
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 557	

Figure	4.	Distributions	of	four	univariate	statistics	from	the	two	refuge	dataset	from	558	

Lotterhos	and	Whitlock	(2015). 559	

 560	

 561	

Figure	5.	Distributions	of	the	four	multivariate	compound	statistics	applied	to	the	four	562	

univariate	statistics	shown	in	Figure	2.	The	MCD	calculation	of	the	covariance	matrix	563	

was	used.	All	9900	neutral	loci	are	plotted	on	indexes	0-100,	and	the	selected	loci	are	564	

plotted	on	indexes	100-200.	Note	log	transformation	of	each	variable	on	the	y-axis	for:	565	

A)	Mahalanobis	distance,	B)	Harmonic	mean	distance,	C)	Kernel	density,	and	D)	Nearest	566	

Neighbor	distance.	The	empirical	power	of	the	statistic	to	discriminate	neutral	from	567	

selected	loci	(see	main	text	for	details)	is	shown	in	the	upper	left	hand	corner.	 568	
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Supplementary	Material	for	the	Paper	MINOTAUR:	A	platform	for	the	analysis	

and	visualization	of	multivariate	results	from	genome	scans	with	R	Shiny 

	

Table	S1.	Table	of	multivariate	outlier	statistics	in	other	R	packages	that	could	be	used	

in	the	context	of	genomic	scans. 

	 	

Multivariate Outlier Statistic R Package R Function Brief Description Reference

Hierarchical Clustering Ranks DMwR outliers.ranking() Uses an agglomerative 
hierarchical clustering algorithm 
to rank outlierness. 

Torgo 2011

Projection Congruent Subset FastPCS FastPCS() Computes fast and robust 
multivariate outlyingness index.

Vakili & Schmitt 2014

Kernel Density Estimator ks kde() Computes the kernel density 
estimate for up to 6 dimensional 
datasets.

Duong 2007

Mahalanobis Distance mvoutlier locoutNeighbor() Computes global and pairwise 
Mahalanobis distances for outlier 
visualization with number of 
neighbors varying and fraction of 
neighbors fixed.

Filzmoser & Gschwandtner 2015

Mahalanobis Distance mvoutlier locoutSort() Computes global and pairwise 
Mahalanobis distances for 
interactive outlier visualization.

‘’

Mahalanobis Distance mvoutlier locoutPercent() Computes global and pairwise 
Mahalanobis distances for outlier 
visualization with number of 
neighbors fixed and varying 
fraction of neighbors.

‘’

Principal Components Distance mvoutlier pcout() Principal components distances 
are used to identify weighted 
location and scatter of outliers.

‘’

Mahalanobis Distance mvoutlier sign1() Principal components are used to 
calculate Mahalanobis distance 
covariance matrix and a critical 
value cutoff is used to determine 
outliers from chi-squared 
distribution.

‘’

Principal Components Distance mvoutlier sign2() Principal components distances 
are computed and transformed to 
approach a chi-squared 
distribution and a critical value 
cutoff is used to detect outlier.

‘’

Adjusted Mahalanobis Distance mvoutlier arw() Adjusts outlier rejection 
thresholds by using an adaptive 
reweighting estimator and 
determines outliers by the 
supremum of the difference 
between Mahalanobis distance 
and the theoretical distribution 
function.

‘’

Supplementary Table S1. Table of multivariate outlier statistics available in other R packages
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Multivariate Outlier Statistic R Package R Function Brief Description Reference

Mahalanobis Distance rrcovHD OutlierMahdist() Calculates Mahalanobis distance 
and determines outliers based on 
a critical value of the chi-squared 
distribution.  

Todorov 2016

Mahalanobis Distance CerioliOutlierDetection cerioli2010.fsrmcd.test() Calculates Mahalanobis distance 
based on the finite-sample 
reweighted Minimum Covariance 
Determinant (MCD) dispersion 
estimate.

Cerioli 2010

Mahalanobis Distance CerioliOutlierDetection cerioli2010.irmcd.test() Calculates Mahalanobis distances 
based on an iterated reweighted 
MCD dispersion estimate. 

‘’

Mahalanobis Distance &        
Adjusted Mahalanobis Distance

MVN mvOutlier() Calculates Mahalanobis distance 
or adjusted Mahalanobis distance 
and determines outliers based on  
the 97.5 percent quantile critical 
value of the chi-square 
distribution.

Korkmaz, Goksuluk & Zararsiz 
2015

References:

               147–156.

 Software, 21, 1–16.

Filzmoser P, Gschwandtner M (2015) Mvoutlier: Multivariate Outlier Detection Based on Robust Methods. R package version 2.0.6. 

               https://cran.r-project.org/web/packages/mvoutlier/mvoutlier.pdf

Korkmaz S, Goksuluk D, Zararsiz G (2014) MVN: an R package for assessing multivariate normality. R Journal, 6, 151-162.

Todorov V (2016) Robust Multivariate Methods for high Dimensional Data. R package version 0.2-4. 

               https://cran.r-project.org/web/packages/rrcovHD/rrcovHD.pdf

Torgo L (2011) Data mining with R: learning with case studies. Chapman & Hall/CRC, Boca Raton.

Vakili K, Schmitt E (2014) Finding multivariate outliers with FastPCS. Computational Statistics & Data Analysis, 69, 54–66.

Cerioli A (2010) Multivariate Outlier Detection With High-Breakdown Estimators. Journal of the American Statistical Association, 105, 

Duong T (2007) ks: Kernel Density Estimation and Kernel Discriminant Analysis for Multivariate Data in R. Journal of Statistical 

Supplementary Table S1. Table of multivariate outlier statistics available in other R packages
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Table	S2.	Computation	times	for	the	four	multivariate	outlier	detection	methods	in	

MINOTAUR	for	datasets	up	to	100,000	loci	(rows)	and	20	variables	(columns)	in	

hh:mm:ss.ms	format.	Run	times	were	determined	using	an	Apple	iMac	with	a	3.1	GHz	

Intel	Core	i5	processor	and	32	GB	of	RAM	running	Apple	OSX	10.9.5	and	R	version	3.2.3.	

Note	that	the	kernel	density	deviance	includes	both	the	maximum	likelihood	estimation	

of	the	optimal	bandwidth	and	the	density	calculations	based	on	the	optimal	bandwidth. 

No.	

Loci 

No.	

Variables 

Mahalanobis	

distance 

Harmonic	mean	

distance 

Kernel	density	

deviance 

Nearest	neighbor	

distance 

1000 5 00:00:00.001 00:00:00.040 00:00:01.233 00:00:00.034 

1000 10 00:00:00.002 00:00:00.098 00:00:02.366 00:00:00.094 

1000 15 00:00:00.003 00:00:00.188 00:00:04.303 00:00:00.185 

1000 20 00:00:00.005 00:00:00.318 00:00:07.548 00:00:00.317 

5000 5 00:00:00.003 00:00:00.986 00:00:30.215 00:00:00.829 

5000 10 00:00:00.008 00:00:02.431 00:00:57.794 00:00:02.382 

5000 15 00:00:00.014 00:00:04.809 00:01:49.900 00:00:04.622 

5000 20 00:00:00.024 00:00:07.968 00:02:46.393 00:00:07.821 

10000 5 00:00:00.006 00:00:03.922 00:02:00.694 00:00:03.328 

10000 10 00:00:00.017 00:00:09.728 00:03:52.081 00:00:09.310 

10000 15 00:00:00.169 00:00:18.773 00:06:53.011 00:00:18.487 

10000 20 00:00:00.041 00:00:32.415 00:11:10.482 00:00:31.735 

50000 5 00:00:00.045 00:01:37.808 00:50:19.078 00:01:24.120 

50000 10 00:00:00.095 00:04:13.621 01:40:03.603 00:04:07.027 

50000 15 00:00:00.161 00:09:12.221 00:19:36.847 00:08:51.240 

50000 20 00:00:00.240 00:16:38.589 05:45:21.387 00:16:12.965 

100000 5 00:00:00.085 00:06:35.265 03:21:34.758 00:05:35:996 

100000 10 00:00:00.184 00:17:01.708 09:28:30.378 00:16:24:535 

100000 15 00:00:00.324 00:36:19.473 13:28:52.158 00:37:20.698 

100000 20 00:00:00.487 01:14:47.783 24:45:25.372 01:14:24.686 
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Figure	S1.	Comparison	of	multivariate	distance	measures	for	multi-modal	example	

data.	Black	dots	show	the	simulated	data,	drawn	from	a	bivariate	normal	mixture	

model.	Solid	lines	show	the	distance	measure	computed	at	each	point	in	the	plane,	

arranged	in	10%	quantiles,	equivalently	to	Figure	3	in	the	main	paper. 
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Figure	S2.	Analogue	to	Figure	5	in	the	main	paper,	but	with	a	default	estimate	of	

covariance	using	all	the	data. 
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