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Abstract. We provide a polynomial algorithm that determines for any
given undirected graph, positive integer k£ and various objective functions
on the edges or on the degree sequences, as input, k£ edges that minimize
the given objective function. The tractable objective functions include
linear, sum of squares, etc. The source of our motivation and at the same
time our main application is a subset of k vertices in a line graph, that
cover as many edges as possible (maxfix cover). Besides the general al-
gorithm and connections to other problems, the extension of the usual
improving paths for graph factors could be interesting in itself: the ob-
jects that take the role of the improving walks for b-matchings or other
general factorization problems turn out to be edge-disjoint unions of pairs
of alternating walks. The algorithm we suggest also works if for any sub-
set of vertices upper, lower bound constraints or parity constraints are
given. In particular maximum (or minimum) weight b-matchings of given
size can be determined in polynomial time, combinatorially, in more than
one way.

1 Introduction

Let G = (V, E) be a graph that may contain loops and parallel edges, and let
k > 0 be an integer. The main result of this work is to provide a polynomial
algorithm for finding a subgraph of cardinality k£ that minimizes some pregiven
objective function on the edges or the degree sequences of the graph. The main
example will be the sum of the squares of the degrees (minsquare problem)
showing how the algorithm works for the sum of any one dimensional convex
function of the degrees (SectionBl), including also linear functions (Section32]).
The sum of squares function is general enough to exhibit the method in full
generality, and at the same time concrete enough to facilitate understanding,
moreover this was originally the concrete problem we wanted to solve. It also
arises in a natural way in the context of vertex-covers of graphs, and this was
our starting point:

Given a graph and an integer ¢ find a subset of vertices of cardinality ¢ that
cover the most number of edges in a graph, that is find a maxfiz cover. This prob-
lem, introduced by Petrank in [I4] under the name of maz vertex cover, obviously
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contains the vertex cover problem, so it is NP-hard in general. However, VER-
TEX COVER is polynomially solvable for line graphs (it is straightforwardly
equivalent to the maximum matching problem). What about the maxfix cover
problem in line graphs ?

A maxfix cover for L(G) is T C E(G) minimizing the number of incident
pairs of edges in the remaining edge-set F = E(G)\ T, |F| = k := n —t.
Clearly, the number of such pathsis ), (dFQ(”)). Since the sum of the degrees
is constant, this is equivalent to minimizing Y°, ., d3.(v). This sum will be called
the value of F'. A subgraph of k edges will be called optimal if it minimizes the
value, and the problem of finding an optimal subgraph of k edges will be called
the minsquare problem. The main result of this work is to provide a polynomial
algorithm for solving this problem.

Let us introduce some notation and terminology used throughout the paper.
Let G be a graph. Then n := n(G) := |V(G)|; E(X) (X C V(G)) is the set of
edges induced by X, that is, with both endpoints in X; §(X) denotes the set of
edges with exactly one endpoint in X. For X C V(G) let d(X) := [0(X)|. We
will not distinguish subgraphs from subsets of edges. For a subgraph F' C E(QG)
let dp(v) (v € V) be the degree of v in F, that is, the number of edges of F'
incident to v. The maximum degree of G will be denoted by Ag. The line graph
of G will be denoted by L(G). The Euclidean norm of a vector a € IR™, denoted
by |lall, is the number /Y7, a? (thus |lal|? = Y1, a?). The l; norm of a,
denoted by |al, is the number |a| := Y7 | |a;].

Given b : V(G) — IN, a b-matching is a subset of edges F' C E(G) such that
dr(v) = b(v) for every v € V(G); b is a degree sequence (in G) if there exists a
b-matching in G. More generally, an (f, g)-factor, where f,g : V(G) — IN, is
F C E(G) with f(v) > dp(v) > g(v) for all v € V(G).

In the same way as minimum vertex covers are exactly the complementary
sets of maximum stable sets, maxfix covers are the complementary sets of ‘min-
fix induced subgraphs’, that is, of sets of vertices of pre-given cardinality that
induce the less possible edges. (Ad extrema 0 edges, when the decision version of
the minfix induced subgraph problem with input & specializes to answering the
question ‘is & > k ?°.) Similarly, minfix covers are the complements of maxfix
induced subgraphs.

As we will see in [3.4] among all these variants the only problem that can
be solved in relatively general cases is maxfix cover. The others are NP-hard
already in quite special cases.

The maxfix cover problem has been even more generally studied, for hyper-
graphs: find a set of vertices of given size ¢ € IN that hits the most number
(highest weight) of hyperedges. For Edge-Path hypergraphs, that is a hyper-
graphs whose vertices are the edges of a given underlying graph G and whose
set of hyperedges is a given family of weighted paths in G, several results have
been achieved:

In Apollonio et al. in [I] and [2] polynomial algorithms have been worked
out for special underlying graphs (caterpillars, rooted arborescences, rectangular
grids with a fixed number of rows, etc.) and for special shaped collection of paths
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(staple-free, rooted directed paths,L-shaped paths, etc.), and it has been shown
that the problem is NP-complete for a fairly large set of special Edge-Path
hypergraphs. When the Edge-Path hypergraph has the form (G,P), P being
the family of all paths of length two in G, the problem is a maxfix cover problem
in the line graph L(G) of G.

Until the last section we will state the results in terms of the minsquare
problem, because of the above mentioned application, and the general usability
and intuitive value of the arguments.

A support for the polynomial solvability of the minsquare problem is general
convex optimization. It is well-known [9] that convex function can be minimized
in polynomial time on convex polytopes under natural and general conditions.
Hence convex functions can be optimized on ‘b-matching polytopes’ and inter-
sections of such polytopes with hyperplanes (or any other solvable polyhedron in
the sense of [9]). However, the optima are not necessarily integer, neither when
minimizing on the polytope itself, nor for the intersection.

Minimizing a convex function on b-matchings, that is the integer points of
the b-matching polytope, is still easy with standard tools: single improving paths
suffice, and the classical algorithms for finding such paths [8], [I5] do the job.
However, for our problem, where the set of b-matchings is intersected with a
hyperplane, single paths do no more suffice (see at the end of this Introduction);
yet we will show that pairs of paths along which a non-optimal solution can
be improved do always exist and yield a polynomial algorithm. In this way the
integer optimum of a quite general convex function can still be determined in
polynomial time on the intersection of (f, g)-factor polyhedra with hyperplanes.
This is less surprising in view of the following considerations.

Intuitively, the best solution is the ‘less extremal’ one. Clearly, if r := 2k/n is
an integer and G has an r-regular subgraph, then it is an optimal solution of the
minsquare problem. This is the ‘absolute minimum’ in terms of & and n. The
existence of an r-regular subgraph is polynomially decidable (with the above
mentioned methods) which makes the problem look already hopeful: it can be
decided in polynomial time whether this absolute minimum can be attained or
not.

If 2k/n is not integer, it is also clear to be uniquely determined how many
edges must have degree [2k/n] and how many |2k/n| in a subgraph, so as the
sum of the degrees of the subgraph is 2k. However, now it is less straightforward
to decide whether this absolute minimum can be attained or not, since the num-
ber of all cases to check may be exponential. At first sight the general problem
may appear hopeless.

Yet the main result of the paper states that a subgraph F' is optimal if and
only if there is no vector t : V(G) — IN such that:

- t is a degree sequence in G;

- D wey dr(v) = >, ¢y t(v), that is each t-matching has the same size as I
- Y ey ldr(v) —t(v)| < 4, that is ¢ differs from F' by at most 4 in /;-norm;
- Ypev 2(v) < X ey dB(v), that is, t has better objective value than F.
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Since the number of vectors v that satisfy the last three conditions is smaller
than n*, and it can be decided for each whether it satisfies the first condition
by classical results of Tutte, Edmonds-Johnson, and various other methods (see
accounts in [8], [15], [12]), the result implies a polynomial algorithm for the
minsquare problem.

If ¢ satisfies the above four conditions, the function (vector) k : =t — dp will
be called an improving vector with respect to F'. We have just checked:

(1) If an improving vector exists it can be found in polynomial time.

The graph G consisting of two vertex-disjoint triangles shows that one cannot
replace 4 by 2 in the second condition, unlike in most of the other factorization
problems. Indeed, choose k = 4, and let F' contain the three edges of one of the
triangles and one edge from the other. The value of this solution is 14, the opti-
mum is 12 and one has to change the degree of at least four vertices to improve.
Optimizing linear functions over the degree sequences of subgraphs of fixed car-
dinality k presents already the difficulties of the general case (see Section );
on the other hand the methods apply for a quite general set of objective functions
(see Section B]). We have chosen to put in the center minsquare factors because
of the origins of the problem and because they are a representative example of
the new problems that can be solved.

The rest of the paper is organized as follows: in Section [2] we develop the key
lemmas that are behind the main result and make the algorithm work. Then
in Section we prove the main result and state a polynomial algorithm that
solves the minsquare problem. In Section [3 we characterize the functions for
which the procedure is valid, exhibit some additional conditions for which the
method works, and state some connections to other problems.

2 Main Results

The following result is a variant of theorems about improving alternating walks
concerning b-matchings (f-factors). In this paper we avoid speaking about re-
fined details of these walks. We adopt a viewpoint that is better suited for our
purposes, and focuses on degree sequences. (In Section B.2lwe mention some ideas
concerning efficient implementation.)

Let G be a graph, and F,F’ C E(G). Then P C E(G) will be called an
F — F' alternating walk, if P C F U F" and ) .y |dpar(v) — dpar(v)] < 2;
even if | ZUEV dpmp(v) 7dme/ (U)| =0 5 odd if | ZUEV dpmp(’l)) 7dpmpl (’U)| = 2.
Clearly, an even walk contains the same number of edges of F' and F”’, and in
an odd walk one of them has one more edge than the other.

An F — E(G) \ F-alternating walk that has at least as many edges in F
as in E(G) \ F will be simply called an F-walk. For an F-walk P (where F is
fixed) define kp : V(G) — Z by kp(v) := dp\p(v) — dpar(v), v € V; clearly,
|kp| =2 or 0; kp will be called the change (of F along P).
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2.1 The Key-Facts

We state here three simple but crucial facts:

(2) If F C E(G) and P is an F-alternating walk, then dp + kp is a degree
sequence.

Indeed, dr + kp is the degree sequence of FAP, where A denotes the sym-
metric difference, FAP := (F\ P)U(P\ F).

In other words, an alternating walk is a subgraph P of G that has the property
that dpnr = dpnp in all but at most two vertices of G. The degree of F' and F’
can differ in two vertices (by 1) or in one vertex (by 2). We call these vertices
the endpoints of the alternating walk, and if the two endpoints coincide we say
that the vertex is an endpoint of the path with multiplicity 2 (twice).

Note that we will not use any fact or intuition about how these paths ‘go’,the
only thing that matters is the change vector kp := (dpnp/ (v) — dpar(V))vev,
and the fact (@) about it: adding this vector to the degree sequences of F, we
get a feasible degree sequence again.

If |dpnr(v) —dpnp (v)] = 0 for all v € V, that is in every node of P there is
the same number of incident edges in F' and F’, then we say it is an alternating
cycle.

The following statement is a variant of folklore statements about improving
paths concerning graph factors, generalizing Berge’s improving paths for match-
ings:

(3) Let F,F' C E. Then FAF' is the disjoint union of alternating walks, so that
for allv € V, v is the endpoint of |dp(v) — d'w(v)| of them (with multiplicity).

Equivalently, for every v € V, the alternating walks in @) starting at v either
all start with an F-edge or all start with an F’-edge.

Indeed, to prove (B note that FAF, like any set of edges, can be decomposed
into edge-disjoint alternating walks: edges, as one element sets are alternating
walks, and they are edge-disjoint. Take a decomposition that consists of a min-
imum number of walks. Suppose for a contradiction that for some v € V(G)
there exist two walks, P; and P, such that P, N F' has more edges in u than
Py NF', P,NF has less edges in u than P, N F’, and let P := P, U P,. It follows
that u is an endpoint of both P; and P», moreover with different signs, and we
get:

Z ldpar(v) — dpar (V)] < Z ldp,nF(v) — dp,np (V)] +
veV veV
+ Y ldpnr(®) —dpynm (v)] —2<24+2-2=2 .
veV

Therefore, P is also an alternating walk, hence it can replace {P1, P>} in contra-
diction with the minimum choice of our decomposition, and (B) is proved. O

We see that in case |F'| = |F’|, the number of alternating walks in (B) with
one more edge in F is the same as the number of those with one more edge in
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F’. Tt follows that the symmetric difference of two subgraphs of the same size
can be partitioned into edge-sets each of which consists either of an alternating
path (also allowing circuits) or of the union of two (odd) alternating paths.

The statement ([3) will be useful, since walks will turn out to be algorith-
mically tractable. For their use we need to decompose improving steps into
improving steps on walks.

Let a and A be given positive integers, and let §(a,)\) := (a + \)? — a? =
2Xa + A2. Then we have:

If A1 and Ay have the same sign, then §(a, \1 + A2) > d(a, A1) + 0(a, A2).
For each given factor F and each given A € ZZ" (%) define §(F, \) as ||dp + |2 —
Ids |2, that is

S(EA) = > 6(dr(v),A(v)) -

veV(G)

(4) If M,..., A\ are vectors such that for every v € V(G), M (v),..., \(v) have
the same sign (this sign may be different for different v) and X = A\ + ... + A,
then 6(F, ) > 6(Fy 1) + ...+ 0(F, \p).

Indeed, apply the inequality stated above to every v € V, and then sum up the
n inequalities we got. ad

Now if F is not optimal, then by (@) and (@) one can also improve along pairs
of walks. The details are worked out in the next section.

2.2 Solving the Minsquare Problem

Recall that for given F' C E(G) an improving vector is a vector & : V(G) —
Z such that b = dp + k is a degree sequence, ) .y (g |£(v)] < 4, and

Y wev b(v)? < Y wev dr(v)?, while Yowev Ar(v) =32 v b(v).

Theorem 1. Let G be a graph. If a factor F is not optimal, then there exists
an improving vector.

Proof. Let Fy be optimal. As F' is not optimal one has

0> |ldg,|* = |dr|l? = [ldr + dr, — drl® = |dr]|* = 6(F, dr, — dr) -

By @) FAF is the disjoint union of m € IN F-alternating paths Py, ..., Py,.
In other words, Fy = FAP,A... AP,,, and using the simplification x; := kp,
we have:

m
dp, = dp + Y _ ki,
i=1
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where we know that the sum of the absolute values of coordinates of each k;
(i=1,...m)is £2 or 0. Since F' and Fp have the same sum of coordinates

Hie{1,...,m}: Z ki(v) =2} ={ie{l,...,m}: Z ki(v) = =2},

veV(G) VeV (G)

and denote this cardinality by p.

Therefore those ¢ € {1,...,m} for which the coordinate sum of &; is 2 can
be perfectly coupled with those whose coordinate sum is —2; do this coupling
arbitrarily, and let the sum of the two members of the couples be «i,..., /i;.
Clearly, for each x (i = 1,...,p) the coordinate-sum is 0, 3_,cy- () |Ki(v)| < 4,
and

p
ng =dF +ZI€; .
=1

Now by (@) each of dp + &} (i =1,...,p) is a degree sequence. To finish the
proof we need that at least one of these is an improving vector, which follows

from @):

P P
0> 8(F,dp, —dp) = 6(F,» k) > 6(F, k) .
i=1 i=1
It follows that there exists an index 4, 1 <4 < p such that §(F,x}) <0. O

Corollary 2. The minsquare and the mazfix-cover problem can be solved in
polynomial time.

Proof. Indeed, the maxfix cover problem has already been reduced (see beginning
of the introduction) to the minsquare problem. Since the value of any solution,
including the starting value of the algorithm, is at most n®, and an O(n?) algo-
rithm applied n* times decreases it at least by 1, the optimum can be found in
at most O(n'%) time. O

It can be easily shown that the improving vectors provided by the theorem
are in fact alternating walks - similarly to other factorization problems - or edge
disjoint unions of such alternating walks. If someone really wants to solve such
problems these paths can be found more easily (by growing trees and shrinking
blossoms) than running a complete algorithm that finds a b-matching. By adding
an extra vertex, instead of trying out all the n* possibilities, one matching-
equivalent algorithm is sufficient for improving by one. However, the goal of this
paper is merely to prove polynomial solvability. Some remarks on more refined
methods can be found in 32

Various polynomial algorithms are known for testing whether a given function
b:V — IN is a degree sequence of the given graph G = (V, E'). Such algorithms
are variants or extensions of Edmonds’ algorithm for 1-matchings [6], and have
been announced in [7]. The same problem can also be reduced to matchings. A
variety of methods for handling these problems can be found in [I2], [8], [15].
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The complexity of a variant of the matching algorithm is bounded by O(n??),
and can be used for making an improving step; n? calls for this algorithm are
sufficient, so if we are a bit more careful, O(n°-°) operations are sufficient to find
a minsquare factor.

3 Special Cases and Extensions

3.1 Characterizing when It Works

We will see here that the proof of Theorem [I] works if we replace squares by any
set of functions f, : IN — IR (v € V') for which §(F,\) := > .y fo(dr(v) +
A) — fo(dp(v)) satisfies @). This is just a question of checking. However, a real
new difficulty arises for proving Corollary [2 the difference between the initial
function value and the optimum is no more necessarily bounded by a polynomial
of the input, it is therefore no more sufficient to improve the objective value by
1 in polynomial time.

The problem already arises for linear functions: suppose we are given ra-
tional numbers p, (v € V) on the vertices, and f,(z) := p,x. The input is
O(log max{|py| : v € V}), but if we cannot make sure a bigger improvement
than by a constant, then we may need O(max{|p,|: v € V'}) steps.

However, this is a standard problem and has a standard solution, since a
slight sharpening of () is true: the improving vector x with the highest §(F, k)
value can also be found in polynomial time. Indeed, one has to take the optimum
of a polynomial number of values. Along with the following standard trick the
polynomial bound for the length of an algorithm minimizing 3 . fu(dr(v))
among subgraphs F' C E(G) can be achieved:

(5) Starting with an arbitrary Fy and choosing repeatedly an improving vector k
with mazimum |6(F, k)|, that is, minimum 6(F, k) < 0 value, there are at most
O(n?logmax{|p,| : v € V'}) improving steps.

Note that the case of linear functions that we use for an example can be
solved very easily independently of our results. It is a special case of problems
minimizing a linear function on the edges, that is of the following problem:
given w : E(G) — Z and k € IN minimize the sum of the edge-weights
among subgraphs of cardinality k. (The node-weighted problem can be reduced
to edge-weights defined with w(ab) := p, + py (a,b € V); indeed, then w(F') =
Y vev Pudr(v).) Add now an extra vertex zo to the graph and join it with
every v € V(G) by dg(v) parallel edges. A minimum weight subgraph with
degrees equal to 2(|E(G)| — k) in xg and dg(v) for all v € V intersects E(G)
in a minimum weight k-cardinality subgraph. (The same can be achieved under
more constraints see B.2.)

Let us make clear now the relation of inequality (@) with some well-known
notions.

A function f: D — IR (D C IR") is said to be convex if for any x,y € D and
a,f € R, a4+ = 1 such that ax+ Sy € D we have f(az+Sy) < af(x)+8f(y).
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Note that we do not require D to be convex, that is for instance D can also be
any subset of integers.

A particular case of the defining inequality that will actually turn out to be
equivalent is

(f(z1) + f(22))/2 = f((x1 + 22)/2),
that is, say for x1 = a, o = a + 2:
fla)+ fla+2) = 2f(a+1),
that is,
fla+2) = fla+1) > fla+1)— f(a).
We are not surprised to get this inequality, which characterizes supermodularity,

strictly related to discrete convexity, see Murota’s work [13]. Let us state the
equivalence of these inequalities in a form useful for us:

Lemma 3. The following statements are equivalent about the function f whose
domain is a (possibly infinite) interval:

(i) f is convex
(i) For every integeri so thati,i—1,i4+1 € D(f): f(i) < (f(i—1)+f(i+1))/2.

Y

(i) If ¢ = x1 + x2, where x1, x2 have the same sign, then f(a+ x) — f(a)

flata1) = fla) + fla+x2) = f(a).

Proof. Indeed, (i) implies (ii) since the latter is a particular case of the defining
inequality for convexity. Suppose now that (ii) holds, that is, f(i + 1) — f(i) >
f@)—f(i—1), and x = x1 + x2, where z1 and x5 have the same sign as . Then
applying this inequality |z1| times we get f(a+x)— f(a+x1) > fla+z2)— f(a).
(If > 0, this follows directly; if < 0 then in the same way f(a) — f(a+x2) >
fla+x1) — f(a + x), which is the same.) This inequality (after rearranging) is
the same as (iii). Until now we have not even used the assumption about the
domain.

We finally prove that (iii) implies (i). Let x,y,z € D, z = Az + (1 — \)y.
Suppose without loss of generality x = z 4+ 7,y = z — 5,7, s € IN, and prove

(s +7)f(2) < sf(x)+7f(y)

Since by the condition all integers between z+r and z — s are in the domain of f,
we have: f(z+r)—f(2) = f(z4+r)—f(z+r—D)+f(z4+r—1)—f(z4+r—2)+.. +f(z+
1)— f(=) > r(f(z+ 1) f(2)), and similarly f(2) — f(z—1) < s(f(z+1)— (2)),
whence f(z) — f(z—1) < (s/r)(f(z+7r) — f(2)). Rearranging, we get exactly the
inequality we had to prove. ad

We need @) to hold only for improving vectors, and this property does not
imply convexity. Conversely, convexity is also not sufficient for () to hold: define
f:R?* = R with f(z,y) := max(z,y), and let u = (0,0), X := (2k + 1,2k + 1),
A= (k+1,k), Ao := (k,k + 1), where k € IN. Then

flutA)=f(u) = 2k+1 < (k+1)+(k+1) = (f (A1) = f () +(f (utA2) = £ (u)).
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3.2 Minsquare Factors under Classical Constraints

If we want to solve the minsquare problem for constrained subgraphs, that is
to determine the minimum of the sum of squares of the degrees of subgraphs
satisfying some additional requirements, we do not really get significantly more
difficult problems. This is at least the case if the requirements are the ‘classical’
upper, lower bound or parity constraints for a subset of vertices.

For such problems (B) can still be applied and the improving path theo-
rems hold. We state the most general consequence concerning the complexity
of the minsquare of constrained graph factors, that is, (u,l)-factors with parity
constraints:

Theorem 4. Let G = (V,E) be a graph, k € N, ,bu: V — N and T C V.
Then F C E, |F| = k minimizing Y., .\ d.(v) under the constraint l(v) >
dr(v) > u(v) for allv € V and such that dp(v) has the same parity as u(v) for
allv € T, can be found in polynomial time.

The sum of squares objective function can be replaced here by any objective
function mentioned in the previous subsection. The cardinality constraint can
actually be replaced by a degree constraint on an added new vertex xy. Again,
the linear case is much easier. For instance the minimum weight k-cardinality
matching problem can be solved by adding a new vertex, joining it to every
v € V(@) and requiring it to be of degree n — 2k and requiring every v € V' to be
of degree 1. In polyhedral terms this is an exercise on Schrijver’s web page [16]
and in Exercise 6.9 of [4] — about the integrality of the intersection of f-factor
polyhedra with the hyperplane 1 + ...+ x, = k to which we provided thus one
simple solution, and another through our main result, both different from the
one suggested in [4].)

3.3 Jump Systems

A jump system [3] is a set J C ZZ" with the property that for all 2,y € J and
each vector 2’ ¢ J at one step from x towards y there exists a vector " € J at
one step from 2/ towards y. We say that 2’ is at one step from x towards y if
2’ — x is £1 times a unit vector and the non-zero coordinate of ' — x has the
same sign as the corresponding coordinate of y — z. More generally, z’ is at s
steps from x towards y if |’ — x| = s and |2/ — x| + |y — 2| = |y — =|, that is,
the [;-distance of 2’ from x is s, and it is on the ‘I;-line’ that joins x and y.

Jump systems generalize, among others, the family of bases or independent
sets of matroids, delta-matroids, and degree sequences of the subgraphs of a
graph (some of these statements are easy, some others are more difficult to prove,
see [3], [5]). Their convex hulls constitute the most general class of polyhedra for
which the greedy algorithm works.

In the proof of Theorem [l the key-fact is that starting from a given graph
factor one can arrive at any other one by small changes in the right direction
(B). This property makes sense for sets of vectors in general, but it requires a
more restrictive property than the definition of jump systems:
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Let us say that L C zV is aleap-systemifforallz,y € L,y—x = l1+... 4+
(m,e N,I; € ZY, i = 1,...,m) where, [y — z| = |li] + ... |lml, i < 2,
(i=1,...om)and x + > ;. qli € L, for @ C{1,...,m}, |Q| < 2.

It is straightforward to check that Theorem [I] and the algorithms are valid
without any change if degree sequences are replaced by leap-systems .

The definition of an improving vector is now the following:

Let L be a leap-system and | € L. Then k € ZV is an improving vector
with respect to 1 if b = 1+ € L, and ) .y |&(v)] < 4, f(b) < f(I), while

2vev 0() = 2pev L(v):

Theorem 5. Let L be a leap system. If Il € L is not optimal, then there exists
an improving vector.

As a consequence the sum of one dimensional convex functions can be opti-
mized on leap systems intersected with hyperplanes, in polynomial time.

3.4 Weighted Minsquare, Maxsquare, Minfix, or Maxfix Cover

Let us first see what we can say about the weighted minsquare problem. Let
ai,...,a, be an instance of a partition problem. Define a graph G = (V, E) on
n + 2 vertices V = {s,t,1,...,n}, and join both s and ¢ to ¢« with an edge of
weight a;. (The degree of both s and ¢ is n and that of all the other vertices is
2.

Prescribe the vertices of degree 2 (that is, the vertices i, i = 1,...,n) to have
exactly one incident edge in the factor, that is, the upper and lower bounds (see
Section[3:2)) are 1. Then the contribution of these vertices to the sum of squares
of the degrees is fix and the sum of the contributions of s and t is at least
((a1 + ...+ a,)/2)?, with equality if and only if the PARTITION problem has a
solution with these data. (NP-completeness may hold without degree constraints
as well.)

We showed in the Introduction (Section [J) that the maxfix cover problem
in the line graph of G can be reduced to the minsquare problem in G, which
in turn is polynomially solvable. We also exhibited how the relation between
transversals and stable sets extends to our more general problems. The following
two extensions arise naturally and both turn out to be NP-hard:

In the context of maxfix covers it is natural to put weights on the hyperedges.
Associate weights to the hyperedges and the total weight of hyperedges that are
covered is to be maximized with a fixed number of elements. The edge-weighted
maxfix cover problem is the graphic particular case of this, and even this is
NP-hard, and even for cliques: the maxfix (vertex) cover problem for a graph
G = (V, E) is the same as the weighted maxfix cover problem for the complete
graph on V' with edge-weights 1 if e € F, and 0 otherwise. Furthermore, a clique
is a line graph (for instance of a star) so path-weighted mazfiz cover is NP-hard
for stars and even for 0 — 1 weights.

The maxsquare problem (and accordingly the minfix cover problem in line
graphs) is NP-hard ! Indeed, let’s reduce the problem of deciding whether a clique



Minsquare Factors and Maxfix Covers of Graphs 399

of size r exists in the graph G = (V, E) to a maxsquare problem in G = (V, E)
(equivalently, to a min cover problem in L(G’)) where G is defined as follows:
subdivide every edge of GG into two edges with a new vertex, and for all v € V'
add Ag — dg(v) edges to new vertices of degree 1 each. We suppose that G does
not have loops or parallel edges.

Clearly, Gis a bipartite graph, where the two classes are A :=V and B :=
1% \ V. In A all the degrees are equal to A, and in B they are all at most 2.

If K C V is a clique of size r in G, then let Fx C E(G’) be defined as
Fr :=64(K) where K CV = AC V. Clearly, | Fx| = rA. The interested reader
may check the following assertions: Fx is a mazsquare subgraph of cardinality
rA, and conversely, a subgraph F C V of cardinality rA where the sum of
the squares of the degrees is at least that of Fi above, satisfies FF = Fy for
some K C V, |K| = r that induces a complete subgraph. Therefore the problem
of deciding whether G has a clique of size r can be polynomially reduced to a

maxsquare problem, showing that the latter is also NP-complete.

Among all these problems the most interesting is maybe the one we could
solve: indeed, it generalizes the maximum matching problem and the methods
are also based on those of matching theory.

Acknowledgment: We are thankful to Maurice Queyranne and Akihisa Tamura
for their questions about the relation of (@) to convexity that generated the
remarks in Section [3.1]
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