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Abstract. MIPAS thermal limb emission measurements were

used to derive vertically resolved profiles of carbon tetra-

chloride (CCl4). Level-1b data versions MIPAS/5.02 to MI-

PAS/5.06 were converted into volume mixing ratio profiles

using the level-2 processor developed at Karlsruhe Insti-

tute of Technology (KIT) Institute of Meteorology and Cli-

mate Research (IMK) and Consejo Superior de Investiga-

ciones Científicas (CSIC), Instituto de Astrofísica de An-

dalucía (IAA). Consideration of peroxyacetyl nitrate (PAN)

as an interfering species, which is jointly retrieved, and CO2

line mixing is crucial for reliable retrievals. Parts of the CO2

Q-branch region that overlap with the CCl4 signature were

omitted, since large residuals were still found even though

line mixing was considered in the forward model. However,

the omitted spectral region could be narrowed noticeably

when line mixing was accounted for. A new CCl4 spectro-

scopic data set leads to slightly smaller CCl4 volume mixing

ratios. In general, latitude–altitude cross sections show the

expected CCl4 features with highest values of around 90 pptv

at altitudes at and below the tropical tropopause and values

decreasing with altitude and latitude due to stratospheric de-

composition. Other patterns, such as subsidence in the polar

vortex during winter and early spring, are also visible in the

distributions. The decline in CCl4 abundance during the MI-

PAS Envisat measurement period (July 2002 to April 2012)

is clearly reflected in the altitude–latitude cross section of

trends estimated from the entire retrieved data set.

1 Introduction

Carbon tetrachloride (CCl4) is an anthropogenically pro-

duced halogen-yielding trace gas and partly responsible for

stratospheric ozone depletion. It is also a potent greenhouse

gas with a 100-year global warming potential of 1730 (IPCC,

2013; World Meteorological Organization, 2014). CCl4 was

commonly used in fire extinguishers, as a precursor to re-

frigerants, and in dry cleaning prior to 1990, when it was re-

stricted within the framework of the London Amendment to

the Montreal Protocol. Its abundances in the atmosphere in-

creased steadily from the first part of the 20th century. Emis-

sions declined significantly after 1990, as did the amount

of CCl4 in the atmosphere with a few years delay. 2007–

2012 bottom-up emissions of 1–4 kilotonnes year−1 were

assessed by combining country-by-country reports to the

United Nations Environmental Programme (UNEP) (Liang

et al., 2016). This bottom-up estimate differs considerably

from the 57 (± 17) kilotonnes year−1 top-down emissions
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which were evaluated in 2014 (World Meteorological Or-

ganization, 2014) using atmospheric measurements and life-

time estimates. Even when possible CCl4 precursors and un-

reported, inadvertent emissions are accounted for, the gap

between reported bottom-up and estimated top-down CCl4
emissions cannot be closed, as bottom-up emissions still

only add up to 25 kilotonnes year−1 (SPARC, 2016). Be-

sides a sink in the atmosphere, CCl4 is decomposed in the

ocean and the soil with different lifetimes for each sink. Re-

assessment of the different lifetime estimates, which are es-

sential for an adequate top-down assessment of emissions,

leads to lower emissions of ∼ 40 (± 15) kilotonnes year−1.

While the gap between bottom-up and top-down emissions is

now smaller after reassessments, the discrepancy is still not

solved entirely. Previous measurements of stratospheric CCl4
have also been performed by the Atmospheric Chemistry

Experiment Fourier Transform Spectrometer (ACE-FTS), a

cryosampler instrument employed at Frankfurt University,

and the balloon-borne version of the Michelson Interferome-

ter for Passive Atmospheric Sounding (MIPAS-B2). The first

version of the balloon-borne MIPAS instrument (MIPAS-B)

and ATMOS (Atmospheric Trace Molecule Spectroscopy)

also measured CCl4, but not during the MIPAS Envisat mea-

surement period (Zander et al., 1996; von Clarmann et al.,

1995). Additional measurements, especially vertically well-

resolved ones with global coverage such as satellite mea-

surements from MIPAS, can help to improve the understand-

ing of the atmospheric CCl4 budget and stratospheric life-

time estimate. Furthermore, as a tracer with relatively long

stratospheric lifetimes, CCl4 measurements can improve the

understanding of changes in the Brewer–Dobson circulation

by further constraining the lower boundary, e.g. processes

around the tropopause. In this study, we present the retrieval

of CCl4 distributions from MIPAS limb emission spectra.

First, we characterize the MIPAS instrument (Sect. 2), fol-

lowed by a detailed description of the retrieval and the spe-

cific issues that had to be dealt with to derive CCl4 concen-

trations (Sect. 3). We then compare the results of the MIPAS

Envisat CCl4 retrieval with those of ACE-FTS, those of the

second balloon-borne MIPAS instrument (MIPAS-B2) and

those of cryosampler measurements (Sect. 5) and summarize

the results in the conclusions (Sect. 6).

2 MIPAS

The Michelson Interferometer for Passive Atmospheric

Sounding was one of the instruments aboard the European

Environmental Satellite (Envisat). It was launched into a sun-

synchronous orbit at an altitude of approximately 800 km on

1 March 2002. On 8 April 2012, all communication with

the satellite was lost, ending an observation period of more

than 10 years. Envisat orbited the earth 14.4 times a day,

crossing the Equator at 10:00 and 22:00 local time. MIPAS

measured infrared emissions between 685 and 2410 cm−1

(14.6 and 4.15 µm) (Fischer et al., 2008), which allows for

day and nighttime measurements with global coverage. The

initial spectral resolution of the instrument was 0.025 cm−1

(0.0483 cm−1 after a “Norton–Beer strong” apodization;

Norton and Beer, 1976). An instrument failure in March

2004 led to an observation gap until January 2005 when

the instrument was successfully restarted. The first period

(June 2002 to March 2004) is referred to as full spectral

resolution (FR) period, while the period from January 2005

to April 2012 is referred to as reduced spectral resolution

(RR) period. Due to a problem with one of the interferom-

eter slides, MIPAS could only be operated with a spectral

resolution of 0.0625 cm−1 (0.121 cm−1 apodized) from Jan-

uary 2005 on. In this study, only measurements from the in-

strument’s “nominal operation mode” are used. In this mode,

the number of tangent altitudes increased from 17 during the

FR period to 27 during the RR period. The vertical cover-

age ranges from 6 km to around 68 km during the FR period

and up to around 70 km during the RR period, respectively.

MIPAS initially took around 1000 measurements per day.

In 2005, operation was resumed at reduced duty cycle. By

the end of 2007, MIPAS was back at full duty cycle, which

amounts to approximately 1300 RR measurements per day.

The horizontal sampling changed from 510 km during the FR

period to 410 km during the RR period.

The temperature and various atmospheric trace gases are

retrieved from level-1b data using a retrieval processor devel-

oped at the Institute of Meteorology and Climate Research at

the Karlsruhe Institute of Technology (KIT) in close cooper-

ation with the Instituto de Astrofísica de Andalucía (CSIC)

in Granada, Spain. Results shown in this publication cover

both the FR and the RR period.

3 Retrieval

The MIPAS Envisat retrieval is based on a non-linear least-

squares approach and employs a first-order Tikhonov-type

regularization (von Clarmann et al., 2003, 2009).

The radiative transfer is modelled using the Karlsruhe Op-

timized and Precise Radiative Transfer Algorithm (KOPRA)

model (Stiller, 2000). The spectral regions used for the re-

trieval of CCl4 are 772.0–791.0 and 792.0–805.0 cm−1. The

gap from 791.0 to 792.0 cm−1 is necessary, since even when

accounting for line mixing, strong effects from the CO2 Q-

branch still occur in the residuals. Several results from previ-

ous steps in the retrieval chain were used to derive CCl4 (Ta-

ble 1) including the spectral shift (ztangent), the temperature

(T ), the horizontal temperature gradient (Tgrad) and mixing

ratio profiles of HNO3, ClO, CFC-11, C2H6, HCN, ClONO2

and HNO4. In addition, several species were found to im-

prove the retrieval whenever their mixing ratio profiles were

fitted alongside CCl4. These are peroxyacetyl nitrate (PAN),

CH3CCl3, HCFC-22, O3, H2O, C2H2 and COF2. Although

for most of these species results from preceding retrieval
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Figure 1. Exemplary spectra of MIPAS CCl4 at 12 km during the FR period (September 2003): (a) spectra; (b) residuals.

Table 1. Retrieval details on the spectroscopic region, species im-

ported from preceding retrieval steps and variables fitted jointly dur-

ing the retrieval process. Brackets denote mixing ratios.

Spectral regions Imported from preceding Jointly fitted

retrieval steps variables

772.0–791.0 cm−1 Shift(ztangent) [PAN](z)

792.0–805.0 cm−1 T (z) [CH3CCl3](z)

Tgrad(z) [HCFC-22](z)

[HNO3](z) [O3](z)

[ClO](z) [H2O](z)

[CFC-11](z) [C2H2](z)

[C2H6](z) [COF2](z)

[HCN](z) Continuum(z)

[ClONO2](z) offset

[HNO4](z)

steps are available, fitting their concentrations jointly with

that of CCl4 reduces the fit residuals significantly. This is at-

tributed to spectroscopic inconsistencies of the interferers’

spectroscopic data between the spectral region where these

were retrieved and the spectral region where CCl4 is ana-

lyzed. Also fitted were a background continuum accounting

for spectral contributions from aerosols and a radiance offset

which is constant for all tangent altitudes (Table 1). These

retrieval settings lead to spectral fits as displayed in Figs. 1

and 2, where an example for the FR period and the RR pe-

riod is shown, respectively. The measured spectra are plotted

in black (not discernible from the best fit modelled in the fit-

ting window), while the red and the blue lines represent the

modelled spectra of the regions from 772.0 to 791.0 and from

792.0 to 805.0 cm−1, respectively. Some periodic residuals

are visible in both the FR and the RR period. These result

from less than perfectly fitted CO2 but, as will be shown in

Sect. 5, are only of minor relevance for the accuracy of the

retrieved CCl4.

3.1 Information cross-talk with PAN

The signature of PAN is particularly prominent in the spec-

tral region of CCl4 and can thus be retrieved during the same

retrieval step. Actually, jointly fitting PAN is very important

for the CCl4 retrieval. Since PAN was already retrieved from

MIPAS spectra before (Glatthor et al., 2007), it is of obvi-

ous interest to investigate the PAN results from the CCl4–

PAN joint retrieval in comparison with those from the origi-

nal PAN retrieval. There, CCl4 was fitted alongside PAN but

the retrieval was not yet optimized for CCl4.

We find slightly higher volume mixing ratios of PAN

throughout most of the altitude–latitude cross section

(Fig. 3). As a consequence, areas showing unphysical mix-

ing ratios below zero in the original retrievals (left panel of

Fig. 3) are now slightly positive or very close to zero. This

suggests that jointly fit PAN from the retrieval optimized for

CCl4 might be more accurate than PAN retrieved using the

old CCl4 distributions.

3.2 Line mixing

Since the spectral region where CCl4 is retrievable con-

tains a CO2 Q-branch, the retrieval is set up to account for
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Figure 2. Exemplary spectra of MIPAS CCl4 at 11.5 km during the RR period (July 2008): (a) spectra; (b) residuals.

Figure 3. PAN altitude–latitude cross sections (July 2008) from a separate retrieval using the old CCl4 distributions (a) and resulting from a

joint retrieval with CCl4 (b).

line mixing (Funke et al., 1998). This was done by using the

Rosenkranz approximation (Rosenkranz, 1975). Tests were

also performed using the computationally more demanding

direct diagonalization, but this approach was not found to

noticeably change the results of the retrieval. This is possi-

bly the case because the microwindows were carefully se-

lected to omit major spectral signatures of the CO2 Q-branch

and because the effect of line mixing is generally smaller at

stratospheric pressure levels. However, it was still necessary

to omit parts of the CO2 Q-branch. Figures 4 and 5 show

spectra where the full spectral region was fitted. In Fig. 4, line

mixing was not considered and thus a large peak in the resid-

ual is visible close to 791.0 cm−1. In Fig. 5, the Rosenkranz

approximation was used to account for line mixing. Even

though the residual is considerably smaller than without line

mixing taken into account – as would be expected – peaks

significantly larger than for the remainder of the window are

still visible between 791.0 and 792.0 cm−1. Although inclu-

sion of line mixing significantly reduces the residuals in the

CO2 branch, the residuals are still unacceptably large there.

With the Rosenkranz approximation, however, the spectral

region excluded from the fit could be narrowed from 791.0

to 792.0 cm−1 from 790.5 to 792.5 cm−1.

3.3 New CCl4 spectroscopic data

During the ongoing development of the MIPAS Envisat CCl4
retrieval, a new CCl4 spectroscopic data set was published

by Harrison et al. (2017). Figure 6 shows the influence of

these spectroscopic data on an altitude–latitude cross sec-

tion of CCl4 distributions of July 2008. The upper panel

shows what stratospheric CCl4 distributions retrieved with
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Figure 4. Impact of the CO2 Q-branch at 11.5 km altitude without considering line mixing: (a) spectra; (b) residuals. Black: measured

spectrum, hardly discernible because overplotted by modelled spectra.

Figure 5. Impact of the CO2 Q-branch at 11.5 km altitude taking line mixing it into account: (a) spectra; (b) residuals. Black: measured

spectrum, hardly discernible because overplotted by modelled spectra. Note the different scale of the residual axis compared to Fig. 4.

the original spectroscopic data set as presented in HITRAN

2000 (Nemtchinov and Varanasi, 2003) look like. The lower

panel shows the same cross section, but using the new spec-

troscopic data set by Harrison et al. (2017) for an otherwise

identical retrieval setup. While the qualitative and morpho-

logical features of the distribution are very similar, lower vol-

ume mixing ratios of CCl4 result when the new spectroscopic

data set is used. Comparing these with reported values of

ground-based measurements as presented in SPARC (2016)

indicates that the updated spectroscopic data lead to results

www.atmos-meas-tech.net/10/2727/2017/ Atmos. Meas. Tech., 10, 2727–2743, 2017
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Figure 6. Altitude–latitude cross section of July 2008, using the

spectroscopic data set by Nemtchinov and Varanasi (2003) (a) and

using the new spectroscopic data by Harrison et al. (2017) (b).

which, in the tropopause region, agree better with tropo-

spheric measurements. Tropospheric volume mixing ratios

are reported to be at approximately 95 pptv, which is very

close to what MIPAS Envisat presents around the tropical

tropopause and at midlatitudes of the Northern Hemisphere

when using the new spectroscopic data set. In contrast, using

HITRAN 2000 sometimes results in volume mixing ratios

above 100 pptv in the same region. Thus, we consider the

new spectroscopic data set more adequate for the retrieval of

CCl4.

4 Results

4.1 Distributions

Figures 7 and 8 and the lower panel of Fig. 6 give an

overview of the latitudinal and altitude distribution of CCl4
of different time periods. All of the altitude–latitude cross

sections show the expected patterns of CCl4 with a rapid de-

crease with increasing altitude in the stratosphere, as the gas

is photolyzed there. In addition, highest volume mixing ra-

tios appear at the Equator where CCl4, along with many other

Figure 7. Altitude–latitude cross sections of MIPAS CCl4 for the

FR period (September 2003).

trace gases, enters the stratosphere due to the upward trans-

port associated with the Brewer–Dobson circulation. During

January 2010, March 2011 and particularly April 2011, sub-

sidence of higher stratospheric air results in reduced mix-

ing ratios over the North Pole. In Spring 2011, an unusually

stable northern polar vortex resulted in severe ozone deple-

tion and particularly strong subsidence (Manney et al., 2011;

Sinnhuber et al., 2011), which is reflected in the observations

shown here. In general, MIPAS Envisat shows higher volume

mixing ratios in the lower stratosphere during the FR period,

which fits well with the overall decline in CCl4 abundance in

the atmosphere due to its restriction under the Montreal Pro-

tocol. This impression is also supported by the lower panel in

Fig. 6, which shows lower overall volume mixing ratios than

MIPAS sees during the FR period but which are still slightly

higher than during 2010 and 2011. All cross sections show a

maximum in the CCl4 volume mixing ratios around the tropi-

cal tropopause connected with values of similar magnitude at

lower altitudes of northern extratropical regions. This pattern

was also seen in HCFC-22 (Chirkov et al., 2016) and could

be linked to the Asian monsoon. Calculations with the Chem-

ical Lagrangian Model of the Stratosphere (CLaMS) by Vo-

gel et al. (2016) show that there indeed exists a mechanism

which can produce local maxima in the upper troposphere in

2-D distributions of source gases. So, the monsoon might of-

fer an explanation for the patterns seen in CCl4 around these

atmospheric regions as well.

4.2 Altitude resolution

The vertical resolution of the CCl4 profiles is very similar

for the FR and the RR period. From about 2.5 to 3 km at

the lower end of the profiles, it degrades to approximately

5 km at ∼ 25 km and ∼ 7 km at ∼ 30 km, calculated as the

full width at half maximum of the row of the averaging ker-

nel matrix (Rodgers, 2000). The degrees of freedom are usu-

ally around 3.5 for the FR period and close to 4.0 for the RR

Atmos. Meas. Tech., 10, 2727–2743, 2017 www.atmos-meas-tech.net/10/2727/2017/
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Figure 8. Altitude–latitude cross sections of MIPAS CCl4 for the

RR period. (a–c) January 2010, March 2011 and April 2011.

period (Fig. 9). This is presumably attributed to the finer ver-

tical sampling during the RR period with 27 tangent altitudes

compared to 17 tangent altitudes during the FR period. The

signal decreases rapidly with altitude, as the volume mixing

ratios of CCl4 do. Above 30 km, hardly any CCl4 informa-

tion is available in the MIPAS spectra. Slightly below 20 km,

the averaging kernels show negative side wiggles which are

more pronounced during the FR period (left panel) than the

RR period (right panel).

4.3 Error budget

Tables 2 and 3 list the error budgets for midlatitudes during

the FR and RR period between 10 and 40 km. Examples for

other latitudes can be found in the Appendix (Tables A1–

A6). For legibility reasons, the errors are only given every

5 km, although the retrieval grid is 1 km. Errors due to eleva-

tion uncertainties of the line of sight (LOS) and uncertainties

of several contributing species are given. All profiles show a

strong increase in the relative errors at and above 30 km. Dur-

ing the FR period, the absolute total errors are fairly similar

below this altitude, while large differences can occur from

20 km upwards. Absolute errors are close to 3 pptv between

10 and 25 km and around 5 to 6 pptv at 15 km where larger

error appear for all atmospheric situations except the po-

lar summer one where the errors stay close to 3 pptv. The

largest error component is measurement noise (third col-

umn), while at 15 km significant parameter errors have to

be considered, in particular the elevation uncertainties of the

LOS and instrument line shape (ILS). Beyond this, uncer-

tainties of HNO4 and ClONO2 profiles, frequency calibration

(shift) and temperature contribute to the total error. The de-

crease of retrieval noise towards higher altitudes is explained

by the coarser altitude resolution at higher altitudes. For the

RR period, the patterns look slightly different. There is no

peak in the total error around 15 km, but the total error is

either rather constant at lower altitudes or decreases with al-

titude. Contributions to the error budget are, however, similar

to the FR period.

Figure 10 compares the estimated total error with the de-

viation of the profiles in a quiescent atmosphere. This com-

parison was created in a similar way as in Eckert et al. (2016,

Sect. 6). Up to 18 km altitude, the sample standard deviation

of MIPAS Envisat results is only slightly larger than the es-

timated error. Thus, these profiles suggest that the estimated

error can explain most of the variability in the CCl4 profiles

up to approximately 18 km. Correspondingly, the error esti-

mate can be considered realistic from the bottom of the pro-

file up to this altitude.

4.4 Trends

Figure 11 shows an altitude–latitude cross section of MI-

PAS Envisat CCl4 trends. These trends were estimated by

the same method as described by Eckert et al. (2014), which

is based on the method by von Clarmann et al. (2010). In

addition to the setup used by Eckert et al. (2014), the El-

Niño–Southern Oscillation (ENSO) was also taken into ac-

count. The data set used for trend calculation covers the en-

tire MIPAS Envisat measurement period from July 2002 to

April 2012. The distribution of the trends agrees well with

the trends estimated by Valeri et al. (2017), who calculated

trends from MIPAS Envisat V7 data they formerly retrieved

and displayed them on a pressure–latitude grid. The most

likely cause of differences between their and our trend es-

www.atmos-meas-tech.net/10/2727/2017/ Atmos. Meas. Tech., 10, 2727–2743, 2017
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Figure 9. Rows of exemplary averaging kernels of MIPAS CCl4. (a) FR period (September 2003). (b) RR period (July 2008).

Figure 10. Comparison of the estimated total error with the standard

deviation of several MIPAS profiles for a quiescent atmospheric sit-

uation (Equator). Red: total error budget; blue: standard deviation.

timates are the underlying MIPAS spectra. We use MIPAS

V5 spectra which were found to be subject to an instrument

drift due to detector aging (Eckert et al., 2014). Valeri et al.

(2017) use version 7 spectra, where an attempt was made to

tackle the problem of detector aging during the level-1 pro-

cessing. However, Hubert et al. (2016) show that there is still

a drift problem in the version 7 MIPAS temperatures. Since

these temperature drifts are expected to propagate onto the

retrieved CCl4 mixing ratios, it is not clear if version 5 or ver-

sion 7 is more adequate for trend analysis. In spite of these

differences and technical differences

in the level-2 data processing, the trends inferred by Va-

leri et al. (2017) and ours show important common features.

In both data sets a hemispheric asymmetry is found, with

Figure 11. Altitude–latitude cross sections of MIPAS CCl4
trends covering the entire measurement period from July 2002 to

April 2012. Red colours indicate increasing CCl4 volume mixing

ratios. Blue colours indicate declining CCl4 concentrations. Hatch-

ing shows where no statistically significant trends could be calcu-

lated at 2σ confidence level.

positive trends in the Southern Hemisphere around 25 km

(although the region is larger in our data set) and negative

trends in the Northern Hemisphere in almost the whole al-

titude range. Also the average magnitudes of the inferred

trends agree reasonably well between both data sets.

Atmos. Meas. Tech., 10, 2727–2743, 2017 www.atmos-meas-tech.net/10/2727/2017/
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Table 2. Error estimates for a midlatitude profile during the FR period. Errors are given in pptv (relative errors in %).

Total

Altitude Total error Noise parameter Gain LOS HNO4 Shift ILS Temperature ClONO2

40 0.0 (69.4) 0.0 (57.2) 0.0 (38.8) 0.0 (24.5) 0.0 (22.5) 0.0 (18.2) 0.0 (1.7) 0.0 (9.2) 0.0 (6.3) 0.0 (5.5)

35 0.0 (68.4) 0.0 (56.7) 0.0 (39.1) 0.0 (23.5) 0.0 (21.5) 0.0 (18.4) 0.0 (1.7) 0.0 (9.0) 0.0 (6.3) 0.0 (5.7)

30 0.2 (71.0) 0.2 (64.3) 0.1 (33.8) 0.1 (20.3) 0.1 (17.9) 0.1 (20.3) 0.0 (1.8) 0.0 (3.0) 0.0 (5.1) 0.0 (5.1)

25 2.3 (480.8) 2.2 (459.9) 0.7 (144.2) 0.4 (79.4) 0.0 (3.8) 0.6 (115.0) 0.0 (10.0) 0.0 (0.7) 0.1 (23.0) 0.1 (17.3)

20 2.9 (5.3) 2.4 (4.4) 1.6 (2.9) 0.0 (0.1) 1.5 (2.8) 0.1 (0.3) 0.0 (0.0) 0.7 (1.2) 0.1 (0.2) 0.1 (0.2)

15 5.0 (4.9) 2.1 (2.1) 4.5 (4.5) 0.7 (0.7) 4.0 (4.0) 0.1 (0.1) 0.1 (0.1) 2.0 (2.0) 0.1 (0.1) 0.1 (0.1)

10 2.7 (3.1) 2.5 (2.8) 0.9 (1.0) 0.2 (0.2) 0.2 (0.3) 0.3 (0.3) 0.1 (0.1) 0.4 (0.4) 0.5 (0.6) 0.1 (0.1)

Table 3. Error estimates for a midlatitude profile during the RR period. Errors are given in pptv (relative errors in %).

Total

Altitude Total error Noise parameter Gain LOS HNO4 Shift ILS Temperature ClONO2

40 0.0 (214.1) 0.0 (127.1) 0.0 (173.9) 0.0 (73.6) 0.0 (147.2) 0.0 (24.8) 0.0 (2.5) 0.0 (24.8) 0.0 (24.1) 0.0 (13.4)

35 0.0 (211.3) 0.0 (128.1) 0.0 (172.9) 0.0 (70.4) 0.0 (147.3) 0.0 (25.0) 0.0 (2.6) 0.0 (24.3) 0.0 (23.7) 0.0 (13.4)

30 0.2 (141.2) 0.1 (123.6) 0.1 (61.8) 0.0 (15.9) 0.1 (47.7) 0.0 (24.7) 0.0 (2.8) 0.0 (22.1) 0.0 (2.8) 0.0 (11.5)

25 2.4 (187.3) 2.2 (171.7) 0.9 (67.1) 0.2 (14.0) 0.4 (30.4) 0.4 (33.6) 0.1 (4.8) 0.6 (44.5) 0.0 (0.0) 0.2 (16.4)

20 3.5 (15.0) 2.6 (11.1) 2.4 (10.3) 0.1 (0.4) 2.3 (9.9) 0.1 (0.4) 0.1 (0.3) 0.1 (0.5) 0.1 (0.2) 0.0 (0.1)

15 3.3 (6.1) 2.0 (3.7) 2.6 (4.8) 0.5 (1.0) 2.5 (4.6) 0.1 (0.3) 0.0 (0.1) 0.1 (0.2) 0.1 (0.1) 0.0 (0.0)

10 5.7 (6.1) 4.3 (4.6) 3.7 (4.0) 1.1 (1.2) 3.5 (3.8) 0.2 (0.2) 0.0 (0.0) 0.4 (0.4) 0.4 (0.4) 0.1 (0.1)

Figure 12. Qualitative comparison of profiles from ATMOS (or-

ange) taken during the ATLAS-3 mission (as shown in Zander et al.,

1996, Fig. 1) and climatological means of MIPAS (blue) during 3–

12 November of each year. Solid lines refer to midlatitude measure-

ments (35–49◦ N). Dashed lines indicate subtropical measurements

(20–35◦ N).

5 Comparisons

5.1 Historical comparisons

5.1.1 ATMOS

The ATMOS instrument measured in solar occultation cov-

ering the spectral region from 600 to 4700 cm−1 with a spec-

tral resolution of 0.01 cm−1. ATMOS took measurements in

1985, 1992, 1993 and 1994. The ATMOS profiles shown

in Fig. 12 were extracted directly from Zander et al. (1996,

Fig. 1). CCl4 volume mixing ratio profiles in the subtropics

(20–35◦ N; thin dashed lines) and at midlatitudes (35–49◦ N;

thin full lines) are presented there. Measurements were taken

from 3 to 12 November in 1994 during the ATLAS-3 shuttle

mission. We depicted midlatitude profiles as solid lines and

subtropical profiles as dashed lines in Fig. 12 of this paper. To

compare the ATMOS profiles with MIPAS Envisat, we used

MIPAS Envisat data of all years from 3 to 12 November and

calculated an arithmetic mean for both latitude bands (sub-

tropics and midlatitudes). In Fig. 12, MIPAS Envisat profiles

are shown in blue, while the ATMOS profiles are shown in

orange. The ATMOS profiles show higher volume mixing ra-

tios than those of MIPAS Envisat, because they were mea-

sured shortly after CCl4 emissions were restricted and, thus,

volume mixing ratios used to be higher in the atmosphere.

However, the general shapes of the ATMOS profiles agree

well with those of MIPAS Envisat. Both MIPAS Envisat

and ATMOS show CCl4 mixing ratios which quickly de-

crease with altitude. The slopes of decline are similar above

∼ 20 km. Largest differences are visible at the lower end of
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the midlatitude profiles. ATMOS CCl4 mixing ratios also

agree well with Liang et al. (2016, Fig. 2) where a time series

of CCl4 surface mixing ratios over several decades is shown.

Volume mixing ratios at the lower end of the profiles are no-

ticeably higher than 100 pptv, which is in very good agree-

ment with peak values of CCl4 shown in Liang et al. (2016,

Fig. 2) for the time around and shortly after 1990. Taking the

temporal development of the surface mixing ratios into ac-

count, ATMOS and MIPAS Envisat measurements provide a

coherent picture.

5.1.2 MIPAS-B

The first balloon-borne version of the MIPAS instrument

was developed prior to the satellite instrument in the late

1980s and early 1990s at the Institute of Meteorology and

Climate Research (IMK) in Karlsruhe (Fischer and Oelhaf,

1996). Measurements with this instrument have been taken

since 1989 (von Clarmann et al., 1993) and first profiles

of CCl4 were derived from a flight at Kiruna, Sweden, on

14 March 1992 (von Clarmann et al., 1995). Due to the strong

decrease of CCl4 with altitude, a clear signal of the gas could

not be identified at tangent altitudes of 14.5 km and above.

Thus, only the spectrum at 11.3 km was analyzed and the

total amount of CCl4 was estimated by scaling the vertical

profile and using information on the shape as measured in

polar winter conditions before. This leads to an estimated

concentration of approximately 110 pptv at 11.3 km, which

is slightly higher than the peak surface values in the long

time series of CCl4 shown in Liang et al. (2016). Ground-

based measurements shown in there support favouring the

MIPAS Envisat CCl4 retrieval with the new spectroscopic

data set, since respective results agree better with measure-

ments shown in Liang et al. (2016). MIPAS-B results over-

estimate the ground-based measurements slightly providing

a consistent picture when taking differences in the volume

mixing ratios into account which result from the old versus

the new spectroscopic data set.

5.2 Comparisons with collocated measurements

All collocated measurements were analyzed using spectro-

scopic data of Nemtchinov and Varanasi (2003), which are

included in the HITRAN 2000 database (Rothman et al.,

2003). Thus, in order to allow for a meaningful compari-

son and not to mask possible other differences, a dedicated

MIPAS Envisat comparison data set was generated which is

based on these spectroscopic data as well.

5.2.1 ACE-FTS

The Atmospheric Chemistry Experiment Fourier Transform

Spectrometer is one of two instruments aboard the Canadian

Satellite SCISAT-1. On 12 August 2003, it was launched

into a 74◦ orbit at 650 km to ensure a focus on higher lati-

tudes. It covers the globe from 85◦ S to 85◦ N. Since ACE-

FTS is an occultation instrument, it takes measurements dur-

ing 15 sunrises and 15 sunsets a day within two latitude

bands. The vertical scan range covers altitudes from the mid-

dle troposphere up to 150 km. Wavelengths between 750 and

4400 cm−1 (13.3 and 2.3 µm) can be detected with a spectral

resolution of 0.02 cm−1. The vertical sampling depends on

the altitude as well as the beta angle. The latter is the angle

between the orbit track and the path from the instrument to

the sun. The sampling ranges from ∼ 1 km between 10 and

20 km to ∼ 2–3.5 km around 35 km and declines to 5–6 km at

the upper end of the vertical range. The field of view covers

3–4 km, which is approximately similar to the vertical resolu-

tion of the instrument. Comparisons in this study were made

using version 3.5 of the ACE-FTS data. The CCl4 retrieval is

performed between 787.5 and 805.5 cm−1 at altitudes from 7

to 25 km (Allen et al., 2009).

For the comparison with ACE-FTS (Fig. 13), coincident

profiles within 2 h time difference and no further than 5◦ lat-

itude and 10◦ longitude away were used. Profiles at latitudes

higher than 60◦ S were omitted. Between the lower end and

∼ 16 km the agreement is always close to 10 %, with slightly

larger differences below 10 km than between 10 and 15 km.

Above 15 km, the mean profiles deviate more strongly and

exceed relative differences of 50 % above 19 km (Fig. 13d).

However, differences above 19 km are not as apparent in the

absolute comparison (Fig. 13a). The volume mixing ratio dif-

ference stays within similar values up to near 25 km. Since

CCl4 decreases rapidly with altitude, this difference is far

more pronounced in relative terms. MIPAS shows slightly

lower volume mixing ratios than ACE-FTS, in general. Part

of this might be attributed to PAN not being accounted for

in the ACE-FTS v3.5 retrieval (Harrison et al., 2017). With

PAN missing from the forward model calculations, the re-

trieval increases CCl4 to compensate. Preliminary ACE-FTS

version 4 results indicate that retrieved CCl4 will skew lower

when PAN is included. However, Harrison et al. (2017) do

not investigate the magnitude of the effect of including PAN

versus not including it. Other items changed in the retrieval,

e.g. the microwindow set and new cross sections, so it is not

clear how much of the decrease in CCl4 can be attributed

to the inclusion of PAN as an interferer in the ACE-FTS re-

trieval. Nevertheless, the agreement between MIPAS Envisat

and ACE is very good, staying within the 10 % range for the

differences up to above 15 km.

5.2.2 MIPAS-B2

MIPAS-B2 is the follow-up of MIPAS-B (Friedl-Vallon

et al., 2004), which was lost in 1992. MIPAS-B and MIPAS-

B2 measurements add up to more than 20 flights to date.

MIPAS-B2 covers the spectral range from 750 to 2500 cm−1

(13.3 and 4 µm) and vertical ranges up to the floating altitude

of typically around 30–40 km. The vertical sampling is ap-

proximately 1.5 km. The spectral region used for the MIPAS-

B2 retrieval ranges from 786.0 to 806.0 cm−1. MIPAS-B2
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Figure 13. Comparison of MIPAS Envisat and version 3.5 ACE-FTS CCl4. (a) Mean profiles of all coincident profiles (black: ACE-FTS;

magenta: MIPAS). Dashed lines show the standard deviations of the mean profiles. (b) Number of coincident points per altitude. (c) Corre-

lation coefficient of the mean profiles. (d) Relative differences of the mean profiles. (e) One standard deviation of the relative differences of

the mean profiles.

Figure 14. Comparison of MIPAS Envisat and MIPAS-B2 CCl4 for the MIPAS-B2 flight on 24 January 2010 over Kiruna, Sweden. (a) Mean

profile of all coincident profiles (black line: MIPAS-B2; red line: MIPAS mean; red squares: coincident MIPAS measurements). (b) Absolute

total error budget without consideration of the spectroscopy error. (c) Relative error budget − red continuous line: difference between the

mean profiles; red dotted line: standard deviation; blue dotted line: mean combined precision; blue dashed line: total mean combined error.

and MIPAS Envisat use the same retrieval strategy and for-

ward model to derive vertical profiles.

Figures 14 and 15 show CCl4 measurements from a sin-

gle flight of MIPAS-B2 each, compared with collocated mea-

surements of MIPAS Envisat along diabatic 2-day backward

and forward trajectories. These trajectories were calculated at

Free University of Berlin (Naujokat and Grunow, 2003) and

are based on European Centre for Medium-Range Weather

Forecasts (ECMWF) 1.25◦
×1.25◦ analyses. The trajectories

start at different altitudes at the respective geolocation of the

balloon measurement. Coincidence criteria for this compar-

ison were 1 h and 500 km within the temporal and spacial

range of the trajectories. Figure 14 shows a comparison with

the MIPAS-B2 flight on 24 January 2010. The comparison

with the MIPAS Envisat mean profile (red line), which was

calculated from the ensemble of all collocated MIPAS En-

visat measurements (red squares), agrees with the MIPAS-

B2 measurement (black line) within 5 pptv for most of the

www.atmos-meas-tech.net/10/2727/2017/ Atmos. Meas. Tech., 10, 2727–2743, 2017
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Figure 15. Comparison of MIPAS Envisat and MIPAS-B2 CCl4 for the MIPAS-B2 flight on 31 March 2011 over Kiruna, Sweden. (a) Mean

profile of all coincident profiles (black line: MIPAS-B2; red line: MIPAS mean; red squares: coincident MIPAS measurements). (b) Absolute

total error budget without consideration of the spectroscopy error. (c) Relative error budget − red continuous line: difference between the

mean profiles; red dotted line: standard deviation; blue dotted line: mean combined precision; blue dashed line: total mean combined error.

altitude range. The MIPAS-B2 measurement lies well within

the spread of all collocated MIPAS Envisat profiles. The dif-

ference (middle panel) is always close to the total combined

error, which includes all error estimates except the spec-

troscopy error. The latter has not been included because a

MIPAS Envisat retrieval setup was used for this compari-

son which is based on the same spectroscopic data as the

MIPAS-B2 retrieval. The right panel shows the relative er-

ror, which stays well within 5 % up to 17 km. Only between

16 and 18 km, the relative difference noticeably exceeds the

combined error of the instruments.

The comparison of the MIPAS-B2 flight on 31 March 2011

(Fig. 15) with MIPAS Envisat presents even better agree-

ment. The difference between the two profiles never exceeds

5 pptv (middle panel) and stays within or close to the com-

bined error of the instruments throughout the whole altitude

range. Larger deviations in the relative differences only occur

above 18 km, where the combined error of the instruments

also increases rapidly, because of small volume mixing ra-

tios of CCl4. Overall, the comparisons with MIPAS-B2 show

excellent agreement between the two instruments. This sug-

gests that the MIPAS Envisat CCl4 error estimates are re-

alistic and that the residuals in the CO2 lines mentioned in

Sect. 3.2 have no major impact on the CCl4 retrieval. This is

also supported by Fig. 10, at least up to about 18 km, since

the standard deviation of the profiles can be explained by the

MIPAS Envisat error estimates to a large extent.

5.2.3 Cryosampler

The cryosampler whose measurements are used here was de-

veloped at Forschungszentrum Jülich (Germany) in the early

1980s (Schmidt et al., 1987) and is a balloon-borne instru-

ment. It collects whole air samples which are then frozen dur-

ing the flight and analyzed using gas chromatography after

the flight. In this analysis, a flight performed on 1 April 2011

by the University of Frankfurt (Fig. 16 black circles) is com-

pared to collocated MIPAS Envisat profiles that lie within

1000 km and 24 h of the cryosampler profile. The MIPAS

Envisat profiles used for the comparison are those retrieved

with the new spectroscopic data set (continuous blue line:

closest MIPAS profile; red line: MIPAS mean profile; blue-

greyish lines: all collocated MIPAS profiles). In addition,

the closest profile produced with the old spectroscopic data

set is shown (dashed blue line). The only difference be-

tween the blue line and the dashed blue line are the dif-

ferent spectroscopic data sets. It is clearly visible that the

closest MIPAS profile produced with the new spectroscopic

data comes closer to the cryosampler measurements, even

though these still show slightly lower volume mixing ratios

of CCl4. A similar pattern of two outliers (second and forth

lowest cryosampler measurements) was also seen in a com-

parison of cryosampler and MIPAS measurements of CFC-

11 and CFC-12 (Eckert et al., 2016), even though the sec-

ond lowest outlier is not as obvious for the CFCs. However,

this might be an indication that cryosampler captured fine

structures (like laminae) produced by the unique atmospheric

situation in spring 2011 (Manney et al., 2011; Sinnhuber
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Figure 16. Comparison of MIPAS Envisat and cryosampler CCl4. The cryosampler measurement was taken on 1 April 2011. The continuous

and dashed blue lines are the respective closest MIPAS Envisat profiles calculated using the new and the old spectroscopic data set.

et al., 2011), which MIPAS Envisat cannot resolve due to its

coarser vertical resolution. All other cryosampler measure-

ments lie within the spread of the collocated MIPAS Envisat

profiles. Taking this into account, the overall agreement of

MIPAS and cryosampler is good and Fig. 16 supports the as-

sumption that the retrieval is improved by the usage of the

new spectroscopic data set.

6 Conclusions

Vertical profiles of CCl4 were retrieved from MIPAS Envisat

limb emission spectra considering various interfering trace

gases and with PAN playing a particularly important role.

Using line mixing in the forward model made it possible to

narrow the spectral region that had to be omitted due to large

residuals and thus to include additional information useful

for the retrieval of CCl4, even though parts of the CO2 Q-

branch still had to be excluded. Introducing a new spectro-

scopic data set (Harrison et al., 2017) resulted in lower vol-

ume mixing ratios of CCl4, which agree better with other

results, e.g. tropospheric values shown in Liang et al. (2016)

and cryosampler measurements. The expected atmospheric

distribution patterns are clearly visible in altitude–latitude

cross sections. These show higher volume mixing ratios of

CCl4 in the tropics and at lower altitudes, which quickly de-

crease above the tropopause due to photolyzation. They also

decrease with increasing latitude and thus follow the Brewer–

Dobson circulation. A maximum in the tropics connected

with higher values of CCl4 below the northern extratropical

tropopause is a feature also seen in HCFC-22 (Chirkov et al.,

2016), where it was associated with the uplift in the Asian

monsoon, so CCl4 distributions in this region might have a

similar explanation. Trends of the entire measurement period

from July 2002 to April 2012 show good agreement with

trends estimated by Valeri et al. (2017). Comparisons with

ACE-FTS and MIPAS-B2 show very good agreement and

historical measurements of MIPAS-B2 and ATMOS are co-

herent with MIPAS Envisat CCl4 results using the new spec-

troscopic data. MIPAS profiles retrieved using the new spec-

troscopic data set agree well with cryosampler and deviations

between the measurements can be explained reasonably. The

latter comparison also suggests that the new spectroscopic

data set improves the MIPAS Envisat CCl4 retrieval. The MI-

PAS Envisat estimated error can explain most of the variabil-

ity of a set of profiles measured during quiescent atmospheric

conditions up to 18 km, so the error estimate seems to be re-

alistic. This is also supported by the comparison of MIPAS

Envisat and MIPAS-B2 where the differences between the

measurements stay mostly within the combined error of the

instruments. Putting differences resulting from different spe-

cial resolutions aside, the comparison with the cryosampler

profile also suggests favouring the spectroscopic data set in-

troduced by Harrison et al. (2017) over the data set used be-

fore.

Data availability. MIPAS data can be accessed at the fol-

lowing website: https://www.imk-asf.kit.edu/english/308.php. The

cryosampler data can be obtained by contacting Andreas Engel

via email (an.engel@iau.unifrankfurt.de). Information on MIPAS-

B can be found at the following website: http://www.imk-asf.kit.

edu/english/ffb.php. For SCISAT/ACE-FTS, the most recent data

version is available from the ACE team, University of Waterloo,

Canada. Publicly available validated data sets can be found at http:

//www.ace.uwaterloo.ca/data.html.
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Appendix A: Error estimates

Table A1. Error estimates for an equatorial profile during the FR period. Errors are given in pptv (relative errors in %).

Total

Altitude Total error Noise parameter Gain LOS HNO4 Shift ILS Temperature ClONO2

40 0.0 (210.6) 0.0 (178.7) 0.0 (114.8) 0.0 (70.2) 0.0 (45.3) 0.0 (55.5) 0.0 (6.0) 0.0 (37.6) 0.0 (30.0) 0.0 (17.2)

35 0.0 (214.1) 0.0 (183.5) 0.0 (116.2) 0.0 (67.3) 0.0 (45.3) 0.0 (55.7) 0.0 (6.0) 0.0 (37.3) 0.0 (30.0) 0.0 (17.1)

30 0.2 (195.8) 0.2 (177.1) 0.1 (85.8) 0.1 (51.3) 0.0 (23.3) 0.1 (54.1) 0.0 (5.2) 0.0 (17.7) 0.0 (23.3) 0.0 (14.0)

25 2.3 (30.4) 2.2 (29.0) 0.9 (11.9) 0.4 (4.8) 0.5 (7.1) 0.5 (7.1) 0.1 (0.8) 0.2 (2.6) 0.2 (2.8) 0.1 (1.3)

20 2.8 (3.8) 2.5 (3.4) 1.3 (1.8) 0.2 (0.2) 0.8 (1.2) 0.1 (0.2) 0.0 (0.0) 0.9 (1.2) 0.3 (0.4) 0.1 (0.2)

15 5.3 (5.5) 2.2 (2.3) 4.9 (5.1) 0.9 (1.0) 4.2 (4.4) 0.2 (0.2) 0.1 (0.1) 2.3 (2.4) 0.4 (0.4) 0.1 (0.1)

10 2.8 (3.2) 2.6 (2.9) 1.0 (1.1) 0.2 (0.2) 0.1 (0.1) 0.2 (0.2) 0.1 (0.1) 0.3 (0.4) 0.8 (0.9) 0.1 (0.1)

Table A2. Error estimates for a polar summer profile during the FR period. Errors are given in pptv (relative errors in %).

Total

Altitude Total error Noise parameter Gain LOS HNO4 Shift ILS Temperature ClONO2

40 0.0 (95.1) 0.0 (64.2) 0.0 (69.4) 0.0 (38.5) 0.0 (46.2) 0.0 (19.8) 0.0 (1.4) 0.0 (19.0) 0.0 (11.3) 0.0 (5.1)

35 0.0 (93.7) 0.0 (64.1) 0.0 (69.0) 0.0 (39.4) 0.0 (46.8) 0.0 (19.7) 0.0 (1.4) 0.0 (19.0) 0.0 (11.3) 0.0 (5.2)

30 0.2 (117.2) 0.2 (87.9) 0.1 (73.2) 0.1 (39.5) 0.1 (53.7) 0.1 (26.4) 0.0 (1.8) 0.0 (11.2) 0.0 (11.2) 0.0 (5.9)

25 2.5 (212.9) 2.2 (187.4) 1.2 (102.2) 0.5 (43.4) 0.9 (73.3) 0.6 (51.1) 0.1 (4.4) 0.1 (8.2) 0.1 (11.1) 0.1 (8.5)

20 2.4 (42.2) 2.1 (36.9) 1.2 (21.1) 0.1 (1.7) 1.2 (21.1) 0.2 (4.0) 0.0 (0.6) 0.0 (0.4) 0.1 (1.5) 0.0 (0.7)

15 2.8 (4.7) 1.7 (2.9) 2.3 (3.9) 0.1 (0.2) 2.2 (3.7) 0.2 (0.4) 0.1 (0.1) 0.5 (0.9) 0.2 (0.3) 0.1 (0.1)

10 3.0 (3.7) 2.3 (2.8) 2.0 (2.4) 0.1 (0.1) 1.4 (1.7) 0.1 (0.1) 0.1 (0.1) 1.2 (1.5) 0.3 (0.3) 0.0 (0.0)

Table A3. Error estimates for a polar winter profile during the FR period. Errors are given in pptv (relative errors in %).

Total

Altitude Total error Noise parameter Gain LOS HNO4 Shift ILS Temperature ClONO2

40 0.0 (45.8) 0.0 (34.7) 0.0 (30.5) 0.0 (16.7) 0.0 (20.8) 0.0 (9.3) 0.0 (0.9) 0.0 (7.4) 0.0 (5.8) 0.0 (4.4)

35 0.0 (46.6) 0.0 (34.6) 0.0 (29.3) 0.0 (16.0) 0.0 (20.0) 0.0 (9.3) 0.0 (0.9) 0.0 (7.3) 0.0 (5.9) 0.0 (4.4)

30 0.2 (47.8) 0.2 (40.7) 0.1 (26.3) 0.0 (11.7) 0.1 (19.4) 0.0 (10.5) 0.0 (0.7) 0.0 (1.8) 0.0 (4.1) 0.0 (4.1)

25 2.4 (58.5) 2.2 (53.6) 1.1 (26.8) 0.4 (8.8) 0.8 (19.7) 0.6 (13.6) 0.0 (0.4) 0.1 (2.4) 0.1 (2.9) 0.2 (5.1)

20 2.8 (22.8) 2.7 (22.0) 0.9 (7.3) 0.0 (0.4) 0.8 (6.8) 0.3 (2.4) 0.1 (0.4) 0.0 (0.1) 0.0 (0.1) 0.1 (1.0)

15 4.4 (7.7) 1.8 (3.1) 4.0 (7.0) 0.0 (0.1) 3.9 (6.8) 0.2 (0.4) 0.0 (0.0) 0.9 (1.6) 0.1 (0.1) 0.0 (0.1)

10 2.7 (3.1) 2.5 (2.9) 0.9 (1.0) 0.2 (0.2) 0.5 (0.6) 0.1 (0.1) 0.1 (0.1) 0.1 (0.1) 0.5 (0.6) 0.1 (0.1)

Table A4. Error estimates for an equatorial profile during the RR period. Errors are given in pptv (relative errors in %).

Total

Altitude Total error Noise parameter Gain LOS HNO4 Shift ILS Temperature ClONO2

40 0.0 (3058.9) 0.0 (2867.7) 0.0 (879.4) 0.0 (172.1) 0.0 (124.3) 0.0 (726.5) 0.0 (47.8) 0.0 (372.8) 0.0 (18.2) 0.0 (210.3)

35 0.0 (18560.0) 0.0 (17998.0) 0.0 (5511.9) 0.0 (899.9) 0.0 (899.9) 0.0 (4443.2) 0.0 (303.7) 0.0 (2531.0) 0.0 (146.2) 0.0 (1293.6)

30 0.2 (73.5) 0.2 (60.7) 0.1 (41.6) 0.0 (13.1) 0.1 (19.5) 0.0 (14.1) 0.0 (2.0) 0.1 (31.3) 0.0 (3.5) 0.0 (3.5)

25 2.6 (19.9) 2.0 (15.3) 1.6 (12.2) 0.4 (3.2) 1.2 (9.2) 0.3 (2.4) 0.1 (0.5) 0.9 (6.9) 0.1 (0.6) 0.1 (0.5)

20 3.3 (5.5) 2.4 (4.0) 2.2 (3.7) 0.6 (1.0) 2.1 (3.5) 0.1 (0.1) 0.1 (0.1) 0.3 (0.5) 0.1 (0.2) 0.0 (0.1)

15 6.2 (7.3) 5.1 (6.0) 3.6 (4.3) 1.0 (1.2) 3.4 (4.0) 0.4 (0.5) 0.0 (0.0) 0.0 (0.0) 0.5 (0.6) 0.0 (0.0)

10 6.2 (7.3) 4.9 (5.8) 3.7 (4.4) 1.1 (1.3) 3.5 (4.1) 0.4 (0.5) 0.0 (0.0) 0.1 (0.1) 0.5 (0.6) 0.0 (0.1)
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Table A5. Error estimates for a polar summer profile during the RR period. Errors are given in pptv (relative errors in %).

Total

Altitude Total error Noise parameter Gain LOS HNO4 Shift ILS Temperature ClONO2

40 0.0 (336.8) 0.0 (307.1) 0.0 (158.5) 0.0 (96.1) 0.0 (56.5) 0.0 (73.3) 0.0 (2.2) 0.0 (70.3) 0.0 (2.7) 0.0 (12.9)

35 0.0 (333.4) 0.0 (296.4) 0.0 (148.2) 0.0 (92.6) 0.0 (55.6) 0.0 (72.2) 0.0 (2.0) 0.0 (67.6) 0.0 (2.7) 0.0 (13.0)

30 0.2 (299.3) 0.2 (273.3) 0.1 (123.6) 0.1 (80.7) 0.0 (52.1) 0.1 (69.0) 0.0 (0.4) 0.0 (27.3) 0.0 (3.1) 0.0 (7.5)

25 2.2 (72.1) 2.1 (68.9) 0.6 (19.3) 0.3 (10.2) 0.1 (2.9) 0.5 (15.7) 0.0 (0.6) 0.0 (1.0) 0.0 (0.5) 0.1 (1.9)

20 3.0 (16.2) 2.2 (11.9) 2.0 (10.8) 0.0 (0.1) 2.0 (10.8) 0.1 (0.4) 0.1 (0.5) 0.4 (2.3) 0.0 (0.2) 0.0 (0.1)

15 2.8 (3.9) 2.2 (3.1) 1.8 (2.5) 0.2 (0.3) 1.6 (2.3) 0.1 (0.2) 0.0 (0.0) 0.8 (1.2) 0.0 (0.1) 0.0 (0.0)

10 3.0 (3.6) 1.8 (2.2) 2.5 (3.0) 0.2 (0.3) 2.2 (2.6) 0.0 (0.1) 0.1 (0.2) 1.0 (1.2) 0.1 (0.1) 0.0 (0.0)

Table A6. Error estimates for a polar winter profile during the RR period. Errors are given in pptv (relative errors in %).

Total

Altitude Total error Noise parameter Gain LOS HNO4 Shift ILS Temperature ClONO2

40 0.0 (632.5) 0.0 (367.3) 0.0 (510.1) 0.0 (204.0) 0.0 (448.9) 0.0 (67.3) 0.0 (9.8) 0.0 (24.5) 0.0 (61.2) 0.0 (36.7)

35 0.0 (608.6) 0.0 (342.4) 0.0 (494.5) 0.0 (190.2) 0.0 (437.4) 0.0 (66.6) 0.0 (9.5) 0.0 (22.8) 0.0 (60.9) 0.0 (36.1)

30 0.2 (369.8) 0.1 (228.9) 0.2 (281.8) 0.1 (112.7) 0.1 (264.1) 0.0 (42.3) 0.0 (6.0) 0.0 (2.5) 0.0 (33.5) 0.0 (22.9)

25 2.9 (308.3) 2.2 (233.9) 1.8 (191.3) 0.7 (76.5) 1.6 (170.1) 0.4 (41.5) 0.1 (6.1) 0.2 (26.6) 0.2 (20.2) 0.2 (23.4)

20 2.9 (46.0) 2.7 (42.8) 1.1 (17.4) 0.1 (1.4) 1.0 (15.9) 0.2 (2.5) 0.1 (1.2) 0.3 (4.6) 0.1 (0.9) 0.1 (1.3)

15 3.4 (5.1) 2.3 (3.4) 2.5 (3.7) 0.3 (0.5) 2.4 (3.6) 0.1 (0.2) 0.0 (0.1) 0.5 (0.7) 0.1 (0.1) 0.0 (0.0)

10 2.2 (2.6) 1.5 (1.8) 1.6 (1.9) 0.0 (0.0) 1.4 (1.7) 0.1 (0.1) 0.0 (0.0) 0.7 (0.9) 0.2 (0.2) 0.0 (0.0)
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