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Abstract

The mid-infrared FTIR-limb-sounder Michelson Interferometer for Passive Atmospheric

Sounding – STRatospheric aircraft (MIPAS-STR) was deployed onboard the strato-

spheric aircraft M55 Geophysica during the RECONCILE campaign in the arctic

winter/spring 2010. From the MIPAS-STR measurements, vertical profiles and 2-5

dimensional vertical cross-sections of temperature and trace gases are retrieved. De-

tailed mesoscale structures of polar vortex air, extra vortex air and vortex filaments

are identified in the results at a typical vertical resolution of 1 to 2 km and typical hor-

izontal sampling density of 45 or 25 km, depending on the sampling programme. Re-

sults are shown for the RECONCILE flight 11 on 2 March 2010 and are validated with10

collocated in-situ measurements of temperature, O3, CFC-11, CFC-12 and H2O. Ex-

ceptional agreement is found for the in-situ comparisons of temperature and O3, with

mean differences (vertical profile/along flight track) of 0.2/−0.2 K for temperature and

−0.01/0.05 ppmv for O3 and corresponding sample standard deviations of the mean dif-

ferences of 0.7/0.6 K and 0.1/0.3 ppmv. The comparison of the retrieved vertical cross-15

sections of HNO3 from MIPAS-STR and the infrared limb-sounder Cryogenic Infrared

Spectrometers and Telescopes for the Atmosphere – New Frontiers (CRISTA-NF) indi-

cates comprehensive agreement. We discuss MIPAS-STR in its current configuration,

the spectral and radiometric calibration of the measurements and the retrieval of atmo-

spheric parameters from the spectra. The MIPAS-STR measurements are significantly20

affected by continuum-like contributions, which are attributed to background aerosol

and broad spectral signatures from interfering trace gases and are important for mid-

infrared limb-sounding measurements in the Upper Troposphere/Lower Stratosphere

(UTLS) region. Considering for continuum-like effects, we present a scheme suitable

for accurate retrievals of temperature and an extended set of trace gases, including the25

correction of a systematic line-of-sight offset.
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1 Introduction

Airborne and balloon-borne remote-sensing measurements are filling the gap between

in-situ-measurements and satellite-borne remote sensing measurements in terms of

spatial coverage and spatial resolution. While classical in-situ measurements from

aircraft or balloon platforms allow for measurements with high absolute accuracy con-5

strained to the flight track, satellite remote measurements allow for maximal vertical

sampling range, global coverage and extended time series, but often with higher uncer-

tainties. In contrast to comparable satellite techniques, remote-sensing measurements

from aircraft and balloon platforms focus on limited atmospheric areas, but with a much

higher sampling density. The proximity of the sampled air-masses results in lower un-10

certainties in the retrievals, since errors through pointing stability and precision, non-

local thermodynamic equilibrium effects in the spectra and extended horizontal trace

gas gradients are less severe. Further advantages of airborne high-altitude remote-

sensing measurements are that flight scenarios can be adapted to scientific objectives

individually and specific atmospheric structures can be targeted flexibly.15

The cryogenic FTIR spectrometer MIPAS-STR (Piesch et al., 1996) onboard the

high altitude aircraft M55 Geophysica is the airborne version of the series of MIPAS-

instruments (Fischer and Oelhaf, 1996), including also ballon-borne (Friedl-Vallon et

al., 2004) and satellite-borne techniques (Fischer et al., 2008). From the limb-emission

measurements of MIPAS-STR, vertical profiles and two-dimensional cross-sections of20

atmospheric temperature and trace gases (HNO3, O3, CFCs, ClONO2, H2O and sev-

eral other species) are derived, allowing for the reconstruction “snapshots” of the chem-

ical and dynamical atmospheric situation along the flight-track.

MIPAS-STR was first deployed during the Antarctic campaign APE-GAIA in 1999

(Höpfner et al., 2000). In the following years, MIPAS-STR was operated in several25

other scientific campaigns and was applied for the validation of MIPAS-ENVISAT (Blom

et al., 2004; Keim et al., 2004; Cortesi et al., 2007; Höpfner et al., 2007; Wang et al.,

2007) and the microwave limb sounder MARSCHALS (Dinelli et al., 2009). The vertical
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profile of peroxyacetyl nitrate (PAN) in the upper tropical troposphere was derived from

measurements of MIPAS-STR (Keim et al., 2008). MIPAS-STR was recently operated

during the RECONCILE campaign (Reconciliation of Essential Process Parameters for

an Enhanced Predictability of Arctic Stratospheric Ozone Loss and its Climate Interac-

tions, see https://www.fp7-reconcile.eu) in the Arctic Winter 2009/2010.5

We describe the instrument in its current configuration and present results for REC-

ONCILE flight 11 on 2 March 2010. An advanced retrieval approach is established,

considering continuum-like effects, which significantly affect mid-infrared limb-emission

spectra in the altitude-range sampled by MIPAS-STR. Retrieval results are shown for

temperature and an extended set of trace gases. The results of MIPAS-STR are com-10

pared with results from in-situ-instruments and the mid-infrared limb-sounder CRISTA-

NF, which were deployed onboard the Geophyisca simultaneously.

An overview of MIPAS-STR in its actual setup is given in Sect. 2. The spectral and

radiometric calibration scheme is summarized in Sect. 3. The atmospheric situation

and the applied sampling strategy during RECONCILE flight 11, as well as the cloud15

detection procedure from MIPAS-STR spectra are discussed in Sect. 4. Aspects of the

retrieval are described in Sect. 5. The results and validation are discussed in Sect. 6

and conclusions are drawn in Sect. 7.

2 Instrument overview

MIPAS-STR is a cryogenic high-resolution FTIR-spectrometer, capable of the detection20

of the limb-emission spectra of atmospheric trace gases in the mid-infrared. The instru-

ment is described in its previous configurations in Piesch et al. (1996), Kimmig (2001)

and Keim (2002). Many aspects of the instrument are comparable to the ballon-

borne instrument MIPAS-B2 (Friedl-Vallon et al., 2004) and in a certain extend also

to satellite-borne instrument MIPAS-Envisat (Fischer et al., 2008). Since MIPAS-STR25

has been slightly modified and optimised compared to prior campaigns, an updated

summary of the instrument characteristics is given together with a brief description
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here.

The instrument is deployed onboard the high-altitude aircraft M55 Geophysica, al-

lowing for flight altitudes of up to 20 km and operating ranges of around 3000 km. The

typical airspeed of the Geophysica at stratospheric altitudes is about 700 to 750 km h
−1

.

MIPAS-STR is pointing towards the right hand side of the flight path (91
◦

relative to nose5

of aircraft). Sampling is performed in limb-mode and upward-looking geometries, al-

lowing for the subsequent reconstruction of vertical profiles and two-dimensional cross-

sections of temperature and trace gases.

Basically, the instrument is set up by two main modules: the optics module includes

the scan-mirror, the telescope, the interferometer and the detector unit. The electron-10

ics module consists of the data-processing and the instrument-control electronics. A

schematic representation of the optics module is shown in Fig. 1 and the characteristics

of the instrument in the actual setup are summarized in Table 1.

Infrared radiation from the probed airmass entering the instrument is directed via the

scan-mirror into the telescope, the interferometer and the detector dewar subsequently.15

The main function of the 3-mirror telescope with an optical conversion ratio of 1.7 is

the suppression of radiation from outside the field-of-view (FOV), which is scattered

at surfaces inside the instrument or is diffracted at the edges of the front optics. The

vertical FOV-extension is 0.44
◦

(full cone). For the characterization of the instrumental

line-shape (ILS), a theoretical model is applied instead of an experimental determi-20

nation of the ILS. This approach has been found to be suitable for the ballon-borne

instrument MIPAS-B2 (Lengel, 2004) and also shows reliable results for MIPAS-STR.

Furthermore, Stiller et al. (2002) have shown for the case of MIPAS-Envisat that er-

rors due to FOV- and ILS-effects are of minor importance in radiative modelling for this

comparable instrument. However, the FOV shape of the instrument is characterized by25

calibration measurements on ground, and the resulting vertical FOV weighting function

is considered in the retrievals to minimize possible uncertainties.
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The effective optical path difference of the double pendulum interferometer (Fis-

cher and Oelhaf, 1996) is ±13.9 cm. Two-sided interferograms are recorded, resulting

in spectra with an unapodized spectral resolution of 0.036 cm
−1

. After applying the

Norton-Beer strong apodization (Norton and Beer, 1976), an effective spectral resolu-

tion of 0.058 cm
−1

is obtained. The effects of vibrations, which are typical for an aircraft5

platform like the Geophyisca, on the interferometer of MIPAS-STR have been investi-

gated by Kimmig (2001). A dedicated time-equidistant sampling method introduced by

Brault (1996) was adapted for the recording of interferograms, such that perturbations

in the spectra resulting from vibrations are minimized.

In order to minimize instrumental background radiation, the instrument is dry ice-10

cooled to about 210 K and the different reflective optics are coated with gold, protected

gold or Silflex MK2
TM

, respectively. The detector is cooled by liquid helium to about

4 K. Incoming infrared radiation is entering the detector dewar via an anti-reflectance

coated ZnSe-window. Inside the detector dewar, the radiation is split up into four

parts by dichroics and is directed via filters and blockers to the Si:As back-illuminated15

band-impurity detectors of the four channels. In this context, results from the spec-

tral channel 1 (725 to 990 cm
−1

) are discussed. For this channel, a typical plot of the

apodized noise equivalent spectral radiance (NESR) under flight conditions is shown

in Fig. 2. In the spectral range between 820 and 970 cm
−1

, an optimal mean NESR

of about 8×10
−9

W/(cm
2

sr cm
−1

)) is obtained, and at lower and higher wave-numbers,20

the NESR is still mainly around 1 to 2×10
−8

W/(cm
2

sr cm
−1

).

The electronics module consists of a hierarchic system with intelligent and indepen-

dent subsystems, realized by a transputer-network. The top system is a PC-based

computer running a real-time operating system. Subsystems are the interferometer

electronics, the line-of-sight (LOS) electronics and the housekeeping/auxiliary elec-25

tronics. The system is designed for fully automatic operation during flight. On ground,

the system can be accessed and commanded via Ethernet and during flight via an

Iridium satellite link (see http://www.iridium.com/default.aspx).
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Since the recording of a single interferogram takes about 9.5 s and the measure-

ments are performed at fixed tangent altitudes, a reliable and accurate line-of-sight

(LOS) stabilization is required for compensating roll-variations of the aircraft in order to

minimize uncertainties in the trace gas retrievals. The development and verification of

the LOS stabilization of MIPAS-STR is described by Keim (2002). The LOS elevation5

stabilization is realized by the scan-mirror control loop. The angle of the scan-mirror is

measured by a 19-bit encoder and stabilized by a motor with reference to the attitude

information provided by the Attitude and Heading Reference System (AHRS), which

is part of the instrument. The AHRS is a Schuler-adapted, north-seeking strapdown

inertial navigation system with embedded GPS and a 10 states Kalman-filter. The10

AHRS provides attitude angles at a data rate of 128 Hz and low data age, allowing for

a near real-time LOS stabilization. After flight, the LOS data is refined by a dedicated

post-processing procedure, compensating for drifts in the AHRS data.

Under flight conditions, a slight misalignment of the optical axis of the instrument

with respect to the coordinate system of the AHRS can happen. The observed mis-15

alignment is mainly attributed to the exposure of the instruments housing to the large

temperature difference between ground and stratosphere (in the order of 50 K). For the

compensation of this effect, the offset of the LOS with reference to the AHRS coor-

dinate system is quantified by LOS retrievals (see Sect. 5). The retrieved LOS offset

is found to be approximately stable under the relatively constant flight-conditions in20

the stratosphere for individual flights. For each flight, one single LOS offset-parameter

is determined and considered for the subsequent retrievals of temperature and trace

gases. Including the uncertainties inherent to the AHRS, the accuracy of the scan-

mirror adjustment and the uncertainties resulting from the LOS retrieval, a total pointing

accuracy of 0.78 arcmin (1σ) is estimated. This value corresponds to about 3 % of the25

instrumental FOV or about 100 m at the lowest tangent altitude.

The sampling programme of MIPAS-STR includes atmospheric measurements and

calibration measurements. The atmospheric measurements with negative elevation

angles, which are characterized by their tangent altitude, allow for the retrieval of ver-
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tically resolved profiles of atmospheric temperature and trace gases below flight alti-

tude. Measurements with positive elevation angles allow for the retrieval of the column

amounts of these parameters above the flight path and also contain limited informa-

tion on the vertical distributions directly above flight altitude. In Fig. 3, the sampling

scheme of the standard limb sequence is illustrated. The atmospheric measurements5

are enclosed by blackbody and deep space (zenith view) calibration measurements.

Since the limb scans are aligned in a mirrored pattern, two full scans are shown. The

standard sequence includes limb-viewing geometries with tangent altitudes between

5 km and the flight altitude (with a vertical spacing of 1 km above and 1.5 km below

8 km), an additional limb observation with an elevation angle of −0.3
◦

in order to sam-10

ple the area directly below the flight altitude, and comprehensive upward sampling. For

a typical flight altitude of 18 km, one full limb scan of the standard limb sequence (in-

cluding calibration measurements) takes about 3.8 min, corresponding to a flight path

of approximately 45 km. The horizontal distances of the tangent points from the aircraft

position increase from about 33 km for the highest geometry (tangent altitude 17.9 km,15

corresponding to an elevation angle of −0.30
◦

) to about 400 km for the lowest geome-

try (tangent altitude 5 km, corresponding to an elevation angle of −3.54
◦

). The vertical

FOV diameter at the tangent point increases for the respective geometries from about

0.3 km to 3.0 km. Taking into account the vertical FOV angle of 0.44
◦

, an oversampling

with a factor of 2–3 is obtained for the limb-viewing geometries.20

In the presence of opaque tropospheric clouds or in case of the requirement for

an increased horizontal sampling density at higher altitudes, a modified measurement

scenario is applied. Tangent altitudes below 9 km are omitted and upward-scanning

is performed less frequently, resulting in a total time of about 2.4 min for one full limb

scan, corresponding to a horizontal sampling of approximately 25 km.25
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3 Spectral and radiometric calibration

The spectral and radiometric calibration procedure is described in Höpfner et al. (2000)

and Keim (2002) and is in many aspects similar to the procedure for the ballon-borne

instrument MIPAS-B2 (Friedl-Vallon et al., 2004). In this context, a summary of the full

calibration cycle specific to MIPAS-STR is given.5

For the conversion of the atmospheric raw interferograms into radiometric calibrated

spectra, basically four characteristic key-quantities have to be determined:

– The nonlinearity in the detector response

– The instrumental phase needed for the statistical phase correction within the

Fast-Fourier-Transformation of the atmospheric interferograms into spectra10

– The radiometric offset resulting from instrumental background radiation

– The gain-function for the radiometric calibration of the spectra

After the determination of these parameters, the atmospheric interferograms are trans-

formed into spectra and are radiometrically calibrated according to the two-point cali-

bration:15

S(ν)=
A(ν)−U(ν)

c(ν)
(1)

whereas ν stands for the spectral position, A(ν) for the atmospheric raw spectrum, U(ν)

for the instrumental background spectrum, c(ν) for the radiometric gain function and

S(ν) for the calibrated atmospheric spectrum. A schematic representation of the full

calibration cycle is shown in Fig. 4 and the key-steps are described in the following20

sections in more detail.

For the correction of the detector nonlinearity, dedicated measurement phases are

carried out during each flight, and the detector nonlinearity is considered to be approx-

imately constant during an individual flight. After determination, the detector nonlin-
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earity correction is applied to all interferograms of a flight prior to the other calibration

steps.

For the subsequent steps phase correction, determination of instrumental offset, and

radiometric calibration, an individual flight is separated into parts, where (i) the instru-

mental phase is sufficiently stable and (ii) the instrumental offset and (iii) the radiometric5

gain function show only approximately linear variations, since the instrumental phase

is averaged and the latter two quantities are fitted linearly in time for the atmospheric

measurements. Furthermore, the mentioned parameters are determined separately

for each interferometer scan direction (forward/backward sweep are carried out alter-

natingly), and the atmospheric interferograms are calibrated separately for the different10

interferometer scan directions, since the data-acquisition is slightly different.

3.1 Detector nonlinearity correction

The Si:As back-illuminated band impurity detectors show a significantly nonlinear re-

sponse at increasing photon fluxes, resulting in a distortion of the interferograms and

artefacts in the associated spectra.15

The quantification of the detector nonlinearity for the ballon-borne instrument MIPAS-

B2 is described in Kleinert (2006) and is carried out analogously for MIPAS-STR. Ac-

cordingly, a measured nonlinear interferogram can be approximated by a polynomial

function of linear interferograms. Hence, the corresponding uncorrected spectrum can

be described as a convolution of the undisturbed spectrum with itself and shows higher20

order artefacts. The effects of nonlinearity can be deduced and corrected from the arte-

facts in blackbody spectra from interferograms without digital filtering data reduction as

a function of the corresponding DC-level measured at the detector.

In the case of MIPAS-STR, during each flight at least one phase for the recording of

interferograms without digital filtering data reduction is carried out. Depending on the25

availability of measurements of sufficient quality, between 15 and 30 interferograms

are averaged typically for each interferometer scan direction and converted into spec-

tra. The resulting two spectra are averaged again and from the final resulting spectrum,
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the nonlinearity is quantified by the minimization of the corresponding artefacts accord-

ing to Kleinert (2006). In the case of the channel 1 spectra of MIPAS-STR, the quadratic

and cubic artefacts are clearly apparent and are minimized in the spectral interval from

30 to 280 cm
−1

for the quadratic and in the interval from 2150 to 2900 cm
−1

for the cu-

bic artefacts. No signs of higher artefacts are found. Although the quadratic artefacts5

are outside channel 1 and a cubic artefact shows only weak influence in this spec-

tral region, the difference in the detector responses between deep space spectra (low

photon flux) and blackbody spectra (high photon flux) has to be considered to keep the

two-point calibration valid. For RECONCILE flight 11 on 2 March 2010 discussed in this

context, an 18 % lower response is found for a typical blackbody spectrum compared10

to a deep space spectrum.

3.2 Phase correction of the interferograms

Since different contributions of radiation arise from the atmosphere and the differ-

ent optical components inside the instrument, complex spectra with a natural phase

are resulting from the interferograms after the Fast-Fourier-Transformation (see Friedl-15

Vallon et al., 2004). Basically, atmospheric radiation and radiation resulting from the

instruments optical components between the beamsplitter of the interferometer and

the detector contribute to the real part of the spectrum, while the self-emission of the

beamsplitter contributes mainly to the imaginary part. Due to the frequency-dependent

signal propagation in time in the optical dispersive elements and the electronic compo-20

nents, as well as sampling shifts relative to the interferogram peak, phase errors are

resulting. Since the beamsplitter emission gives rise to significant contributions in the

atmospheric measurements, the standard method described by Forman et al. (1966)

cannot be applied here. A dedicated approach suited for the phase correction for MI-

PAS instruments has been developed by Trieschmann et al. (1999). A characteristic25

instrumental phase is determined using blackbody calibration measurements and is

then used as initial phase for a statistical phase correction of the atmospheric interfer-

ograms (see Fig. 4).
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Following this approach, in the first step an initial mean instrumental phase is de-

termined from the blackbody measurements of the corresponding flight part according

to Forman et al. (1966). This step is applicable, since for the blackbody measure-

ments the contribution of the beamsplitter emission is comparably weak. The resulting

preliminary instrumental phase is then applied for the phase correction of the 5
◦

/8
◦

/10
◦

-5

measurements (elevation angles depending on the sampling sequence), which show

only weak atmospheric signatures and allow for the extraction of the beamsplitter emis-

sion in the imaginary part. The resulting imaginary spectra, which are characterized by

the beamsplitter emission pattern, are then averaged and smoothed in order to reduce

the noise level without affecting the broad signatures resulting from the beamsplitter10

emission. In the next step, the improved final instrumental mean phase is determined

from the blackbody measurements according to Forman et al. (1966), taking into ac-

count the beamsplitter emission derived in the previous step. The resulting instrumen-

tal phase serves as starting point for the statistical phase correction of the deep-space

and atmospheric interferograms. In the statistical phase correction (Trieschmann et15

al., 1999), (i) the correlations between the real and imaginary parts of the spectra are

minimized, since these parts are theoretically absolute independent from each other

and (ii) the variances in the imaginary parts are minimized, since no sharp line features

are expected here.

After the phase correction, the real parts of the atmospheric spectra (negative and20

positive elevation angles), which are containing the atmospheric signatures of inter-

est, and the deep space spectra, allowing for the extraction of the instrumental back-

ground radiation, are further processed in order to obtain finally calibrated atmospheric

spectra.

3.3 Determination of instrumental offset and radiometric calibration25

The instrumental offset in the real parts of the spectra is determined from the deep

space spectra following the iterative scheme developed by Höpfner et al. (2000). Since

the deep space spectra are obtained from zenith view observation geometries towards
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cold space, only weak atmospheric rest-signatures are apparent, and further remain-

ing contributions represent the instrumental background radiation. In order to repro-

duce the instrumental background with maximal accuracy, the remaining atmospheric

rest-signatures are removed by a radiative transfer step with KOPRA/KOPRAFIT (see

Sect. 5.1). For this step, calibrated deep space spectra are required and therefore, a5

preliminary calibration is applied. The atmospheric rest-signatures in the deep space

spectra are removed by a line fitting step without radiative transfer, allowing for the

determination of a preliminary instrumental offset. Using the preliminary instrumental

offset, a preliminary radiometric gain function is determined from the blackbody mea-

surements, allowing for the calibration of the deep space spectra. For the determination10

of the preliminary gain function, as well for the final gain function, the blackbody mea-

surements are used at a reduced resolution of 0.5 cm
−1

, in order to reduce the noise

level without affecting the filter function.

In the radiative transfer step, the remaining weak signatures of CO2, O3, HNO3 and

H2O are retrieved and then subtracted from the measured deep space spectra, result-15

ing in the desired instrumental offset spectra.

With the knowledge of the instrumental offset, the final radiative gain function is

determined from the blackbody measurements according to Eq. (2):

c(ν)=
BB(ν)−U(ν)

B(ν,T ) ·e(ν)
(2)

whereas c(ν) represents the final radiative gain function, BB(ν) the blackbody spectrum,20

U(ν) the instrumental offset spectrum, B(ν,T ) the Planck function of the temperature T

and e(ν) the emissivity of the blackbody. With the knowledge of the precise instrumental

offset and the radiative gain function, the atmospheric spectra are calibrated according

to Eq. (1).

In Fig. 5, examples of calibrated atmospheric spectra are shown together with a cal-25

ibrated deep space spectrum. The deep space spectrum and the spectra with high el-

evation angles indicate a flat baseline and show no signs of any significant radiometric
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offset. For lower elevation angles, the spectral baseline is superimposed by overlap-

ping signatures of trace gases and significant continuum-like contributions, which have

to be considered in the retrievals.

4 Flight description

RECONCILE flight 11 was carried out on 2 March 2010, starting from Longyearbyen5

(Spitsbergen) at 09:35 UTC and landing in Kiruna (Sweden) at 13:35 UTC. The flight

was designated as the second part of a double-flight from Kiruna to Longyearbyen and

return, and was situated in the late phase of the polar vortex 2009/2010 after a vortex

split in February. During the time of the flight, a compact vortex remnant was passing

Spitsbergen coming from Canada, allowing for the sampling of aged vortex air and10

vortex filaments.

The vertical distribution of the tangent points of the MIPAS-STR observations along

the flight track is shown in Fig. 6 (upward-viewing geometries not indicated) together

with the cloud index. During the first part of the flight, the modified limb sequence

omitting the tangent points below 9 km was carried out, in order to achieve a high15

horizontal sampling density in the vortex air. Beginning from 11:35 UTC, the standard

sequence with tangent points down to 5 km was applied, in order to increase the vertical

coverage.

According to Spang et al. (2004), the cloud index is derived from the spectra as

the colour ratio between the microwindows 788.20 to 796.25 cm
−1

and 832.30 to20

834.40 cm
−1

and is indicated colour-coded in Fig. 6. While spectra with cloud in-

dices higher than 4 are assigned as cloud-free, cloud indices between 1 and 4 indi-

cate partly cloud-affected spectra and values close to 1 indicate clearly cloud-affected

spectra. Since the cloud index described in Spang et al. (2004) is derived for MIPAS

and CRISTA (Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere)25

spectra from satellite orbits and is defined for stratospheric altitudes, the threshold for

cloud-affected spectra is likely to be slightly different for MIPAS-STR, especially at tro-
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pospheric altitudes. In fact, further studies (not published) indicate, that MIPAS-STR

spectra with cloud index 3 are still retrievable without constraints. However, in this

context the conservative cloud index threshold of 4 is applied in order to avoid any

significant cloud-effects in the retrievals. While in Fig. 6 clearly cloud-affected spectra

(cloud-index close to 1) are only visible towards the very end of the flight at the lowest5

tangent points, spectra assigned as partially cloud affected (cloud indices between 1

and 4) are found for all geometries with tangent points below 8 km and the correspond-

ing spectra are omitted in the retrievals.

In Fig. 7, the flight track is shown together with the distribution of the tangent points.

Since MIPAS-STR is pointing to the right hand side of the Geophysica, during the first10

flight part before the turning point, the area in the south-east of the flight track was

sampled. After the turn at approximately 82
◦

N, the instrument was sampling the area

west of the flight track. The altitude distribution of the tangent points reflects the fact,

that lower tangent points are situated further away from the aircraft position.

In Fig. 8, the meteorological context during the discussed RECONCILE Flight 11 is15

shown. The potential vorticity map at 450 K (approximately coinciding with the flight

altitude of the Geophysica between 10:00 and 12:00 UTC) shows the late vortex rem-

nant coming from Canada, passing Spitsbergen with the lower edge from north-west.

The map reflects the meteorological situation at 12:00 UTC, well coinciding with the

time of the flight. As can be seen from Figs. 7 to 8, the Geophysica ascended from20

Longyearbyen at Spitsbergen into the Canadian vortex remnant. After the turn at ap-

proximately 10:30 towards the southward flight leg, different air-masses covering vortex

air, vortex-edge air and extra-vortex air were passed subsequently. An extended vortex

filament can be identified in Fig. 8 above the Atlantic western of Scandinavia, which is

covered partially by the tangent points of MIPAS-STR during the southern flight part. It25

has to be noted that vortex air and extra-vortex air can contribute to individual spectra

of MIPAS-STR at the same time as a consequence of the horizontal extended viewing

geometries.
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5 Retrieval

5.1 Retrieval method

The retrieval of the atmospheric parameters is carried out using the forward model

Karlsruhe Optimized and Precise Radiative Transfer Algorithm (KOPRA) (Stiller et al.,

2000) and the inversion module KOPRAFIT (Höpfner et al., 2001).5

KOPRA is a dedicated fast line-by-line code for the modelling of spectra from high-

resolution spectrometers. It allows for including both limb mode and upward scanning

geometries together for the same retrieved profile. Simultaneously, the derivatives of

the spectra with respect to atmospheric and instrumental parameters are calculated.

Various atmospheric aspects of radiative transfer are supported, like non-spherical ray-10

tracing, refraction, aerosol-effects, line-mixing and non-local thermodynamic equilib-

rium. Instrumental aspects like finite FOV and ILS are also considered in forward mod-

elling. The spectral lines of the target gases are modelled using the Voigt-Profile, and

for species with unresolved spectral signatures, available cross-section data is applied.

Utilizing the analytical derivatives provided by KOPRA, the inversion algorithm KO-15

PRAFIT allows for the fitting of the full set of observations of one scan in many mi-

crowindows simultaneously, resulting in the desired vertical profile or quantity of in-

terest. For the inversion calculations in this context resulting in vertical profiles of

atmospheric parameters, Gauss-Newton iteration subjected to Tikhonov-Phillips reg-

ularization (Tikhonov, 1963; Phillips, 2003) is applied:20

xi+1 =xi +

(

KT
i
S−1
y Ki +γLTL

)

−1[

KT
i
S−1
y (y− f(xi ))+γLTL(xa−xi )

]

(3)

Here, i represents the iteration-index, x i stands for the vector with the retrieval quan-

tities, xa for the a priori-profile, y represents the vector with the measured radiances,

Ki is the spectral derivatives matrix (Jacobian) with respect to the retrieved quantities,

Sy the variance-covariance matrix of the measurements and f the forward-model. The25

Tikhonov-Phillips regularization is realized by the first-order regularization operator L
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(e.g. Steck, 2002) and the regularization strength is adjusted by the regularization pa-

rameter γ. An advantage of the applied Tikhonov-Phillips smoothing constraint is the

fact, that systematic biases with respect to absolute values of the target parameters

are avoided rather than using a climatological constraint. The resulting profiles are

forced towards the shape of the a priori profile only (depending on the regularization5

strength) rather than to climatological absolute values (e.g. Steck, 2002). The regular-

ization parameters for the target parameters temperature, trace gases and background-

continuum are optimised individually, avoiding oscillations in the results and consider-

ing the differences between the measured and retrieved spectra.

5.2 Characteristics of continuum-affected spectra from the UTLS10

The altitude range resolved by the measurements of MIPAS-STR is situated mainly in

the UTLS region between 5 and 20 km. In this range, effects referred in this context

as “continuum-like contributions” are important in the spectra and have to be taken

into account in the retrievals. Typical greybody-like continua in the spectra are result-

ing from clouds, and significantly cloud-affected spectra are filtered according to the15

cloud index from Spang et al. (2004) described in Sect. 4. Possible reasons for further

continuum-like effects (under nominal cloud-free conditions) in the spectra on the scale

of retrieval microwindows are:

– Low concentrations of aerosol accumulated along the line of sight

– Broad spectral signatures of trace gases20

– Spectral line-shape related effects

The first aspect includes effects from all types of aerosol. Ubiquitary stratospheric

sulphur-containing aerosols are associated to the global Junge-Layer (Junge et al.,

1961) and can result from volcanic eruptions (e.g. Arnold and Bührke, 1983), anthro-

pogenic influences and biogeochemical sources (e.g. Hofmann, 1990; Andreae and25

7052



D
is

c
u
s
s
io

n
P

a
p
e
r

|
D

is
c
u
s
s
io

n
P

a
p
e
r

|
D

is
c
u
s
s
io

n
P

a
p
e
r

|
D

is
c
u
s
s
io

n
P

a
p
e
r

|

Crutzen, 1997). Different types of particles also can result from or nucleate on mete-

oritic material (e.g. Curtius et al., 2005). Polar Stratospheric Cloud (PSC) particles are

formed during winter at high latitudes (e.g. Peter, 1997) and significantly affect mid-

infrared limb-emission spectra. Typical spectral signatures of PSC constituents allow

for the classification of PSC types (e.g. Höpfner et al., 2006). Also cirrus cloud particles5

affect mid-infrared limb-emission spectra (e.g. Spang et al., 2002) and the correspond-

ing effects can be taken into account by dedicated radiative transfer models (Ewen et

al., 2005). Further types of stratospheric aerosol-particles were measured by in-situ

instruments, whereas the sources for some particle types remain unclear (e.g. Murphy

et al., 1998). So in summary, there can be different aerosol-families present in the10

UTLS region under nominal cloud-free conditions, which are capable of affecting the

MIPAS-STR observations.

Regarding the second point, continuum-like signatures on the scales of retrieval mi-

crowindows (typically several cm
−1

) also result from large molecules with characteris-

tic broad signatures in the spectra, which are not or inaccurately covered by radiative15

transfer modelling. Here, the availabilities of suitable climatological profiles, as well as

accurate spectral line-data and cross-sections represent limiting factors. For example,

the mixing ratios of the family of the halocarbons increase with decreasing altitude in

the UTLS (e.g. Fabian and Borchers, 1981) and the comparably large molecules ex-

hibit broad spectral signatures, whereas the variable vertical profiles and the available20

spectral data for radiative transfer modelling are uncertain in several cases. Further

candidates with poorly known profiles are the broad family of aliphatic and aromatic hy-

drocarbons. Several species have already been identified by infrared remote-sensing

instruments (e.g. Coheur et al., 2007; Razavi et al., 2011). For many further species

there are also large uncertainties in the knowledge of the vertical profiles and the spec-25

tral line and cross-section data. Although many species alone give rise to only weak

signatures below or close to the NESR of MIPAS-STR, the net-effect accumulated by

many different species can significantly affect the observations. Therefore, continuum-

like contributions have to be expected on scales of retrieval microwindows as a conse-
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quence of incomplete radiative transfer modelling of broad trace gas signatures, espe-

cially towards lower observation geometries.

The third aspect results from the fact that in the considered altitude range in the

UTLS significantly increasing pressure broadening of the spectral lines is observed

with decreasing altitude. As a consequence of the increasing Lorentzian character of5

the spectral lines and the overall increase of many spectral signatures towards lower

observation geometries, the overlap of adjacent spectral signatures increases. For

the consideration of the effects of overlapping line wings, spectral signatures in an ex-

tended wavenumber-range of 25 cm
−1

around the selected microwindows are taken

into account in the retrievals discussed here. Influences of the extreme line-wings of10

very strong distant CO2-lines and the non-Lorentzian behaviour of H2O-lines are con-

sidered by dedicated continuum models included in KOPRA (Stiller et al., 2000). How-

ever, remaining broad continuum-like spectral signatures resulting from the incomplete

modelling of overlapping spectral signatures cannot be ruled out. Virtually continuum-

like contributions on the spectral baseline within a microwindow might also result from15

imperfect spectral modelling of adjacent spectral signatures using the Voigt model,

since it does not always allow for a sufficient reconstruction of the observed spectral

line shapes (e.g. Ciurylo, 1998; Boone et al., 2007; Schneider et al., 2011). However,

we clarify that the retrieval of background-continuum does not correct imperfect spec-

tral modelling of line shapes, but rather might partially compensate net-effects resulting20

from incorrectly modelled line-wings of adjacent spectral signatures.

Furthermore we mention, that also stray-light effects resulting from impurities on the

instruments scanning mirror might result in spectral contributions possibly interpreted

as continuum-like contributions. Although no explicit signs for significant stray-light

contributions could be identified in the MIPAS-STR spectra discussed here, however,25

stray-light contributions cannot be excluded completely.

So in summary, different superimposed so-called continuum-like contributions play a

role in UTLS mid-infrared limb-emission FTIR spectra, with increased importance to-

wards lower altitudes. The sources for continuum-like effects are variable with altitude
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and for different spectral regions, whereas a clear and quantitative separation is com-

plicated. Therefore, the net-effect of continuum-like contributions in the measurements

analysed here is quantified by the retrieval of a wave number-independent background

continuum, allowing for a reliable reconstruction of the main target parameters. Of

course it has to be considered, that the main retrieval target has to show a signa-5

ture sufficiently differing from continuum-like behaviour in the spectral microwindow(s)

chosen for the retrieval. Taking this into account, we show that the simultaneous re-

construction of wave number-independent background continuum is necessary in the

discussed retrievals for achieving agreement between the measurements and the re-

trieved spectra, and that the retrieval results of the main targets are ascertained by10

in-situ measurements (Sect. 6).

In Fig. 9a, a measured spectrum with a tangent altitude of 12 km is shown, where

significant continuum-like effects are apparent. Also shown are the corresponding re-

trieved spectra with and without continuum-retrieval. The retrieval without considera-

tion of background continuum results in poor agreement between measurement and15

retrieval result, while the retrieved spectrum with simultaneous reconstruction of back-

ground continuum reproduces the measured spectrum well. Remaining differences in

the residual exceeding the NESR-level are attributed to signatures of weakly interfer-

ing trace gases, which are not identified or incorrectly modelled using climatological

profiles. Such effects of weakly interfering gases increase towards lower altitudes,20

but compared to the chosen signatures of the target gas, the resulting uncertainties

are small and allow for a reliable reconstruction of the target profile, at least at strato-

spheric altitudes. In Fig. 9b, the retrieved continuum profile from the corresponding full

limb scan is shown for this microwindow and retrieval.

5.3 Retrieval approach25

The full retrieval chain applied for the subsequent reconstruction of the LOS offset,

temperature profiles and trace gas profiles is summarized in Fig. 10. As pointed out in

Sect. 2, for MIPAS-STR the relative pointing information is known with high precision
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due to the high accuracy of the attitude angles provided by the AHRS. Only a small

constant absolute offset between the reference system of the AHRS and the instru-

ments LOS has to be quantified by retrievals. Therefore, the first step in the applied

retrieval chain is the determination of the LOS offset using strong isolated CO2-lines

in the spectra. For each sequence of a flight, an individual LOS offset parameter is5

retrieved, and the average of all retrieved LOS offset parameters is used as LOS cor-

rection, resulting in one single parameter per flight. Thereby, the following assumptions

are made: (i) the temperature and pressure profiles used for the LOS retrieval, which

are interpolated from the ECMWF T106 grid-point analysis, are correct on average

during a flight. (ii) The applied CO2-profile and spectral line data for the modelling of10

the CO2-lines are also sufficiently accurate. (iii) Further significant errors e.g. resulting

from uncertainties in the relative LOS-information (due to the limited accuracy of the

AHRS data) or radiometric calibration show no significant systematic behaviour during

a flight. (iv) The LOS offset is approximately constant during a flight.

Since an extended set of typically 50 to 70 limb sequences is available for a single15

flight and different air-masses along hundreds of kilometres are sampled, the effects of

the uncertainties of the temperature and pressure profiles interpolated from ECMWF

and of the CO2-profile are expected to compensate for the average LOS offset. The

atmospheric profile of CO2 is well known, and weak variations in the low percent range

have only small impacts on the LOS retrieval. Further errors resulting from the lim-20

ited accuracy of the spectral line data, the relative LOS knowledge and the radiometric

calibration are also expected to compensate on the timescale of flight, whereas re-

maining systematic contributions cannot be ruled out fully. However, severe systematic

errors propagated into the LOS offset correction are expected to result in significant

systematic errors in the majority of the subsequent trace retrievals and would alter the25

agreement with in-situ measurements, which is not observed (see Sect. 6). An ap-

proximately constant behaviour of the LOS offset under flight conditions is plausible,

since the instrument is exposed to relatively constant temperatures during flight in the

stratosphere.
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In the next step indicated in Fig. 10, temperature is retrieved for all limb sequences,

using the same spectral signatures with strong isolated CO2-lines as for the LOS

retrieval. The lines fulfil the requirements/advantages for a temperature retrieval of

(i) strong intensity, (ii) being clearly separable from other spectral signatures, (iii) dif-

ferent opacity and (iv) different temperature-dependence. It has to be noted, that the5

absolute situation (i.e. position in altitude) of the retrieved temperature profiles is clearly

affected by the previously determined LOS correction relying on interpolated temper-

ature profiles from ECMWF and making use of the same spectral signatures as the

temperature retrieval. But on the other hand, only one single constant LOS correc-

tion is applied for all limb sequences of a flight, and no vertical information within the10

profile is retrieved from the CO2-signatures in the determination of the LOS correc-

tion. In contrast, mainly the information on vertical variability of the profile is derived

from the CO2-signatures in the temperature retrieval. In Sect. 6 we show that the re-

trieved temperatures represent an improvement compared to the interpolated ECMWF

temperatures.15

According to Fig. 10, the different trace gases are retrieved subsequently in the fol-

lowing steps. First, target gases with dominant signatures and low spectral interference

with other species are retrieved; then, with the optimised knowledge of the profiles of

these gases, the corresponding spectral signatures are modelled for the retrieval of

further trace gases with signatures influenced by the previously retrieved gases. Using20

previously fitted fixed profiles of significantly interfering species rather than climatologi-

cal profiles allows for an improved modelling, since atmospheric variability is taken into

account. This is especially important, when spectra of air-masses from different origin

(e.g. vortex and extra-vortex air) within single limb scans are retrieved. If possible, the

simultaneous reconstruction of interfering gases is avoided, since the total number of25

fit-parameters is increased and the simultaneous reconstructed parameters can po-

tentially compensate each other to a certain extend (depending on the shapes of the

individual signatures and the selected microwindows), especially in the context of the

continuum-retrieval. Hence, the previous accurate retrieval of the interfering species
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making use of strong separate signatures and keeping the corresponding profiles fixed

in subsequent retrievals is preferred. For weakly interfering gases (with signatures

close to the noise-level of the spectra), climatological profiles are applied for spectral

modelling.

Following this approach (compare Fig. 10), first HNO3 is retrieved, for which strong5

isolated signatures are available, characterised by only very weak known interference

with other trace gases. Under consideration of the retrieved HNO3-profiles, O3 and

CFC-12 are retrieved in the next stage. The retrieved HNO3- and O3-profiles are then

considered for the retrievals of CFC-11 and ClONO2. Finally, H2O is retrieved under

consideration of the retrieved HNO3-, O3- and ClONO2-profiles. The vertical profile10

of H2O shows a strong tropospheric gradient in contrast to the only weakly varying

stratospheric mixing ratios. Therefore, logarithmic inversion is applied, resulting in

more reasonable results in this particular case than the linear inversion applied for the

other retrievals. It has to be mentioned, that for the other retrieval target parameters

microwindows with no significant spectral interference with H2O signatures are used,15

since several signatures of H2O strongly increase towards tropospheric altitudes and

complicate retrievals of other parameters.

5.4 Retrieval setup

For the retrievals, a grid between 0–100 km with a spacing of 0.5 km below 30 km

and increasing spacing above is applied. Regularization is needed, since the applied20

retrieval grid in the vertical range of interest (spacing of 0.5 km) is finer than measure-

ment grid (mainly spacing of 1 km) and the vertical FOV of the instrument. However,

considering the complex combination of (i) the increase of the vertical FOV diameter

with decreasing tangent altitude, (ii) oversampling, (iii) the non-strictly conducted 1 km-

sampling grid in the specific limb programs, (iv) the corrected LOS variations quantified25

in the AHRS-post-processing altering the sampling grid, and (v) the effects of the inho-

mogeneous vertical FOV, the combination of a 0.5 km retrieval grid with an optimized

regularization is found to allow for a comprehensive use of the vertical information in-
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cluded in the spectra. The regularization strength is adjusted as small as possible

to make maximal use of the information in the spectra and simultaneously avoiding

oscillations in the retrieved vertical profiles.

The utilized spectral microwindows for the retrievals and the most prominent target

signatures are summarized in Table 2. Spectral line parameters and cross-sections for5

the retrievals are taken from the MIPAS database (Flaud et al., 2002, 2006). Only for

ClONO2, cross-section data is taken from a study of Wagner and Birk (2003). Depend-

ing on the availability of suited microwindows with sufficiently strong target signatures

and low spectral interference with other gases, each 1 or 2 microwindows are selected

for the individual retrievals, allowing for manageable and efficient optimization of the10

regularization parameters and fast computation. Retrieval parameters are (i) the target

quantity (LOS offset/temperature/trace gases), (ii) wave number independent back-

ground continuum for each microwindow and (iii) spectral shift of the microwindows.

As mentioned before, the simultaneous reconstruction of further trace gases beside

the target quantity is avoided, if possible. From the cases discussed here, only in the15

retrieval of the LOS correction and in the temperature retrieval O3 is reconstructed as

additional parameter. However, the corresponding signatures are clearly separable

from the target-signatures of CO2, allowing for a reliable reconstruction of the main

target parameter (the results for O3 with comparably low accuracy and vertical resolu-

tion are discarded subsequently). Regularization is applied to the retrieval parameters20

temperature, trace gases and background continuum.

In the individual retrievals, the first step is the optimization of the background con-

tinuum regularization strength for high vertical resolution, keeping the regularization of

other retrieved quantities (trace gases/temperature) at a conservatively chosen fixed

strength. In the next step, the optimized regularization strength for the background25

continuum is kept fixed and the regularization strength for the target quantity is opti-

mized for high vertical resolution. Regularization parameters are optimized for a rep-

resentative limb sequence and are subsequently kept constant for all limb sequences

of a flight.
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Pressure profiles for all retrievals are interpolated from the ECMWF analysis at T106

resolution. Since the retrieval of the LOS correction is carried out prior to the temper-

ature retrieval, temperature profiles for the LOS retrieval are also interpolated from the

ECMWF T106 analysis. For the subsequent trace gas retrievals, the retrieved temper-

ature profiles are taken into account.5

In all discussed retrievals, initial guess and a priori profiles are identical for an in-

dividual retrieval parameter. For the temperature retrievals, the interpolated profiles

from ECMWF are used as initial guess/a priori profiles. For the trace gas retrievals,

the initial guess/a priori profiles are taken from the Polar Winter Profiles for MIPAS

V3.1 of Remedios et al. (2007), slightly modified for the conditions of the Polar Winter10

2009/2010 (i.e. CO2 mixing ratios updated). For the reconstruction of background con-

tinuum, the initial guess/a priori is set to zero, starting the retrieval with the assumption

of no continuum. Signatures of weakly interfering trace gases which are not retrieved

are considered by their climatological profiles from Remedios et al. (2007).

5.5 Retrieval result characterization15

The retrieval results are characterized by the following quantifiers: (i) estimated error,

(ii) vertical resolution and (iii) degrees of freedom. Different error-sources inherent to

the measurement technique and the retrieval method are divided into two groups. The

dominating errors, assigned as “primary errors”, are resulting from:

– uncertainties in the spectroscopic line data20

– uncertainties of the applied temperature profiles

– uncertainties of the LOS-information

– radiometric calibration errors

– spectral noise

Further errors sources referred as “secondary errors” are25
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– uncertainties in the applied pressure profiles

– uncertainties resulting from horizontal inhomogeneities in the atmosphere

– uncertainties in the retrieved/climatological trace gas profiles used for forward-

modelling of interfering species

– uncertainties of trace gas profiles above the flight path5

– errors due to non-local thermodynamic equilibrium at high altitudes

– line-mixing of spectral signatures

– errors in the characterization of the FOV

– deviations of the real ILS from the theoretical model

– errors resulting from the limited knowledge of the aircraft altitude (GPS)10

– errors resulting from stray-light in the instrument

– further errors resulting from the electronic data acquisition chain

The primary errors are considered in the error estimation, while the secondary errors

are expected to be of minor importance in most cases and are not included in the error-

budget. Uncertainties of the interpolated pressure profiles are expected to have low15

impact as a consequence of the high quality of the ECMWF data. Errors due to the non-

consideration of horizontal gradients of atmospheric parameters along the line-of-sight

are expected to be less important compared to the ballon-borne and satellite-borne

MIPAS instruments as a consequence of shorter light paths through the atmosphere.

However, in the presence of strong horizontal gradients and contrasts of trace gas20

mixing ratios, significant uncertainties in the retrievals cannot be excluded, since in

the retrieval constant atmospheric conditions are assumed for single limb scans. On

the other side, to limited extent, the effects of horizontal gradients in the retrievals can
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also be interpreted as a characteristic of the sampled air-mass as a whole rather than

an error. Further uncertainties can arise from horizontal inhomogeneities along flight

track, since spectral contributions from a certain altitude regime can change within the

recording of a limb sequence, but significantly affect different measurement geometries

of the same sequence.5

Errors resulting from potentially inaccurate modelling of interfering signatures us-

ing retrieved and climatological profiles are expected to be of minor importance, since

spectral microwindows with dominating signatures of the target gas and weak signa-

tures from known interfering gases are utilized. Furthermore, errors in the modelling of

broad and weakly structured interfering signatures are at least partially compensated10

by the retrieval of background-continuum.

The limited knowledge of the profiles of atmospheric constituents above the flight

path represents a relevant error source in principle, especially in the case of trace

gases where the maximum of the profile is located above the flight altitude. However,

this uncertainty is reduced by considering the upward-viewing geometries included in15

the limb sequences, allowing for the reconstruction of column information above the

flight path and to a limited extend also vertical information.

Errors resulting from non-local thermodynamic equilibrium are expected to be prac-

tically insignificant for the measurement geometries of MIPAS-STR, since these effects

are mainly important high above the flight altitude (e.g. Manuilova et al., 1998; von20

Clarmann, 2003). Possible errors resulting from line-mixing (e.g. Funke et al., 1998)

are minimized by choosing microwindows without significant Q-branches. The minor

importance of FOV and ILS related uncertainties is discussed in Sect. 2.

It has to be noted, that the error resulting from the knowledge of the flight altitude

can become important especially in ascent and descent phases, since the aircraft25

changes the flight altitude with several meters per second, and the GPS altitude in-

formation (which is also uncertain within several tens of meters) has to be interpolated

to the mean time of an interferogram. Stray-light related errors were investigated by

Keim (2002) for flights with strong particle contamination on the scan mirror of MIPAS-
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STR. During the RECONCILE campaign, no strong particle contamination of the scan

mirror was observed and stray-light related effects were not identified. However, weak

stray light contributions cannot be fully excluded. Significant errors resulting from the

electronic data acquisition chain are not identified.

As described in Rodgers (2000), another relevant error in principle is the smooth-5

ing error, indicating the uncertainties resulting from the limited vertical resolution of

the retrieval result. In case of Tikhonov-Philipps regularization, the smoothing error

expresses the retrieval error due to smoothing as a consequence of regularization

(e.g. von Clarmann, 2003). Following Rodgers (2000), no smoothing error is estimated

for the shown MIPAS-STR results, since in most cases no estimate of the true ensem-10

ble covariance of suited accuracy (i.e. a climatological covariance matrix) needed for

the calculation is available. Especially in the discussed flight, structured and overlap-

ping air-masses from different origin are covered by the measurements of MIPAS-STR,

and the estimation of a representative climatological covariance matrix is practically not

possible. Following Rodgers (2000), the retrieval result is considered as an estimate of15

the smoothed version of the state rather than an estimate of the complete state, which

has to be kept in mind when interpreting the retrieval results.

For the retrieval of the LOS correction, in principle all errors listed above under “pri-

mary errors” are relevant for the determination of the individual LOS offsets. But since

the LOS offset is estimated as the average of a large number of limb sequences (6120

for RECONCILE flight 11), the different errors are expected to compensate each other.

In Fig. 11, the retrieval results for the individual LOS offsets are shown for the whole

flight. The values are scattering well around a mean LOS offset of 5.45 arcmin with a

1σ-uncertainty of 0.19 arcmin. Outliers can be caused by the availability of low num-

bers of quality-filtered observation geometries, and/or different combinations of the25

individual error sources listed above. The outliers associated to the first sequence and

the last sequences belong to ascent and descent phases, where the flight altitude is

changing fast, resulting in additional uncertainties of the sampling geometries. As can

be seen in Fig. 11, the found LOS offset is approximately constant during the flight,
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and using the average LOS offset as correction for all limb sequences seems to be

appropriate. The uncertainty of the corrected LOS is calculated taking into account the

1σ-uncertainties resulting from (i) the attitude information from the AHRS after postpro-

cessing of 0.75 arcmin, (ii) errors resulting from the scan-mirror control of 0.09 arcmin

and (iii) the 1σ-uncertainty of the derived mean LOS correction of 0.19 arcmin. The5

uncertainties are combined by the root of the square sum, resulting in an estimated

LOS-uncertainty of 0.78 arcmin. Hence, the LOS-uncertainty, which is used for the es-

timation of the LOS-associated uncertainties in the following retrievals, is dominated by

the accuracy of the post-processed attitude information provided by the AHRS.

The error of to the temperature retrieval is estimated according to Wetzel et al. (2002)10

for the balloon-borne MIPAS instrument. The effects of spectroscopic line data errors

and uncertainties of the applied CO2-profile are estimated by retrievals with a shifted

CO2-profile (5 %). LOS-related errors are estimated by retrievals taking into account of

the LOS-uncertainty (0.78 arcmin), and radiometric calibration errors are considered by

retrievals with modified gain (2 %). The corresponding errors for retrieved temperature15

profiles are calculated as the differences between the retrieval results with the modified

quantity and the initial retrieval results according to

∆xj =









∆x1,j

∆x2,j

:

∆xnmax,j









= (KT
S
−1
y K+γL

T
L)−1

K
T
S
−1
y (yerror,j −yresult), (4)

whereas ∆xj represents the vertical error profile resulting from the modified quantity

j , ∆xn,j the errors at the altitude levels n, yerror,j the calculated spectrum with the20

modified quantity and y result the calculated spectrum of the initial retrieval result (von

Clarmann, 2003). Together with the spectral noise error, the resulting error vectors are

combined to the estimated 1σ-uncertainty for temperature by the root of the square-

sum according to:

∆xT =

√

∆x2
prof,spec

+∆x2
los

+∆x2
cal

+∆x2
noise

, (5)25
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whereas ∆xT represents the estimated error vector of the retrieval result. The individual

error contributions ∆xprof,spec, ∆xlos and ∆xcal are resulting from the retrievals with the

modified CO2-profile, LOS and gain, and ∆xnoise represents the spectral noise error.

The estimated error of the retrieved temperature is used in the following retrievals for

the determination of the corresponding temperature-related errors.5

Following Wetzel et al. (2002), for the trace gas retrievals the spectroscopic errors

(line data and cross-sections) are estimated to conservative constant percentages of

the absolute profile values. The spectroscopic error of 8 % for HNO3 is taken from

Wetzel et al. (2002). Considering the results of Moore et al. (2006), for CFC-11 and

CFC-12 spectroscopic errors of 10 % are taken into account. For ozone, a spectro-10

scopic error of 7 %, and for H2O, a spectroscopic error of 10 % is adopted, considering

the uncertainties for the line intensities of the target signatures (Flaud et al., 2002,

2006 and references therein). For the ClONO2 cross-section, the worst case error of

5.5 % reported by Wagner and Birk (2003) is considered. The errors for the trace gas

retrievals due to the uncertainties of temperature, LOS and radiometric gain are also15

estimated according to Eq. (4) by retrievals with the corresponding modified quantities.

The estimated 1σ-errors for the trace gas profiles are calculated according to

∆xvmr =

√

∆x2
spec+∆x2

T
+∆x2

los
+∆x2

cal
+∆x2

noise
(6)

with ∆xvmr the estimated error vector of the retrieval result, ∆xspec the spectroscopic

error and the other contributions as in the case of the temperature error.20

It has to be considered, that the different error sources can show variations on differ-

ent timescales. While e.g. the noise error is characteristic for single spectra (recording

of one interferogram takes approximately 9.5 s), temperature-related errors can be rel-

evant for full limb scans (a few minutes) and spectroscopic errors might affect entire

flight sections. As a consequence, the combined error might show a more systematic25

behaviour in particular flight parts and the statistical combination of the errors has to be

seen with suspicion. The discussed error-budget reflects the attempt to give one single
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error quantity summarizing all of the discussed effects. However, the applied strategy

results in reasonable errors, as indicated by the in-situ comparisons in Sect. 6.

The vertical resolution of the retrieval results is derived from the averaging kernel

matrix A (Rodgers, 2000):

A= (KT
S
−1

y K+γL
T
L)−1

K
T
S
−1

y K (7)5

According to Purser and Huang (1993), the reciprocal of the peak of A can be taken

as a measure of its width, which is often used as a measure of the vertical resolution

of a retrieval result. We calculate the vertical resolution ∆an at the altitude n as the

absolute value of the quotient of the local vertical grid spacing ∆hn divided by the trace

element An,n:10

∆an =
∣

∣∆hn/An,n

∣

∣ (8)

The degrees of freedom (DOF) of the retrieval result are the sum of the trace elements

of A and indicate how many independent pieces of information are derived from the

measurements allowed by the regularization (e.g. Steck, 2002). In the case of MIPAS-

STR, weak regularization results in DOF close to the number of observation geometries15

with tangent altitudes (containing the majority of vertical information). With regard to

the DOF, the upward scanning geometries can be considered in a simplified way like

a single additional geometry with the characteristics a nominal geometry with tangent

altitude. Strongest regularization of first order would result in DOF close to 1.

In the left panel of Fig. 12, the retrieval result for a single HNO3 profile is shown20

together with the estimated 1σ-error. The initial guess/a priori profile used for the

retrieval is also shown. The retrieval result is very distinct from the initial guess/a priori

profile and reflects the weak regularization strength. In the retrieved profile, a HNO3-

maximum at about 15 km with decreasing HNO3-mixing ratios above is identified, which

can be assigned to re- and de-nitrification layers at the edge of the polar-vortex (see25

Sect. 6.3).

The contributions of the different error sources are shown in the panel in the middle.

Between flight altitude and the lowest tangent point, the dominating error source is
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the uncertainty of the spectroscopic data, followed by the errors resulting from the

radiometric calibration and the uncertainties of the retrieved temperature profiles. The

LOS error is variable with altitude, and is together with the spectral noise error of minor

importance. For sequences with more extended vertical coverage, all estimated errors

except of the assumed spectroscopic line data error significantly increase towards the5

lower observation geometries, and the LOS error and the spectral noise error can

become the dominating errors.

For the shown result, the estimated error is between 9 to 12 % in the altitude range

between flight altitude and the lowest tangent point. Above flight altitude, the abso-

lute numbers of all errors except of the spectroscopic error still decrease virtually, but10

this has to be interpreted in context of the vertical resolution indicated in the right

panel. For the measurement geometries between flight altitude and the lowest tangent

point, a high vertical resolution of mainly between 1 and 1.5 km is achieved due to the

availability of comprehensive vertical information included in the spectra with negative

elevation angles. Therefore, the estimated error is representative in this altitude range15

in the context of the vertical resolution. From the geometries with positive elevation an-

gles, mainly column information is obtained for the atmosphere above the aircraft, and

the vertical resolution rapidly decreases. Hence, for the parts of the retrieved profiles

above the aircraft, the absolute numbers of the errors still decrease, but the vertical

information is “smeared” over a broader vertical range. Practically only column infor-20

mation is obtained above 17.5 km and the errors become physically meaningless. At

altitudes below approximately 8.5 km, which are not covered by the measurements, no

vertical information is obtained, as indicated by the vertical resolution tending to infinity.

For the HNO3-profile shown in Fig. 12, 8.7 DOF are obtained, which have to be

interpreted in the context of the 9 tangent altitudes in the vertical range between 8.925

and 16.7 km plus two upward scanning geometries carried out in the modified limb

sequence, indicating weak influence of the regularization. For higher flight altitudes,

resulting in scans with more tangent altitudes, and scans with increased vertical cover-

age (as in the standard sequence), the numbers of DOF increase. The shown profile
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represents the result for HNO3 for an individual limb scan, and the corresponding errors

are varying from scan to scan, depending on the atmospheric situation, the vertical dis-

tribution of the target species, and the sampling geometries. Whereas in most cases,

the spectroscopic error represents the dominating error, the relative importance of the

different error contributions can vary depending on the retrieval target.5

6 Results

6.1 Approach for comparison of MIPAS-STR results and in situ measurements

Several in-situ instruments were deployed onboard the Geophysica during the RECON-

CILE campaign, allowing for comparisons with the MIPAS-STR results (Table 3). High

precision ambient temperature measurements were obtained from the Thermodynamic10

Complex (TDC). Ozone measurements were taken by the Fast-Response Chemilumi-

nescent Airborne Ozone Analyzer (FOZAN). CFC-11 and CFC-12 measurements were

provided by the High Altitude Gas AnalyzeR (HAGAR). Gas-phase water vapour mea-

surements were obtained by the Fluorescent Lyman-alpha Stratospheric Hygrometer

for Aircraft (FLASH-A), which is a recent modification of the previously utilized FLASH15

instrument on board of the Geophysica aircraft (Sitnikov et al., 2007).

For the discussed flight, MIPAS-STR measurements of high spatial coincidence with

the in-situ measurements related to the ascent phase of the Geophyisca are available

(Fig. 13). The lowest tangent point of the selected scan 02 01788 is located at an

altitude 8.9 km and the flight altitude is 16.7 km, whereas 9 limb-viewing and 2 upward-20

viewing geometries were carried out. The two tangent points located spatially closest

to the flight path during ascent correspond to tangent altitudes of 14.0 and 15.1 km.

For comparisons, it has to be considered that the airvolume sampled by MIPAS-STR

during one limb sequence (duration typically a few minutes) covers horizontally sev-

eral tens of kilometres along flight track and several hundreds of kilometres along the25

viewing direction (see Sect. 2) and the vertical resolution is limited compared to in-situ
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measurements. In contrast, the in-situ measurements giving rise to the ascent pro-

file are carried out in a more extended time interval (about half an hour) and provide

precise measurements at certain altitudes and positions. The limited temporal coinci-

dence (time mismatch ca. 1 h) between the MIPAS-STR measurements and the in-situ

measurements has also to be reminded, since chemical and dynamical atmospheric5

structures can move or change in the time between the measurements.

The retrieval results at flight altitude are compared to the in-situ measurements along

flight track for flight sections with approximately constant flight altitude. Three different

flight sections with approximately constant flight altitude are situated between 10:05–

11:25 (I), 11:25–12:05 (II) and 12:05–12:45 (III) UTC (Fig. 6). The in-situ measure-10

ments are compared to the retrieval results at the grid-altitudes 17.0, 17.5 and 19 km,

respectively.

As discussed in Sect. 4, the edge of the late Canadian polar vortex remnant was

located above Spitsbergen at the date of RECONCILE flight 11. During the ascent

phase, the in-situ instruments sampled subsequently air below and inside the vortex.15

During the recording of scan 02 01788, MIPAS-STR was pointing into a region at the

vortex edge, partially overlapping with the in-situ ascent profile (compare Figs. 8 and

13). At higher profile altitudes the in-situ measurements are located closer to the core

region of the vortex remnant compared to the MIPAS-STR tangent points.

6.2 Retrieval results and in-situ comparison20

The retrieval results for scan 02 01788 of MIPAS-STR are shown together with the

corresponding in-situ measurements in Fig. 14a–f). In the case of ClONO2, no suited

in-situ measurements are available for comparisons, but the retrieval result is also dis-

cussed for completeness. For the retrieved profiles, the estimated 1σ-error, vertical

resolution and DOF are indicated. Retrieved profiles and in-situ results are shown25

with reference to geometric (GPS-) altitude. Adapted ECMWF-data (temperature and

pressure) refer to geopotential height, with is comparable to geometric altitude in the
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considered vertical range to a good approximation.

For the in-situ measurements, also profiles smoothed with the corresponding aver-

aging kernels of MIPAS-STR are shown (Rodgers, 2000). This approach allows for the

comparison of the results of MIPAS-STR with the in-situ measurements at the common

vertical resolution of MIPAS-STR. The in-situ result is transferred into an equivalent of5

the estimate of a smoothed state of the atmosphere as performed in the MIPAS-STR re-

trieval. In the case of temperature, also the interpolated profile from ECMWF is shown,

which serves as initial guess/a priori profile for the retrieval. For the trace gases, the

corresponding climatological profiles serving as initial-guess/a priori profiles are also

shown. For all profiles of MIPAS-STR shown in Fig. 14a–f, only profile points with a10

vertical resolution of better than 5 km are plotted.

As can be seen in Fig. 14a, for temperature the agreement of MIPAS-STR and TDC

is mostly better than 1 K and the agreement is improved compared to the interpolated

ECMWF-profile. In the upper part of the profile, the agreement between MIPAS-STR

and TDC slightly decreases, which is attributed to the decreasing spatial overlap of15

the measurements. For O3, also reasonable agreement is found between MIPAS-STR

and FOZAN, as can be seen in Fig. 14b. The unsmoothed profile from FOZAN shows

variable mixing ratios indicating horizontal structures in the O3 distribution, especially

between 12 and 14 km. In this altitude range, the retrieved profile from MIPAS-STR

follows the upper part of the in-situ profile, while this structure is not apparent in the20

smoothed in-situ profile.

As can be seen in Fig. 14c and d, for CFC-11 and CFC-12 the results from MIPAS-

STR and HAGAR are also mostly in agreement within 1 sigma of the estimated error

below 15 km and 16 km, respectively. At higher altitudes, which are characterized by

very low mixing ratios of the CFCs, the results start to diverge. This finding is attributed25

to the fact that the horizontally extended MIPAS-STR measurements here are signifi-

cantly affected by spectral contributions from extra-vortex air with much higher mixing

ratios of the CFCs. As will be shown below, the CFCs show by the far the strongest

contrasts between vortex and extra-vortex air from the trace gases considered for in-
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situ comparisons here.

In Fig. 14e, the results for H2O from MIPAS-STR and FLASH-A are shown, and the

instruments agree within the uncertainties. Slightly increasing differences below 10 km

are attributed to the decreasing spatial overlap of the measurements and the tropo-

spheric variability of H2O. The retrieved profile of ClONO2 is shown in Fig. 14f, where5

no in-situ measurements suited for comparisons are available. The retrieved profile

indicates high ClONO2-mixing ratios in the upper part of the profile, characteristic for

the chlorine-deactivated air in the late vortex. Virtually negative mixing ratios below

10 km are a consequence of lowest mixing ratios of ClONO2 in the troposphere and

can result from predominantly additive combination of the discussed error sources.10

For gases with such weak signatures compared to the overall spectral background at

tropospheric observation geometries, especially spectral interference with other trace

gases not or incorrectly considered by climatological profiles can become important.

However, we mention that the applied retrieval method does not constrain the result to

positive values in order to avoid biases in statistics (von Clarmann, 2003). The corre-15

sponding retrieved profile for HNO3 (for which also no in-situ comparison is performed)

is discussed in Sect. 5.4 (Fig. 12).

For the shown retrieved profiles of the discussed scan, the estimated 1σ-errors are

typically about 10–15 %. Typical vertical resolutions of 1 to 2 km are achieved in the

altitude range of the tangent points. Between 6.4 and 8.7 DOF are obtained from the20

9 limb-viewing and 2 upward-viewing geometries, indicating comprehensive vertical in-

formation in the measurements. For the continuum retrievals (not shown here) carried

out for each microwindow simultaneously together with the target parameters, typically

about 7 DOF are obtained for this scan. The shown retrieval results are nearly insensi-

tive on the initial guess/a priori information as a consequence of the high signal-to-noise25

ratios of the measurements and the applied weak regularization.

The comparison of the retrieval results and the in-situ measurements along the flight

track is shown in Fig. 15a–e. The retrieval results of MIPAS-STR for temperature are in

very good agreement with the results of TDC (Fig. 15a) and the agreement is improved

7071

D
is

c
u
s
s
io

n
P

a
p
e
r

|
D

is
c
u
s
s
io

n
P

a
p
e
r

|
D

is
c
u
s
s
io

n
P

a
p
e
r

|
D

is
c
u
s
s
io

n
P

a
p
e
r

|

compared to the interpolated ECMWF temperatures. As can be seen in Fig. 15b, for

O3 also reasonable agreement is found between MIPAS-STR and FOZAN.

The results of MIPAS-STR for CFC-11 and CFC-12 along the flight track are also

in principle in agreement with the measurements of HAGAR (Fig. 15c and d), often

already within one sigma of the errors. As in the case of the profile comparisons,5

higher mixing ratios of the CFCs are found in the first flight part for the MIPAS-STR

results at flight altitude and are attributed to spectral contributions from outside of the

polar vortex. The strong contrasts of the mixing ratios of the CFCs at the vortex edge

can be seen consistently in the MIPAS-STR and HAGAR results in Fig. 15c and d.

The vortex edge shows up in the HAGAR measurements sharply between 11:14 and10

11:21 UTC by strong increases of the mixing ratios of CFC-11 and CFC-12 of 80 pptv

and 180 pptv, respectively. In the case of MIPAS-STR, the corresponding structures

appear more smoothly between 11:00 and 11:25 as a consequence of the different

sampling characteristics. For comparison, the differences between vortex and extra-

vortex air are less pronounced in the case of O3 along the flight track, as consistently15

indicated by the results of MIPAS-STR and FOZAN (Fig. 15b). For CFC-11 and CFC-

12, noticeable differences between the results of MIPAS-STR and HAGAR are found

also especially in the last flight part (12:15–12:45) (Fig. 15c and d). The lower mixing

ratios in the results of MIPAS-STR are explained by the fact that filaments of vortex

air with lower mixing ratios of the CFCs were located along the instruments viewing20

direction in this particular flight part (compare Sect. 6.3), contributing to the spectra

of MIPAS-STR. As can be seen in Fig. 15e, for H2O reasonable agreement is found

between the results of MIPAS-STR and FLASH-A.

The mean differences and the sample standard deviations of the mean differences

between the results of MIPAS-STR and the in-situ measurements for the shown profile25

comparisons and comparisons along the flight track are summarized in Table 4. While

the mean differences indicate systematic differences between the MIPAS-STR and the

in-situ results, the sample standard deviations of the mean differences indicate the

qualitative agreement for single retrieval-grid points. Both quantities together indicate
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the quantitative agreement. In the case of the profile comparisons, these quantities are

calculated taking into account the smoothed in-situ results at the retrieval-grid altitudes.

For the comparisons along flight track, the unsmoothed in-situ results are interpolated

in time for the MIPAS-STR retrieval results.

With mean differences of +0.2/−0.2 K for the profile and along-flight-track compari-5

son, and respective sample standard deviations of about 0.7/0.6 K, the retrieved tem-

peratures of MIPAS-STR agree very well with the TDC measurements within the uncer-

tainties of the involved instruments. Also for O3 excellent agreement is found between

MIPAS-STR and FOZAN. The absolute mean differences between MIPAS-STR and

HAGAR for CFC-11 and CFC-12 in the range of 8–21 pptv are also small. However,10

all mean differences calculated for the CFCs are positive, which is attributed to the

extended first flight part with the MIPAS-STR measurements significantly biased by

extra-vortex air. The corresponding percentages of the sample standard deviations of

the mean differences (see Table 4) reflect the fact that the strong horizontal contrasts

in the mixing ratios of the CFCs alter the comparability of the MIPAS-STR and HAGAR15

measurements. These comparably high values are mainly driven by the differences at

high profile altitudes with very low absolute mixing ratios of the CFCs. However, this is

masking the fact that the absolute mean differences and sample standard deviations for

the CFCs are in the low ppt-range, indicating considerable agreement at higher mixing

ratios of the CFCs (i.e. at lower profile altitudes). For the profile/along-flight-track com-20

parisons for H2O, the mean differences and corresponding sample standard deviations

indicate agreement between the involved instruments.

To overcome the complications of the limited spatial overlap of the MIPAS-STR and

HAGAR results in the context of the strong horizontal contrasts of the mixing ratios

of the CFCs, in Fig. 16 the correlations of CFC-11 and CFC-12 derived from MIPAS-25

STR and HAGAR are shown. Collocated pairs of CFC-11 and CFC-12 measurements

of the individual instruments are considered, whereas no spatial coincidence between

the measurements of the two instruments is necessary. The resulting correlations show

comprehensive agreement within the variability of the results of MIPAS-STR and the
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associated uncertainties. Only for mixing ratios of CFC-11 between 30 and 150 pptv,

slightly higher mixing ratios of CFC-12 are found for HAGAR, but the corresponding

results are still within the variability of the MIPAS-STR results.

6.3 Two dimensional trace gas distributions

The retrieved vertical trace gas profiles obtained from the MIPAS-STR measurements5

are combined to 2-dimensional vertical cross-sections of the corresponding species

along the flight track. In the upper panel of Fig. 17, the resulting vertical cross-section

for HNO3 is shown. In the first flight part between 10:00 and 11:15, at altitudes above

14.5 km, air of the late vortex edge can be clearly identified. A weak renitrification

remnant is found with a HNO3-maximum at 15.5 km and mixing ratios of about 8 ppbv,10

indicating between 2 to 3 ppbv higher mixing ratios compared to the layers above and

below. The resolved vertical thickness of the layer is about 1 km, which is close to

the vertical resolution limit of MIPAS-STR. Above, denitrified air characterised by low

HNO3-mixing ratios is found.

Between 11:35 and 12:00, a structure of extra vortex air can be identified, which is15

characterized by low HNO3-mixing ratios below 16 km and shows no de-/renitrification-

structure. The structure is diagonally linked to further structures of extra-vortex air in

the last flight section with low HNO3-mixing ratios, characteristic for extra-vortex air. In

the last flight part, between 12:05 and 12:45, two prominent structures with strongly

enhanced HNO3-mixing ratios are apparent, which can be assigned to filaments of the20

polar vortex with renitrified air. HNO3 mixing ratios of up to 10 ppbv are found for the

lower structure centred at 14.5 km with a vertical extension of about 3 km, whereas the

mixing ratio is about 5 ppbv increased compared to the surrounding air. The tiny upper

structure located around 17.5 km with a vertical extension of about 1.5 km also shows

significantly enhanced HNO3 mixing ratios of up to 9 ppbv.25

In Fig. 18, the corresponding vertical cross-section of HNO3 derived from CRISTA-

NF measurements is shown. CRISTA-NF is capable of the measurement of limb-

emission spectra in a comparable spectral region like MIPAS-STR and is pointing
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approximately into the same direction. The characteristics of CRISTA-NF are briefly

summarized in Table 5 (e.g. Spang et al., 2008; Ungermann et al., 2011). While

MIPAS-STR with its comparable high spectral resolution is able to separate weak trace

gas signatures not resolved by CRISTA-NF, the advantage of CRISTA-NF is the higher

vertical and horizontal sampling density allowing for the identification of atmospheric5

fine-structures not resolved by MIPAS-STR.

HNO3 is retrieved from the CRISTA-NF measurements in the same spectral region

as for MIPAS-STR and a typical vertical resolution of 0.5 km is obtained. For details

concerning the CRISTA-NF retrieval, see Ungermann et al. (2011). As can be seen

in Figs. 17 and 18, the retrieved vertical cross-sections of HNO3 from the two instru-10

ments agree very well. All major structures observed in the MIPAS-STR result are also

identified for CRISTA-NF: the de- and renitrification layers in the first part of the flight,

the structure with extra-vortex air in the middle of the flight, and the vortex filaments

in the last part of the flight. Several smaller substructures can also be identified in

both results. It has to be noted, that the range of the colour-coding for CRISTA-NF15

in Fig. 18 is slightly higher than for MIPAS-STR in Fig. 17. Higher peak values ob-

served in the CRISTA-NF result are consistent with atmospheric fine-structures with

enhanced HNO3-mixing ratios spatially higher resolved by CRISTA-NF. However, we

emphasize that the measurements of the two limb-sounding instruments using differ-

ent techniques and processed with different forward and inversion models are resulting20

in cross-sections with considerable agreement.

The vertical cross-section of CFC-11 from MIPAS-STR in Fig. 19 shows a comple-

mentary picture to the HNO3 cross-sections: vortex air in the first flight part and vortex

filaments at the end of the flight are characterised by low mixing ratios of CFC-11,

while extra vortex air is indicated by increased mixing ratios of CFC-11 at stratospheric25

altitudes.

Some of the structures visible in the cross-sections of HNO3 and CFC-11 are hori-

zontally largely extended (like the renitrification remnant in the beginning, with an ex-

tension along flight track of about 500 km between the turning point and the vortex
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edge) or show diagonally linked patters and further fine-structures.

7 Conclusions

In the work in hand, we present the FTIR limb-sounder MIPAS-STR deployed on the

high altitude aircraft M55 Geophysica in its current performance. The applied cali-

bration scheme from the measured data towards radiometrically calibrated spectra is5

discussed. A comprehensive bottom-up retrieval scheme for the reconstruction of tem-

perature, HNO3, O3, CFC-11, CFC-12, ClONO2 and H2O is introduced, including the

correction of a systematic line-of-sight offset. The significant influences of continuum-

like effects on limb-emission mid-infrared spectra in the UTLS region and their treat-

ment by the retrieval of wavenumber-independent background continuum on the scale10

of retrieval microwindows are discussed. Retrieval results are shown exemplary for

RECONCILE flight 11 on 2 March 2010.

The estimated overall 1σ-errors of the retrieval results are below 1 K for temperature

and typically between 10 and 15 % for the trace gases in the vertical range spanned

by the tangent points. The vertical resolutions for the different target parameters are15

typically between 1 to 2 km in the vertical range of the tangent points and slightly above

the flight path, allowing for the identification of narrow vertical structures. Depending on

the sampling programme, typical horizontal sampling densities of 45 or 25 km are ob-

tained, respectively. Between 6.4 and 8.7 degrees of freedom are obtained for the dif-

ferent target-parameters for a limb sequence with 9 limb-viewing and 2 upward-viewing20

observation geometries, indicating comprehensive vertical information included in the

spectra.

The retrieval results are validated against available in-situ measurements carried out

onboard the Geophysica during the same flight. The profile comparisons show a high

degree of consistency between MIPAS-STR and the in-situ instruments, taking into25

account the errors of MIPAS-STR and the in-situ results, the vertical and horizontal

resolution of the MIPAS-STR results, atmospheric inhomogeneities and the geograph-
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ical and time-mismatch between the MIPAS-STR and in-situ measurements. For tem-

perature and O3 the results show very good agreement within the estimated errors of

the involved instruments. For CFC-11 and CFC-12, higher discrepancies are apparent

around flight altitude and are attributed to the observed strong contrasts in the mixing

ratios of the CFCs between vortex and extra-vortex air. The comparison of the correla-5

tion of CFC-11 and CFC-12 derived from the MIPAS-STR and HAGAR measurements,

respectively, overcomes the complication of limited spatial coincidence between in-situ

and remote-sensing measurements and indicates enhanced agreement between the

two instruments. For the in-situ comparison of H2O, also comprehensive agreement is

found.10

In the retrieved vertical cross-sections of HNO3 and CFC-11, detailed mesoscale

structures are identified, which are attributed to vortex air, vortex filaments and extra-

vortex air. Small-scale structures with vertical extensions down to 1 km are resolved.

The vertical cross-sections of HNO3 from MIPAS-STR and the infrared limb sounder

CRISTA-NF, which were simultaneously deployed onboard the Geophysica during15

RECONCILE, are in very good agreement, taking into account the different charac-

teristics of the two instruments.

The presented results give insights into the properties of the arctic UTLS in the early

year 2010 and demonstrate the suitability of MIPAS-STR for quantitative studies of the

chemistry and dynamics of the UTLS region with rather high spatial resolution. This20

allows for further studies with MIPAS-STR data on mesoscale structures, denitrification

processes and chlorine activation.
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search Centre Jülich, as representative for the RECONCILE team for especially supporting30

7077

D
is

c
u
s
s
io

n
P

a
p
e
r

|
D

is
c
u
s
s
io

n
P

a
p
e
r

|
D

is
c
u
s
s
io

n
P

a
p
e
r

|
D

is
c
u
s
s
io

n
P

a
p
e
r

|

young scientists.

References

Andreae, M. O. and Crutzen, P. J.: Atmospheric Aerosols: Biogeochemical Sources and Role

in Atmospheric Chemistry, Science, 276, 1052–1058, 1997.
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Table 1. Characteristics of MIPAS-STR in the current configuration.

Telescope

Field of view (full cone) 0.44
◦

Etendue 2.6×10
−3

sr cm
2

Interferometer

Effective optical path difference ±13.9 cm

Scan time per interferogram ∼9.5 sec

Sampling frequency 48.8 kHz

Signal frequency 2.1–6.1 kHz

Unapodized/apodized spectral resolution 0.036 cm
−1

/0.058 cm
−1

Detectors Si:As – BIB

NESR (single apodized spectrum, in-flight)

Channel 1 (725–990 cm
−1

) 1×10
−8

W/(cm
2

sr cm
−1

)

Channel 2 (1150–1360 cm
−1

) 8×10
−9

W/(cm
2

sr cm
−1

)

Channel 3 (1560–1710 cm
−1

) 5×10
−9

W/(cm
2

sr cm
−1

)

Channel 4 (1810–2100 cm
−1

) 5×10
−9

W/(cm
2

sr cm
−1

)

Pointing

Pitch/roll accuracy (AHRS) 0.5 arcmin (1σ)

Yaw accuracy (AHRS) 0.3
◦

(1σ)

Estimated LOS-elevation accuracy 0.78 arcmin (1σ)

Dimensions

Optics module 135×75×75 cm
3

Electronics module 50×50×50 cm
3

Total mass ∼200 kg

Power consumption ∼300 W (28 V DC)
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Table 2. Microwindows and target signatures selected for the retrievals. Spectral positions of

the most prominent target signatures are listed. For cross-section gases, the spectral signa-

tures are relevant in the whole range of the microwindow.

Retrieval target Microwindow Target signature Spectral position

[cm
−1

] [cm
−1

]

LOS/temperature

(CO2 signatures)

810.1–813.1 R24e (11101←10002)

R26e (11101←10002)

810.93

812.48

955.6–958.5 P6e (00011←10001)

P4e (00011←10001)

956.19

957.80

HNO3 866.0–870.0 ν5/2ν9 bands 9 prominent

lines (ν5-band)

O3 780.6–781.7 ν2-band 780.80

781.13

781.18

781.52

787.0–788.0 ν2-band 787.13

787.46

787.86

CFC-11 842.5–848.0 ν4-band cross-section

CFC-12 918.9–920.6 ν6-band cross-section

921.0–922.8 ν6-band cross-section

ClONO2 779.8–780.5 ν4-band cross-section

805.1–805.5 ν3-band cross-section

H2O 795.7–796.1 pure rotation 795.89
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Table 3. In-situ instruments onboard the Geophysica used for comparisions with MIPAS-STR.

Instrument Target Time

resolution

Accuracy Reference

TDC Temperature 1 s 0.5 K Shur et al. (2007)

FOZAN O3 2 s <10 % Ulanovsky et al. (2001)

HAGAR CFC-11 90 s 0.5–5 ppt (1.4–5.6 %) Riediger et al. (2000)

Werner et al. (2010)

HAGAR CFC-12 90 s 2–8 ppt (1.2–1.7 %) Riediger et al. (2000)

Werner et al. (2010)

FLASH-A H2O (gas) 4 s 10 % see text
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Table 4. Mean differences and sample standard deviations (1σ, in parentheses) of the mean

differences between MIPAS-STR and in-situ results for profile comparison and comparison

along flight track.

Target Vertical profile Flight track

Temperature 0.21 (0.73) K −0.19 (0.64) K

O3 −0.01 (0.12) ppmv −3 (14) % 0.05 (0.26) ppmv 2 (9) %

CFC-11 17 (9) pptv 14 (13) % 8 (24) pptv 21 (40) %

CFC-12 21(19) pptv 5 (5) % 14 (42) pptv 8 (16) %

H2O 1.16 (1.91) ppmv 8 (14) % 0.29 (0.36) ppmv 6 (7) %
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Table 5. Characteristics of CRISTA-NF. The spectral resolution is given for the low resolution

spectrometer (LRS) which is capable of the detection of HNO3.

CRISTA-NF

Spectrometer type 2 Ebert-Fastie Grating Spectrometers

Spectral range 667–2500 cm
−1

Spectral resolution 1.6 cm
−1

(LRS)

FOV (vertical x horizontal) 3×300 arcmin

Vertical/horizontal sampling density 0.25/15 km

Time per spectrum/limb scan ∼1.2/70 sec
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Fig. 1. Schematic representation of the optics module of MIPAS-STR (taken from Blom et al.,

1998). Mirrors are shown in pink and the light path along scan-mirror, telescope and interfer-

ometer towards the detector dewar is indicated by green lines.
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RECONCILE Flight 11 (March 2 nd 2010) - Inflight NESR Channel 1
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Fig. 2. Typical NESR of a single channel 1 spectrum under flight conditions (grey curve) and

moving average (black curve).
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Fig. 3. Schematic representation of the standard sampling programme of MIPAS-STR, includ-

ing atmospheric measurements (cyan) and calibration measurements (yellow). Two full limb

scans are shown.
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Determination of Instrumental Offset
from DS Spectra, KOPRA/KOPRAFIT-Step

Gain Function

First Approximation of Instrumental Phase
from BB-Interferograms (FSV)

Determination of Beamsplitter Emission
from 5°/8°/10°-Interferograms

Determination of Instrumental Phase
from BB Interferograms

First Approximation of Instrumental Offset
from DS Spectra via Line Fitting

First Approximation of Gain Function
from BB-Spectra, Calibration of DS-Spectra

Instrumental Phase

Instrumental Offset

Determination of Gain Function  

from BB-Spectra

Calibration of Atmospheric Spectra

Determination of Instrumental Offset
from DS-Spectra via radiative transfer step

First Approximation of Instrumental Phase
from BB-Interferograms (FSV)

Determination of Beamsplitter Emission
from 5°/8°/10°-Interferograms

Determination of Instrumental Phase
from BB Interferograms (FSV)

First Approximation of Instrumental Offset
for DS-Spectra

First Approximation of Gain Function
from BB-Spectra, Calibration of DS-Spectra

Determination of Gain Function  

from BB-Spectra

Calibration of Atmospheric Spectra
Statistical Phase-Correction, Instrumental Offset Correction,

Radiometric Calibration

Correction for Detector-Nonlinearity

Fig. 4. Schematic representation of the full calibration cycle for MIPAS-STR measurements,

including the determination of the detector non-linearity, instrumental phase, instrumental off-

set and radiometric gain function (BB=blackbody measurements, DS= “deep space” mea-

surements (zenith view), FSV=phase correction according to Forman, Steel and Vanasse, for

details see text).
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Fig. 5. Examples for single calibrated spectra from RECONICLE flight 11 on 2 March 2010.

In the box in the upper right side, the corresponding tangent altitudes/elevation angles of the

spectra are listed (0
◦

elevation corresponds to horizontal view).
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Fig. 6. Vertical distribution of tangent points (points) and interpolated cloud index (ci, contour).

Flight altitude of the Geophysica (solid black line) along flight track from Longyearbyen (LYR)

via the turning point (TP, dashed black line) to Kiruna. The horizontal blue lines represent the

approximate threshold for cloud index 4.
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Fig. 7. Flight track of the Geophyscia for RECONCILE flight 11 (solid blue line) and distribution

of tangent points of the MIPAS-STR observations, colour-coded with reference to the tangent

altitude.
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Fig. 8. Meteorological situation during RECONCILE Flight 11. The colour-coding of the map

shows the potential vorticity at the 450 K-level (approximately 17 km altitude). A late vortex

remnant, coming from Canada and reaching from Spitsbergen to Siberia, can be identified

clearly. The flight path of the Geophysica is indicated schematically.
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Fig. 9. (a) Measured spectrum (black) and retrieved spectra with (red) and without (blue)

background continuum retrieval for a flight altitude of 16.7 km and a tangent altitude of 12 km

for the HNO3-retrieval and residuals. (b) Associated retrieval result for continuum absorption of

the corresponding full limb sequence.
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Fig. 10. Schematic representation of the subsequent retrievals of LOS correction, temperature

and the discussed trace gases from MIPAS-STR channel 1 spectra. For each target parameter,

all other parameters prior in the scheme are determined previously.
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Fig. 11. Retrieved LOS offsets from the individual limb sequences and mean LOS offset used

as LOS correction.
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Fig. 12. Left side: retrieved vertical profile of HNO3 with estimated error and initial guess/a priori

profile (DOF=degrees of freedom). Middle: Different error contributions and estimated error in

percent (SPEC= spectroscopic data, T = temperature, LOS= line-of-sight, CAL= radiometric

calibration, NOISE= spectral noise, TOTAL=estimated 1σ-error). Right side: Vertical resolu-

tion of the retrieval result. The dotted horizontal line indicates the flight altitude of the Geo-

phyisca and the dashed horizontal line the lowest tangent point of the scan.
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Fig. 13. Limb scan of MIPAS-STR selected for comparisons with in-situ profiles. The distribu-

tion of the tangent points of MIPAS-STR (circles) along the flight path (blue line) is indicated

colour-coded with reference to the tangent altitude. The selected scan 02 01788 for the com-

parisons is indicated by filled circles. The flight altitude of the Geophysica is plotted colour-

coded with altitude for the ascent phase.
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(c) RECONCILE Flight 11 - March 2 nd 2010

lauf_CFC11d_05T (seq 02_01788) - Insitu Comparison Ascent  
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(d) RECONCILE Flight 11 - March 2 nd 2010

lauf_CFC12d_05T (seq 02_01788) - Insitu Comparison Ascent  
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(e) RECONCILE Flight 11 - March 2 nd 2010

lauf_H2Oe05T (seq 02_01788) - Insitu Comparison Ascent  
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(f) RECONCILE Flight 11 - March 2 nd 2010

lauf_ClONO2h_05T(seq 02_01788)  

Fig. 14. (a–f): Retrieved profiles of temperature, O3, CFC-11, CFC-12, H2O and ClONO2 with

estimated error and comparison with in-situ measurements (left panels in the plots). Initial-

guess/a priori profiles for the retrievals and DOF of the results are also indicated. Vertical

resolutions of the retrieval results (right panels in the plots).
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Fig. 15. (a–e): Comparison of the retrieval results inclusive estimated error for temperature,

O3, CFC-11, CFC-12 and H2O with in-situ measurements along flight track. Retrieval results

are shown for the indicated retrieval-grid altitudes.
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Fig. 16. Correlation of CFC-11 and CFC-12 derived from the MIPAS-STR and HAGAR mea-

surements for RECONCILE flight 11. For MIPAS-STR, all retrieved profile points with a vertical

resolution better than 5 km are shown. The points associated to sequence 02 01788 of MIPAS-

STR, for which the in-situ profile-comparisons are carried out, are shown together with the

corresponding estimated 1σ-errors.
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Fig. 17. Vertical cross-section of HNO3 along flight track derived from MIPAS-STR measure-

ments. The turn between the north-eastern flight leg (from Longyearbyen) to the southward

flight leg (towards Kiruna) is indicated by the dashed vertical line. Retrieved HNO3-mixing

ratios are linearly interpolated between the retrieval grid points (black dots) and are shown

colour-coded. Interpolation is performed between grid points with vertical resolutions of the

result of better than 5 km.
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Fig. 18. Vertical cross-section of HNO3 along flight track derived from CRISTA-NF measure-

ments (compare Fig. 17).
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Fig. 19. Vertical cross-section of CFC-11 along flight track derived from MIPAS-STR measure-

ments (compare Fig. 17).
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