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Abstract—Face morphing attacks target to circumvent Face
Recognition Systems (FRS) by employing face images derived
from multiple data subjects (e.g., accomplices and malicious
actors). Morphed images can be verified against contributing
data subjects with a reasonable success rate, given they have
a high degree of facial resemblance. The success of morphing
attacks is directly dependent on the quality of the generated
morph images. We present a new approach for generating strong
attacks extending our earlier framework for generating face
morphs. We present a new approach using an Identity Prior
Driven Generative Adversarial Network, which we refer to as
MIPGAN (Morphing through Identity Prior driven GAN). The
proposed MIPGAN is derived from the StyleGAN with a newly
formulated loss function exploiting perceptual quality and iden-
tity factor to generate a high quality morphed facial image with
minimal artefacts and with high resolution. We demonstrate the
proposed approach’s applicability to generate strong morphing
attacks by evaluating its vulnerability against both commercial
and deep learning based Face Recognition System (FRS) and
demonstrate the success rate of attacks. Extensive experiments
are carried out to assess the FRS’s vulnerability against the
proposed morphed face generation technique on three types of
data such as digital images, re-digitized (printed and scanned)
images, and compressed images after re-digitization from newly
generated MIPGAN Face Morph Dataset. The obtained results
demonstrate that the proposed approach of morph generation
poses a high threat to FRS.

Index Terms—Morphing attack, GAN, attack detection, face
recognition, vulnerability, deep learning.
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I. INTRODUCTION

F
ACE Recognition Systems (FRS) have provided ubiq-

uitous ways of verifying an identity claim in many

applications. FRS have been used in everyday applications

from low-security applications such as smartphone unlocking

to high-security applications such as identity verification in

border control processes. Each of the applications mandate a

chosen way of enrolment to FRS where either a supervised

enrolment is carried out (for instance in on-boarding at bank

premises) or unsupervised enrolment is requested (on-boarding

for banking applications from home). While it provides a high

degree of flexibility and convenience to users to initiate an

enrolment process in an unsupervised manner, this potentially

leads to a security risk: Without supervision, a data subject

enrolling into the FRS can submit a face image which is

manipulated, a printed face image, an image displayed from an

electronic screen (e.g., iPad) or a silicone latex face mask [2].

In order to mitigate such attacks at the enrolment level, it is

therefore essential to have a robust attack detection mecha-

nism. While a number of works in recent years have been

proposed on both conducting such attacks and detecting the

attacks in a robust manner for printed attacks, display attacks

and mask attacks, in this work we focus on a new kind of

attack referred popularly as Morphing Attack.

Face morphing is the process of combining two or more

face images to generate a single face image that can resem-

ble visually to all the contributing face images to a greater

degree [3]. A good quality morphed face image is also effec-

tive in verifying against all contributing subjects by obtaining

a comparison score that exceeds the pre-determined threshold

(i.e., passes through FRS) [3], [4], [5], [6]. While morphing

can be conducted using multiple face images of different sub-

jects, the effectiveness of morphed images is reported when

the face images of similar ethnicity, gender and age group are

considered [6], [7], [8]. This is primarily due to the fact that a

morphed image should not only defeat the FRS but should also

provide high visual similarity, in order to convince a human

expert in a visual comparison process.

Face morphing attacks threaten FRS due to the current

practices in the ID-document application process, where the

biometric enrolment is carried out in an unsupervised manner

in many countries. Countries like the U.K. and New Zealand

allow citizens to upload a digital face image for various appli-

cations such as passport renewal [9] and visa application [10].

The capture process for such images is unsupervised. In a

similar manner, many Asian countries and European countries
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(e.g., in The Netherlands [11]) request the applicant to submit

a scanned face image for passport/visa/identity-card applica-

tions. Given that the images are captured and submitted in

an unsupervised setting, the applicant has vast opportunities

to upload a morphed image with malicious intent underlin-

ing the need for robust Morphing Attack Detection (MAD)

mechanisms.

A. Related Works on Face Morph Generation

While morphing attacks have been studied in recent

years, most of the attacks are conducted using the mor-

phed images created using facial landmarks-based approaches

needing high a degree of supervision to first determine

the facial landmarks, thereupon align them and then finally

blend them to generate morphs. The common set of proce-

dures for warping/blending includes Free Form Deformation

(FFD) [12], [13], Deformation by moving least squares [14],

deformation based on mass spring [15], Bayesian framework

based morphing [16] and Delaunay triangulation based mor-

phing [17], [18], [19], [20], [21]. Due to inadvertent artefacts

caused by pixel/region-based morphing, the images need addi-

tional work in refining the signal to create highly realistic

morph images. A set of post processing steps are usually

included as illustrated in number of works [20], [22], [23].

Generally, some set of post processing techniques such as

image smoothing, image sharpening, edge correction, his-

togram equalization, manual retouching, image enhancement

to improve the brightness and contrast are used to elimi-

nate the artefacts generated during the morphing process. In

a parallel direction, morphed face images can also be gener-

ated using landmarks-based methods available in open-source

resources like GIMP/GAP and OpenCV. Morphs generated

using GIMP/GAP technique are more efficient with respect

to a good quality of the resulting image (i.e., less notice-

able artefacts) as pixels are aligned manually. Despite the

minimal amount of effort needed for creating morphs using

such approaches, a significant amount of effort needs to

be dedicated to correcting artefacts. Additionally, commer-

cial solutions like Face Fusion [24] and FantaMorph [25]

can also generate good quality morphed images with limited

manual intervention. Although some steps can be excluded

in creating the morphs, it is very critical to meet the

face image quality standards laid out by the International

Civil Aviation Organization (ICAO) [26], [27] for electronic

Machine Readable Travel Document (eMRTD) and deploy-

ment of biometric identification applications.

B. GAN Based Face Morph Generation

In an attempt to overcome the cumbersome efforts of

manually creating (semi-automated) morphed images, a fully

automated approach using a Generative Adversarial Network

(GAN) was proposed by Damer et al. [28]. Unlike the super-

vision required in the mark-up of landmarks and aligning

the face images in a (partially) manual process, GAN-based

techniques synthesise morphed images directly by merg-

ing two facial images in the latent space. In the work by

Damer et al. [28], the proposed MorGAN architecture for

morph generation basically employed a generator constitut-

ing encoders, decoders and a discriminator. The generator was

trained to generate images with the dimension 64 × 64 pixels

which is a key limiting factor of the attack, as most com-

mercial FRS will reject images that do not meet the ICAO

standard that requires a minimum Inter-Eye Distance (IED)

of 90 pixels. The empirical evaluation of generated morph

images using MorGAN in a vulnerability analysis against two

commercial FRS indicated that those MorGAN morphs fail

to meet both quality standards and the verification threshold

of the FRS [1]. Motivated to address the deficiency of the

MorGAN architecture, in our recent work [1]1 we proposed

an approach based on the StyleGAN architecture [29] to

increase the spatial dimension to 1024 × 1024 and thus to

improve the face image quality. Unlike the previous approach

of MorGAN [28], StyleGAN [1] achieves better spatial res-

olution by embedding the images in the intermediate latent

space. With the increased spatial dimension of resulting mor-

phed images from our recently proposed architecture, we not

only demonstrated that the images meet quality standards but

also have a reasonable success rate when attacking commercial

FRS [1].

C. Limitations of GAN Based Face Morph Generation and

Our Contributions

While our earlier work [1] indicated that better GAN archi-

tectures could result in superior quality morphs and could

attack an FRS in general, we also acknowledge the limited

threats that exist for Commercial-Off-The-Shelf (COTS) FRS,

as merely a subset of morphed images was accepted. Only

approximately 50% of the generated morph images were ver-

ified successfully against probe images from a contributing

subject. Thus the empirical evaluation in our earlier work has

shown that the attack was yet not very effective [1] for a COTS

FRS [30] and an open-source FRS based on ArcFace [31]. We

must state that up to now FRS are not very vulnerable to GAN-

based morphing attacks unlike to landmarks-based morphing

attacks. With a clear introspection into this aspect, we notice

that the resulting morphed images from our earlier work [1]

does not retain a high degree of facial similarity to both

contributing subjects. With lower similarity to contributing

subjects in terms of facial structures, the FRS do not attribute

a high comparison score, as anticipated. In other words, the

missing enforcement of identity information of contributing

subjects will lead to a high visual quality facial image but

with lower face similarity to contributing face characteristics.

In an effort to make the attacks stronger such that both sub-

jects can be verified with a good success rate, in this work,

we extend our previous architecture to generate morphs by

including the identity priors before the generation of morphed

faces. We now refer to this approach as MIPGAN (Morphing

through Identity Prior driven GAN). We propose two variants

of our approach named as MIPGAN-I and MIPGAN-II based

on the employed GAN being StyleGAN or StyleGAN2 respec-

tively [29], [32]. With the inclusion of a new loss function

in our proposed architecture, we increase the attack success

1The preliminary work results were published at IWBF-2020 in April, 2020.



ZHANG et al.: MIPGAN—GENERATING STRONG AND HIGH QUALITY MORPHING ATTACKS USING IDENTITY PRIOR DRIVEN GAN 367

Fig. 1. Results from StyleGAN based face morphing [1] and the proposed MIPGAN (a) Contributing subject 1 (b) StyleGAN [1] (c) Proposed method
(d) Contributing subject 2.

Fig. 2. Details of segmented components in morphs generated by earlier method based on StyleGAN [1] and proposed MIPGAN (a) StyleGAN [1]
(b) MIPGAN-I (c) MIPGAN-II.

rate against commercial-off-the-shelf (COTS) FRS and deep

learning based FRS. Figure 1 shows the example of mor-

phed face images generated using proposed MIPGAN along

with outputs of both the variants. To further achieve superior

quality face morphs, we also customize the newly designed

loss function to account for ghosting and blurring artefacts in

an end-to-end manner with no human or manual intervention

eliminating the need for a high degree of interaction. As noted

in Figure 2, the results from MIPGAN-I and MIPGAN-II is

more coherent in retaining structural similarity as compared

to our earlier architecture [1]. With the updated architecture

to generate high-quality morphs which preserve both iden-

tity information and structural correspondence, we evaluate the

applicability in creating stronger attacks by creating a large-

scale dataset of morphed images by employing the face images

derived from the FRGC-V2 face database [33]. The created

dataset of 1270 bona fide images and 2500 morphed images

is first evaluated to measure the attack success rate by ver-

ifying the morphed images against the contributing subjects

using a commercial FRS from Cognitec [30]. In addition to

measuring the attack success rate for digital images, we also

extend our work by printing and scanning (re-digitizing) the

dataset. We check the consistency of the attack success rate,

unlike our earlier work which was limited to an investigation

on digital images alone [1]. We also include the experiments

on assessing the impact of compression (down to 15kb follow-

ing ICAO guidelines) of printed and scanned face images that

simulate the real-life e-passport application scenario. The key

motivation to extend our work in this direction is, to mimic the

passport application process that is operated in many European

countries and Asian countries, which all accept printed-and-

scanned facial images in the application process for an identity

document (e.g., passports).

With the extensive experimental results indicating a highly

satisfactory attack success rate, we also evaluate a set of MAD

algorithms to benchmark the detection capabilities. To this

extent, we evaluate two state-of-the-art MAD approaches on

digital morphed images, re-digitized and compressed morphed

images after re-digitizing. Thus, we comprehensively cover

the potential morphing attacks in the digital domain and the

re-digitized domain. While we note the earlier works [1] argu-

ing that attacks in the digital domain can be detected by

studying the cues such as residual noise in morphing [34],

patterns of noise from morphed images, histogram features

of textures or the deep features [4], we also investigate the

MAD capabilities for re-digitized images which do not exhibit

the similar features (residual noise) as the print-scan process

eliminates the digital cues and presents another set of vari-

ations. Specifically, given the nature of the dataset in which

we have only a single suspected morphed image, for which

we must determine either the morph or the bona fide class, we

resort to Single Image based MAD (S-MAD) approaches using

two recent but robust approaches using hybrid and ensemble

features [34], [35], [36], [37].
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Fig. 3. Block diagram of the proposed MIPGAN for generating high quality morphed face images.

We therefore present a summary of contributions of this

work as listed below:

• We present a novel approach of generating morphed

face images through GAN architecture with enforced

identity priors and a customized novel loss function

to generate highly realistic images which we refer as

MIPGAN (Morphing through Identity Prior driven GAN).

We present two variants of the proposed approach for

generating attacks with a high success rate.

• The proposed approach (both variants) is benchmarked to

measure the attack success rate by verifying COTS and

deep learning based FRS through studying the vulnera-

bility using a newly generated dataset from our proposed

architecture which is referred as MIPGAN Face Morph

Dataset.

• Human observer analysis for detecting morphs generated

by the proposed and existing morphing attack methods is

presented.

• Analysis of the perceptual quality metrics to illustrate the

visual quality of the generated morph images is presented.

• Extensive experiments on three different data types such

as (a) digital morphed images (b) print-scan morphed

image (c) print-scan morphed images with compression

are presented to cover the full spectrum of passport

application process under morphing attacks.

• The generated images are also benchmarked against the

existing MAD approaches both in digital form and the

re-digitized form to provide the insights on detection

challenges of SOTA approaches. We also present a gener-

alizability study on MAD schemes by training one kind

of morph generation and testing on a different kind of

morph generation approach to indicate directions to future

works.

In the rest of the paper, Section II describes the new archi-

tecture along with the newly designed loss function to generate

high-quality morphs. Section III provides the details on the

quantitative experiments indicating the vulnerability of FRS

and the detection challenge. With the set of remarks and future

works in this direction, we draw the conclusion in Section V.

II. PROPOSED MORPHED FACE GENERATION

Figure 3 presents the block diagram of the proposed mor-

phed face image generation using MIPGAN. The proposed

method is based on the end-to-end optimization using a new

loss function that can preserve the identity of the gener-

ated morphed face image through enforced identity priors.

The proposed MIPGAN framework is designed independently

on two different GAN models based on StyleGAN [29]

and StyleGAN2 [32] model. We refer to the proposed

scheme with StyleGAN as MIPGAN-I and with StyleGAN2

as MIPGAN-II respectively. Given the face images from

the accomplice (I1) (contributing subject 1) and the mali-

cious (I2) (contributing subject 2) data subjects, we predict

the corresponding latent vectors L′
1 and L′

2 in the first

step. In this work, we have employed the open-source pre-

trained prediction models trained to predict the corresponding

latent vector given an input image. Hence, L′
1 and L′

2 are

predictions from the final output layer of the model, which

is further reshaped. Since MIPGAN-I and MIPGAN-II are

based on pre-trained StyleGAN [29] and StyleGAN2 [38]

model respectively, we used two different open-source pre-

trained models for prediction. Both of the prediction mod-

els employ ResNet50 [39] as backbone. The model for

MIPGAN-I (StyleGAN) uses one convolution layer and two

tree-connected layers [40] to map the output of ResNet50 into

the final latent vector with the size of (18, 512). In compar-

ison, the model for MIPGAN-II (StyleGAN2) just uses one

fully-connected layer to achieve the mapping. The predicted

latent vectors thus provide the initialization for the morphed

face generation that is obtained using a weighted linear average

of L′
1 and L′

2 as follows:

L′
M =

w1 ∗ L′
1 + w2 ∗ L′

2

2
, (1)

where w1 and w2 indicate the weights, which we have chosen

to be w1 = w2 = 1. Equal weights are selected as shown in

earlier work [41] where the morphing images generated with

equal weights pose higher vulnerability to COTS FRS. Finally,

L′
M is passed through the synthesis network (independently
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from StyleGAN [29] and StyleGAN2 [32] model) to generate

the corresponding morphed image I′
M that has a resolution of

1024 × 1024 pixels. The generated morphed face image I′
M is

then optimized using the proposed loss function to generate the

high quality morphed face image. In the following section, we

discuss the loss function to optimism the latent vector obtained

using Equation (1).

A. Proposed Loss Function

The proposed loss function is based on both perceptual

fidelity, quality and identity factors that can facilitate high-

quality face morph generation. The common issue with the

GAN-based morph generation is the presence of ghost arte-

facts and blurring issues. We employ the perceptual loss with

multiple layers to eliminate such effects as given by Eqn. (2).

LossPerceptual =
1

2

∑

i

1

Ni

∥

∥Fi(I1) − Fi

(

I′
M

)
∥

∥

2

2

+
1

2

∑

i

1

Ni

∥

∥Fi(I2) − Fi

(

I′
M

)
∥

∥

2

2
, (2)

where Ni denotes the number of features in layer i and Fi

denotes features in layer i of the perceptual network (VGG-

16 in our case). For the combination of perceptual layers,

we choose conv11, conv12, conv22, conv33 inspired by [42].

Compared with the original combination of layers conv12,

conv22, conv33, conv43 [43], our design measures low-level

features instead of high-level features like style of an image

and is closer to our goal of morphing faces with high quality.

The main goal of this paper is to generate the morphed

face images that can significantly attack FRS. In order to

achieve this, we have introduced the identity loss function

based on the feedback from FRS. We employ Arcface [31]

- a deep learning based FRS because of its robust and accu-

rate performance to obtain feedback on generated morphed

face images. Specifically, we employ a pre-trained embedding

extractor with ResNet50 as the backbone to extract the unit

embedding vectors and define the identity loss by their cosine

distance to improve the morph generation process as given by

Eqn. (3).

LossIdentity =

(

1 − �v1·�vM

‖�v1‖‖�vM‖

)

+
(

1 − �v2·�vM

‖�v2‖‖�vM‖

)

2
, (3)

where �v1, �v2, �vM respectively denotes the embedding vectors

which are extracted from image I1, I2, I′
M respectively.

To further prove the loss function is differential for the mor-

phed embedding vector �vM , we define xd, yd, zd to be the value

of vector �v1, �v2, �vM in dimension d respectively and d′ �= d

to be other dimensions except d. The expanded identity loss

function and its partial derivative are:

LossIdentity =

(

1 −
∑

d xdzd

‖�v1‖‖�vM‖

)

+
(

1 −
∑

d ydzd

‖�v2‖‖�vM‖

)

2
, (4)

∂LossIdentity

∂zd

= 1 −
xd

2‖�v1‖

∂

∂zd

⎛

⎝

zd
√

z2
d +

∑

d′ �=d z2
d′

⎞

⎠

−
yd

2‖�v2‖

∂

∂zd

⎛

⎝

zd
√

z2
d +

∑

d′ �=d z2
d′

⎞

⎠, (5)

∂

∂zd

⎛

⎝

zd
√

z2
d +

∑

d′ �=d z2
d′

⎞

⎠ =
1

√

z2
d +

∑

d′ �=d z2
d′

+
2z2

d

−2
(

z2
d +

∑

d′ �=d z2
d′

)
3
2

=

∑

d′ �=d z2
d′

(

z2
d +

∑

d′ �=d z2
d′

)
3
2

∂LossIdentity

∂zd

= 1 −

(

xd

2‖�v1‖
+ yd

2‖�v2‖

)

∑

d′ �=d z2
d′

(

z2
d +

∑

d′ �=d z2
d′

)
3
2

. (6)

For any value zd = z′
d, it is obvious that:

lim
�zd→0

∂LossIdentity

(

z′
d + �zd

)

∂zd

= lim
�zd→0

⎛

⎜

⎜

⎝

1 −

(

xd

2‖�v1‖
+ yd

2‖�v2‖

)

∑

d′ �=d z2
d′

(

(

z′
d + �zd

)2
+

∑

d′ �=d z2
d′

)
3
2

⎞

⎟

⎟

⎠

= 1 −

(

xd

2‖�v1‖
+ yd

2‖�v2‖

)

∑

d′ �=d z2
d′

(

z
′2
d +

∑

d′ �=d z2
d′

)
3
2

=
∂LossIdentity

(

z′
d

)

∂zd

.

Hence, for any dimension of d, the partial derivative of the

identity loss function is continuous.

It is interesting to note that the identity loss based on the

Arcface feature extractor model is trained to maximize the face

class separability and thus is more sensitive to face attributes.

Hence, only optimising the identity loss cannot achieve the

same reconstruction performance as the perceptual loss but

applying it on the face region can effectively control the

generated attributes to be recognized as both subjects.

To solve the imbalance between different subjects, we

introduce an identity difference loss as given by Eqn. (7).

LossID−Diff =

∣

∣

∣

∣

(

1 −
�v1 · �vM

‖�v1‖‖�vM‖

)

−

(

1 −
�v2 · �vM

‖�v2‖‖�vM‖

)
∣

∣

∣

∣

. (7)

With the idea of the Lagrange multiplier, it adds a constraint to

the optimization process to force the cosine distance between

morph embedding and each of the two reference embeddings

to be the same. Since LossID−Diff is usually small with a value

less than 1, we apply L1 loss on the difference of two cosine

distance terms to avoid the vanishing gradient problem.

Finally, in order to improve the structural visibility of the

generated morphed face image, we also apply the Multi-Scale

Structural Similarity (MS-SSIM) loss LMS−SSIM to measure the

similarity in structure [45]. Given two discrete non-negative

signals (images in our case) x and y, luminance, contrast

and structure comparison measures were given by l, c, s as

computed using Eqn. (8).

l(x, y) =

(

2µx2µy + (K1L)2
)

µ2
x + µ2

y + (K1L)2
,
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Fig. 4. Qualitative results of proposed MIPGAN together with existing GAN based face morph generation methods (a) Landmark-I [7] (b) Landmark-II [44]
(c) StyleGAN [1] (d) MorGAN [28] (e) Proposed method.

c(x, y) =

(

2σx2σy + (K2L)2
)

σ 2
x + σ 2

y + (K2L)2
,

s(x, y) =

(

σxy + (K2L)2

2

)

σxσy + (K2L)2

2

, (8)

where µx, σx and σxy denotes the mean of x, the variance

of x and the covariance of x and y respectively. L is the

dynamic range of the signal and K1 ≪ 1, K2 ≪ 1 are two con-

stant scalars. The MSSSIM loss LMS−SSIM is further defined

by Eqn. (9).

MSSSIM(x, y) =
[

lJ(x, y)
]αJ ·

J
∏

j=1

[

cj(x, y)
]βj

[

sj(x, y)
]γj

,

LMS−SSIM =
1

2

(

1 − MSSSIM
(

I1, I′
M

))

+
1

2

(

1 − MSSSIM
(

I2, I′
M

))

, (9)

where j = 1, 2, . . . , J represents the jth scale and αj, βj and γj

are the factors of relative importance. As suggested in [45],

we also set αj = βj = γj,
∑J

j=1 γj = 1 and use the resulting

parameters β1 = γ1 = 0.0448, β2 = γ2 = 0.2856, β3 = γ3 =
0.3001, β4 = γ4 = 0.2363, α5 = β5 = γ5 = 0.1333.

Thus, the proposed loss function can be formulated as:

Loss = λ1LossPerceptual + λ2LossIdentity

+ λ3LossMS−SSIM + λ4LossID−Diff , (10)

where λ1, λ2, λ3 and λ4 are the hyper-parameters that are set

to achieve both stable and generalized convergence. In this

work, we empirically set λ1 = 0.0002, λ2 = 10, λ3 = 1 and

λ4 = 1.

B. Training and Optimization

The training and optimization of the proposed method are

carried out on Tensorflow version 1.13 and version 1.14 for

StyleGAN and StyleGAN2, respectively. The optimization is

carried out using NVIDIA GTX 1070 8 GB GPU with CUDA

version 10.0 and CUDNN version 7.5 and NVIDIA Tesla

P100 PCIE 16 GB GPU. The Adam optimizer with hyper-

parameters β1 = 0.9, β2 = 0.999 and ǫ = 1 × 10−8 as

recommended in the original paper [46] is employed on this

work. The list of morphing pairs is generated in advance with

careful considerations to gender. During each optimization

process of 150 iterations, the learning rate is initially set

to η = 0.03 with an exponential decay per 6 iterations of

ηnew = η ∗ 0.95.

Figure 4 illustrates the qualitative results of the proposed

MIPGAN framework based on StyleGAN and StyleGAN2.

Further, the qualitative results of the existing methods based

on StyleGAN [1] and MorGAN [28] are provided alongside

for the convenience of the reader in the same figure. It is

interesting to note that the proposed MIPGAN generated face

morph images indicate both perceptual and geometric features

correspondence to both contributing subjects (for instance,

malicious actor and accomplice).

III. EXPERIMENTS AND RESULTS

This section presents and discusses the experimental pro-

tocols, datasets, and quantitative results of the proposed face

morphing technique. The images generated from the proposed

MIPGAN-I and MIPGAN-II architectures are compared with

the state-of-the-art techniques based on both facial land-

marks [7] and StyleGAN based morph generation [1]. The

effectiveness of the face morphing generation is quantitatively

evaluated by benchmarking the vulnerability of the COTS FRS

and deep learning based FRS for generated morphed face

images. Further, we also evaluate the morphing attack detec-

tion potential by evaluating the generated morphed face images

using the most recent and robust MAD techniques.

A. MIPGAN Face Morph Dataset

We employ the face images from FRGC-V2 face

database [33] to generate the MIPGAN Face Morph Dataset

consisting of morphed face images using both state-of-the-art

and the proposed MIPGAN technique. We have selected 140

unique data subjects from the FRGC dataset by considering

the high-quality face images captured in constrained condi-

tions that resemble the passport image quality. Among 140

data subjects, 47 data subjects are female and 93 data subjects

are male. Each data subject has a variable size of 7-21 addi-

tional captured samples, resulting for the whole dataset to have

1270 samples corresponding to 140 data subjects. We employ

three different face morph generation techniques based on

facial landmarks constrained by Delaunay triangulation with

blending [7] we term this as Landmarks-I, landmarks-based

techniques with automatic post processing and color equali-

sation [44], we term this as Landmarks-II and StyleGAN [1].
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Fig. 5. Illustration of morphing in digital, print-scan and print-scan compression data (a) Contributing subject 1 (b) Landmark-I [7] (c) Landmark-II [44]
(d) StyleGAN [1] (e) MIPGAN-I (f) MIPGAN-II (g) Contributing subject 2.

We do not consider MorGAN [28], [47] based face morph

generation as it was earlier demonstrated that MorGAN does

not generate ICAO compliant images and thus makes COTS

FRS not vulnerable [1]. All the samples are pre-processed to

meet the ICAO standards [27] and morphing is carried out

by following the guidelines outlined earlier [7], [8], i.e., care-

ful selection of subjects based on gender and similarity score

using a FRS, in order to have realistic attacks.

To effectively evaluate the proposed method’s quantita-

tive performance and the existing techniques, we create three

different types of attacks from morphed images, such as

Digital morphed images: Morphed face images that are

obtained from the morph generation process in the digital

domain. Print-scanned morphed images: The digital mor-

phed and bona fide images are printed and then scanned

(or re-digitized) to simulate the passport application process.

We have employed a DNP-DS820 [48] dye-sublimation photo

printer to generate the prints of the digital morphed and bona

fide face images in this work. The use of a dye-sublimation

photo printer guarantees high-quality photo printing (generally

used for a passport application) and makes sure that printed

photos are free from dotted patterns (or individual droplets of

ink) that are resulting from the printing process of conven-

tional printers. Each of these printed photos is then scanned

(or re-digitized) using the Canon office scanner to have 300

dpi as suggested in ICAO standards [27]. Print-scanned com-

pressed morphed images: The printed and scanned images

(both morphed and bona fide) are compressed to have a size

of 15kb that makes it suitable to store in the e-passport. This

process reflects the real-life scenario of face image storage in

passport systems. Thus, the overall dataset has 2500 × 3 (types

of morph data) × 4 types of morph generation technique =

30, 000 morph samples and 1270 × 3 (types of morph data)

× 4 types of morph generation technique = 15, 240 bona fide

samples. Figure 5 illustrates the three data types of attacks

that are used to evaluate the effectiveness of the proposed

method and the existing methods of face morph generation.

It is evident that the visual quality of the images vary largely

for different attack types (for instance, the digital data attack

indicates the best quality and print-scan with compression

indicates the lowest quality).

B. Vulnerability Analysis

This section presents the vulnerability analysis of the

proposed morphed face generation techniques to quantify the

impact of our efficient attacks on FRS. We quantify the attack

success for five different FRS including two Commercial-off-

the-Shelf (COTS) FRS and three deep-learning-based open-

source FRS. The COTS FRS include the Cognitec FRS

(Version 9.4.2) [30]2 and Neurotechnology (Version 10) [50]

and the set of open-source FRS includes Arcface [31],

VGGFace [49] and LCNN-29 [51]. The operational thresh-

old for all 5 FRS is set at False Match Rate (FMR) of 0.1%

following the guidelines of Frontex [52].

The vulnerability is assessed using two metrics Mated

Morphed Presentation Match Rate (MMPMR) [8] and Fully

Mated Morphed Presentation Match Rate (FMMPMR) [1]

based on the threshold provided by Cognitec FRS. For a

given morph image MI1,2
obtained using two subjects, we

compute the vulnerability by enrolling MI1,2
and verifying it

2Outcome not necessarily constitutes the best the algorithm can do.
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TABLE I
QUANTITATIVE EVALUATION OF VULNERABILITY OF COTS COGNITEC-FRS [30] FROM VARIOUS MORPH GENERATION APPROACHES. NOTE THAT,

SINCE FNMR = 0 @ FMR = 0.1% FOR COGNITEC-FRS [30] FOLLOWING EQ. (12) AND (13), THE VALUE OF RMMR IS EQUAL TO

MMPMR/FMMPMR. THEREFORE, WE HAVE NOT ENTERED RMMR SEPARATELY IN THE TABLE ABOVE

against probe images from the corresponding contributing sub-

jects I1 and I2. The obtained comparison scores S1 and S2

for both probe images I1 and I2 against the morphed image

MI1,2
indicates the threat to FRS, if and only if both S1 and

S2 cross the actual verification threshold at FMR = 0.1%.

The corresponding metric FMMPMR [1], [41] is therefore

computed as:

FMMPMR

=
1

P

∑

M,P

(

S1P
M > τ

)

&&
(

S2P
M > τ

)

. . . &&
(

SkP
M > τ

)

,

(11)

where P = 1, 2, . . . , p represent the number of attempts made

by presenting all probe images of the contributing subjects

against the Mth morphed image, K = 1, 2, . . . , k represents

the number of composite image constitute to generate the

morphed image (in our case K = 2), SkP
M represents the com-

parison score of the Kth contributing subject obtained with

Pth attempt corresponding to Mth morphed image and τ rep-

resents the threshold value corresponding to FMR = 0.1%.

When compared to MMPMR, the FMMPMR will consider

both pair-wise comparison of contributory subjects and the

number of attempts. In order to also establish the relationship

with respect to earlier metrics, we also report the vulnerability

using MMPMR [8].

Further, to effectively analyse the vulnerability, we also

present the results using Relative Morph Match Rate (RMMR)

defined as follows [8]:

RMMR(τ )MMPMR = 1 + (MMPMR(τ )) − [1 − FNMR(τ )]

(12)

RMMR(τ )FMMPMR = 1 + (FMMPMR(τ )) − [1 − FNMR(τ )]

(13)

where, FNMR indicates the False Reject Rate (FNMR) of the

FRS under consideration obtained at the threshold τ . In this

work, τ represents the value corresponding to FMR = 0.1%.

Since we have evaluated 5 different FRS systems, we have

computed FNMR corresponding to these FRS to calculate the

RMMR. Note that, in Equation (12) and (13) if FNMR = 0

then RMMR corresponds to MMPMR/FMMPMR.

The obtained success rate, or alternatively the vulnerability

of FRS is provided in Tables I, II, III, IV, and V cor-

responding to Cognitec [30], VGGFace [49], Arcface [31],

Neurotechnology (Version 10) [50] and LCNN-29 [51] respec-

tively. The vulnerability analysis is carried out on 5 differ-

ent morph generation methods that include facial landmarks

(Landmarks-I) with image smoothing as the post-processing

operation [7], Facial landmarks (Landmarks-II) with automatic

image retouching and color equalisation [44], existing GAN

based face morphing method based on StyleGAN [1] and

proposed MIPGAN variants (MIPGAN-I and MIPGAN-II).

Based on the obtained results, the following are the concrete

observations:

• The FNMR corresponding to five different FRS is equal

to 0. Therefore, the value of the RMMR is equal to

MMPMR or FMMPMR. This indicates that the FRS

systems are accurate on our face datasets employed in

this work.

• Among the five FRS, the highest vulnerability is noted

for Arcface [31], which is vulnerable to all five kinds of

face morphing attack methods.

• Among COTS FRS, the Cognitec FRS indicates a higher

vulnerability on all five types of face morphing attack

methods compared to Neurotechnology FRS.

• Among five different morph generation methods,

Landmark-I indicates the highest vulnerability on all five

other FRS.
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TABLE II
QUANTITATIVE EVALUATION OF VULNERABILITY OF VGGFACE2 [49] FRS FROM VARIOUS MORPH GENERATION APPROACHES. NOTE THAT, SINCE

FNMR = 0 @ FMR = 0.1% FOR VGGFACE2 [49] FOLLOWING EQ. (12) AND (13), THE VALUE OF RMMR IS EQUAL TO MMPMR/FMMPMR.
THEREFORE, WE HAVE NOT ENTERED RMMR SEPARATELY IN THE TABLE ABOVE

TABLE III
QUANTITATIVE EVALUATION OF VULNERABILITY OF ARCFACE [31] FRS FROM VARIOUS MORPH GENERATION APPROACHES. NOTE THAT, SINCE

FNMR = 0 @ FMR = 0.1% FOR ARCFACE [31] FOLLOWING EQ. (12) AND (13), THE VALUE OF RMMR IS EQUAL TO MMPMR/FMMPMR.
THEREFORE, WE HAVE NOT ENTERED RMMR SEPARATELY IN THE TABLE ABOVE

• The proposed face morphing methods MIPGAN-I and

MIPGAN-II consistently indicate the highest vulnera-

bility, when compared to the existing method based

on StyleGAN [1]. This indicates the high quality of

morphs generated using the proposed MIPGAN-I and

MIPGAN-II methods.

• The proposed MIPGAN-I and MIPGAN-II methods also

indicate a higher vulnerability than the Landmark-II

technique for morph generation with four different FRS.

• Among the two different metrics (MMPMR and

FMMPMR), the proposed FMMPMR indicates a lower

vulnerability than MMPMR consistently as FMMPMR

imposes a strict selection of attack images, unlike

MMPMR.

• MIPGAN-I based morphed images show a marginally

better performance in attacking FRS than images gen-

erated by MIPGAN-II.

C. Perceptual Image Quality Analysis

This section presents quantitative results of the proposed

morphed image generation techniques using the perceptual

image quality metrics PSNR and SSIM. Both of these metrics

are computed based on the reference image. Morphed face

images are generated based on parent face images from two
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TABLE IV
QUANTITATIVE EVALUATION OF VULNERABILITY OF COTS NEUROTEC [50] FRS FROM VARIOUS MORPH GENERATION APPROACHES. NOTE THAT,

SINCE FNMR = 0 @ FMR = 0.1% FOR COTS NEUROTEC [50] FOLLOWING EQ. (12) AND (13), THE VALUE OF RMMR IS EQUAL TO

MMPMR/FMMPMR. THEREFORE, WE HAVE NOT ENTERED RMMR SEPARATELY IN THE TABLE ABOVE

TABLE V
QUANTITATIVE EVALUATION OF VULNERABILITY OF LCNN-29 [51] FRS FROM VARIOUS MORPH GENERATION APPROACHES. NOTE THAT, SINCE

FNMR = 0 @ FMR = 0.1% FOR LCNN-29 [51] FOLLOWING EQ. (12) AND (13), THE VALUE OF RMMR IS EQUAL TO MMPMR/FMMPMR.
THEREFORE, WE HAVE NOT ENTERED RMMR SEPARATELY IN THE TABLE ABOVE

contributory data subjects. Therefore, we used the parent face

images from both contributory data subjects as the reference

image against which the given morphed image is assessed and

we average the obtained image quality scores for both par-

ent images. Table VI indicates the quantitative results of both

PSNR and SSIM on four different types of face morph gener-

ation mechanism in the digital format. Based on the obtained

results, it can be observed that:

• There is little deviation in the perceptual image qual-

ity metrics computed on all four different types of face

morph generation mechanisms.

• The proposed MIPGAN-I and MIPGAN-II methods indi-

cate a slightly better image quality when compared to the

StyleGAN [1] based face morphing method.

• The proposed MIPGAN-I and facial landmarks-based

methods [44] indicate a similar image quality.

• Figures 6 and 7 indicate the box plots of the

PSNR and SSIM quality scores. These results fur-

ther indicate that the perceptual quality of the

proposed MIPGAN-I and MIPGAN-II is superior

to the existing state-of-the-art method based on

StyleGAN [1].
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Fig. 6. Box plots of PSNR values computed from different face morph
generation methods (digital version).

Fig. 7. Box plots of SSIM values computed from different face morph
generation methods (digital version).

TABLE VI
MORPH IMAGE QUALITY ANALYSIS USING PSNR AND SSIM WITH

95% CONFIDENCE INTERVAL

D. Human Observer Analysis

In this section, we discuss the quantitative detection

performance of human observations regarding morphed

face images, which are generated using MIPGAN-I and

MIPGAN-II. To this extent, we have designed and developed

a Web-portal to evaluate the human morph detection

performance reflecting both single image-based morphing

attack detection scenario (S-MAD) and differential morph-

ing attack detection scenario (D-MAD). We have used only

digital samples of both bona fide and morphed face images

as the proposed MIPGAN is used to generate the images in

the digital domain. Figure 8 (a) shows the screenshot of the

Web-portal for S-MAD in which the human observer needs to

decide whether the displayed image is a morphed face image

or a bona fide image by looking at one single image at a

time. Correspondingly, Figure 9 (a) presents the screenshot

for D-MAD experiment where the observer needs to detect

whether the unknown image is morphed given a trusted bona

fide image as a reference. We have selected a total of 90

images where 15 images are from each group correspond-

ing to bona fide, two different types of facial landmarks

based morphing such as Landmarks-I [7] and Landmarks-

II [44], StyleGAN [1] based face morphing, MIPGAN-I and

MIPGAN-II based face morphing. To make the testing robust,

all 90 chosen images correspond to unique data subjects and

there is no repetition of data subjects. To avoid gender bias

by participants, we have selected a near equal distribution of

male and female data subjects in each group. We have cho-

sen 90 images considering the time constraints required to

assess these images for human observers. It was important that

observers do not loose focus while conducting the detection

experiments.

Figure 8 (b) shows the quantitative results of S-MAD

obtained from 56 human observers, including 14 experienced

and 42 inexperienced observers. The experienced observers’

group consists of researchers working in face morphing attack

detection and as ID expert’s in border control, while the

non-experienced group consists of students and other com-

puter science professionals. As noticed from the Figure 8 (b)

following are the main observations:

• Detection performance of the bona fide images indicates

better detection performance by both experienced and

non-experienced group when compared to the morphed

face image. The experienced group indicates the detection

performance with an accuracy of 97.14%, while the non-

experienced group indicates the detection performance

with an accuracy of 79.21%.

• Human observers with experience in face morphing

demonstrate higher detection accuracy on four different

face morph generation mechanisms than the inexperi-

enced group.

• Among the four different morphing types, the experienced

group indicates that the detection of the landmarks-based

morphing is challenging compared to other morphing

mechanisms (deep learning-based).

• Human observers with no experience in face morphing

are marginally good in detecting the landmarks-based

face morph images compared to other types of face mor-

phing techniques. MIPGAN-I exhibits more challenging

morph images to detect as compared to other morph

generation methods.

• Based on the obtained results, it can be noted that the

human observers with good experience in face morphing

can detect morphed images with an accuracy of 88.25%

while the human observer with no knowledge of face

morphing shows the challenge to detect the morphed face

images with a detection accuracy of 64.31%.

• The overall results from 56 human observers indicate that

detecting morphed face images is challenging. Further, it
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Fig. 8. (a)Example of screen shot used for human observer study (b) Quantitative results.

Fig. 9. (a) Example of screen shot used for differential human observer study (b) Quantitative results.

is also interesting to note that detecting different face

morphing types is also challenging.

For the quantitative results of D-MAD, 5 experienced

observers and 10 inexperienced observers have participated.

As shown in Figure 9 (b), the following observations are

illustrated:

• In the scenario of D-MAD, the group with relevant expe-

riences achieved an overall 86% accuracy, which is better

than 81% for the inexperienced group. However, this dif-

ference is much less than the difference in S-MAD, which

means that the reference image can help inexperienced

observers to identify the morphs.

• Morphs generated by Landmark-II present a significant

challenge as compared to other morph generation mech-

anisms in D-MAD. This may be attributed to a more

natural skin texture appearance (comparing with GAN-

based mechanisms) and fewer artefacts (comparing with

Landmark-I) and observers focusing less on its minor

artefacts in the pairwise comparison.

• It is also interesting to see that the performances

of experienced observers on detecting Landmark-II

(80.95% and 72.00%), StyleGAN (90.48% and 88.00%),

MIPGAN-II (90.95% and 86.67%), and bona fide images

(90% and 88.00%) are lower than their performance

in S-MAD. We believe this is because experienced

observers do not pay critical attention to tolerable dif-

ference between the trusted reference image and the

unknown comparison image.

E. Ablation Study

In order to measure the impact of the loss functions in

the proposed approach, we conduct an extensive ablation

study. The proposed loss function combines four different

entities such as: perceptual loss (LossPerceptual), identity loss

(LossIdentity), identity difference (LossID−Diff ) and Multi-Scale

Structural Similarity (MS-SSIM) loss (LossMS−SSIM). The

main contribution of our work is to use identity information,

which can be considered as a specific high-level feature, to

measure the loss. However, high-level features also mean that

it is hard for the gradient descent algorithm to ensure a good

convergence during the optimization process. Therefore, we

have introduced the perceptual loss that can measure rela-

tively low-level features in addition to MS-SSIM and identity

difference loss to effectively control the optimization process

to generate a high-quality morphed image. We perform the

ablation study by discarding each term in the loss function

iteratively. We benchmark the vulnerability using COTS FRS

(Cognitec FRS (Version 9.4.2)) and the open-source ArcFace
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TABLE VII
VULNERABILITY - ABLATION STUDY ON THE PROPOSED LOSS FUNCTION. HERE, �INDICATES THE SELECTED AND × INDICATES

THE NOT SELECTED LOSS FUNCTION IN THE ABLATION STUDY

Fig. 10. Qualitative results of ablation study using proposed MIPGAN-I
(a) LossID−Diff (b) LossIdentity (c) LossMS−SSIM (d) LossPerceptual.

Fig. 11. Qualitative results of ablation study using proposed MIPGAN-II
(a)LossID−Diff (b) LossIdentity (c) LossMS−SSIM (d) LossPerceptual.

FRS, as the proposed approach is dedicated to generating

high-quality morphed images.

Table VII indicates the quantitative performance of the

ablation study using a vulnerability analysis for both the

COTS-FRS from Cognitec and for the open-source Arcface

FRS with the proposed MIPGAN-I and MIPGAN-II methods.

The ablation study is carried out on the digital morphed images

generated using both MIPGAN-I and MIPGAN-II Methods.

Figures 10 and 11 shows the qualitative performance of the

ablation study on both MIPGAN-I and MIPGAN-II, respec-

tively. Based on the obtained results, the following are the

main observations:

• Each term in our proposed loss function (see Eq. (10))

contributes to posing a greater challenge to a FRS for both

proposed MIPGAN-I and MIPGAN-II morph generation

frameworks.

• Among the four other loss functions that we have used,

the LossPerceptual is critical in improving the proposed

method’s performance. Discarding the perceptual loss has

resulted in a degrading performance in both qualitative

(see Figures 10 (d) and 11 (d)) and quantitative results.

• The use of identity loss (LossIdentity) also indicates the

importance of improving the quantitative performance of

the proposed method.

• The LossMS−SSIM also contributes to both qualitative and

quantitative improvements of the morphs generated by

the proposed method.

F. Hyper-Parameters Study

This section presents both qualitative and quantitative results

on the selection of hyper-parameters (λ1, λ2, λ3, and λ4)

Fig. 12. Qualitative results of Hyper-parameters study on both MIPGAN-I
and MIPGAN-II (a)λ1 (b) λ2 (c) λ3 (d) λ4.

in the proposed loss function employed in both MIPGAN-I

and MIPGAN-II. Based on the ablation study reported in

Section III-E, we have noticed that the perceptual loss is

the vital component of our loss function (see Eq. (10)) and

the other three terms can be used as constraints during the

optimization. Therefore, the first step is to study the gen-

erated morphed face images’ attack strength by increasing

and decreasing the value of λ1. Among the remaining three

terms, we have also noticed from the ablation study that the

identity loss (LossIdentity) is contributing more towards gen-

erating a high-quality morph compared to the other two-loss

functions (lossMS−SSIM , LossID−Diff ). We analyze the impor-

tance of identity loss (LossIdentity) with respect to the other

two loss functions (LossMS−SSIM , LossID−Diff ) by increasing

the value of λ3 and/or λ3 and decreasing the value of λ2.

Further, we have also noticed from the ablation study that the

loss functions lossMS−SSIM and LossID−Diff are less important

and numerically very small. Therefore, we did not conduct

studies on decreasing the values of λ3 and λ4. Altogether,

we have tested four different cases of changing the hyper-

parameter values to generate the morphed face images. These

generated morphed face images are benchmarked against the

proposed hyper-parameter values through the vulnerability

analysis using both COTS FRS (Cognitec FRS (Version 9.4.2))

and open-source ArcFace FRS.

Table VIII shows the qualitative performance and Figure 12

shows the qualitative performance of the hyper-parameter

study. Based on the obtained results, it can be noted that the

increase in the value of λ1 and λ3 shows comparable results

with the proposed weighting schemes. However, based on our

empirical study on hyper-parameters, we noted that: if we set
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TABLE VIII
QUANTITATIVE RESULTS OF HYPER-PARAMETERS STUDY

λ1 and λ2 with equal weights, then, during the optimization,

the generated morph image will soon become roughly similar

to both contributing subjects. This will quickly reduce identity

loss (LossIdentity) to a minimal value and loose its importance

in the optimization. Hence, we set a larger factor to the iden-

tity loss compared with other loss terms measuring high-level

features to ensure our most important constraint term is still

effective in the later stage of optimization. Further, both λ3 and

λ4 can make the optimization goal more comprehensive but

setting a large factor will obstruct the convergence. Especially

setting high values to λ4 will end up with an image not sim-

ilar to both subjects. Therefore, the selection of the proposed

hyper-parameters confirms the generation of a high-quality

morphed image but also aids for effective and comprehensive

optimization.

G. Morphing Attack Detection Potential

Considering the success rate of the newly generated dataset,

we naturally choose to evaluate the morphing attack detection

performance to also validate the robustness of existing MAD

mechanisms. Additionally, we investigate recent works about

general face manipulation detection [53], [54], [55] and some

results are shown in the supplementary material. In this work,

we focus on single image based morphing attack detection (S-

MAD) as it perfectly suits our dataset. MAD has been widely

addressed in the literature by developing the techniques based

on both deep learning [56], [57], [58], [59], [60] and non-

deep learning [19], [61], [62] approaches. Readers can refer

to [63] for an exclusive survey on face MAD. Owing to the

recent works detailing the applicability of Hybrid features [35]

and Ensemble features [36] in detecting morphing attacks, we

choose to benchmark both Hybrid features [35] and Ensemble

features [36]. While the Hybrid features [35] resort to extract-

ing features using both scale space and color space combined

with multiple classifiers, Ensemble features [36] employ a

variety of textural features in conjunction with a set of classi-

fiers. In common both approaches evaluate a wide variety of

MAD mechanisms in a holistic manner supported by empirical

results [35], [36]. In addition, the Hybrid features [35] mech-

anisms are also validated against the ongoing NIST FRVT

MORPH challenge [37] with the best performance in detecting

printed and scanned morph images justifying our selection of

algorithm to benchmark the newly composed database.

The reporting of MAD performance is following the

ISO/IEC metrics [64] namely the Attack Presentation

Classification Error Rate (APCER (%)) which defines the

proportion of attack images (morph images) incorrectly clas-

sified as bona fide images and the Bona fide Presentation

Classification Error Rate (BPCER (%)) in which bona fide

images incorrectly classified as attack images are counted [64]

along with the Detection Equal Error Rate (D-EER (%)). To

evaluate the generated morphed face image’s attack potential,

we have sub-divided the newly generated database into two

sets for training and testing that consists of independent data

subjects with no overlap between the splits. The training set

includes 690 bona fide images and 1190 morphed images. The

testing set consists of 580 bona fide and 1310 morphed images.

To effectively evaluate the performance of the MAD reflecting

a real-life scenario, we report the results on both intra (training

and testing dataset from the same morph generation approach)

and inter (training on one type of morphing techniques and

testing on another type of morphing techniques) evaluation of

MAD mechanisms. Extensive experiments are performed on

digital, print-scan and print-scan with compression data types

to provide an in-depth analysis of the S-MAD performance.

Tables IX, X, XI, XII, and XIII presents the quantitative results

of MAD mechanisms on morph generation methods together

with the SOTA morph generation techniques. Based on the

results obtained from the intra-dataset experiments, we make

some concrete observations as listed below:

• The intra-dataset evaluation indicates that the morphing

attacks are detected with a good success rate irrespective

of the type of generation.

• In general, the attack detection success rate is high with

digital data when compared to print-scan and print-scan

compression.

• Among the different types of morph generation tech-

niques, the Landmark-II based morph generation shows

the highest error rates. The attack images created using

StyleGAN and proposed MIPGAN can be efficiently
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TABLE IX
QUANTITATIVE PERFORMANCE OF MAD - TRAINING- LANDMARKS-I [7]

TABLE X
QUANTITATIVE PERFORMANCE OF MAD - TRAINING- LANDMARKS-II [44]

TABLE XI
QUANTITATIVE PERFORMANCE OF MAD - TRAINING- STYLEGAN [1]

TABLE XII
QUANTITATIVE PERFORMANCE OF MAD - TRAINING- MIPGAN-I

detected using both the employed approaches with high

accuracy. This can be attributed to the noises that are

synthesized using GANs due to the computational mod-

ifications performed on the latent space in GAN-based

morph generation methods.

In the following, we discuss the important observations

based on the results obtained from inter-dataset MAD analysis:

• The performance of the MAD techniques are degraded

on all five different case studies as indicated in the

Tables IX, X, XI, XII, and XIII.
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TABLE XIII
QUANTITATIVE PERFORMANCE OF MAD - TRAINING- MIPGAN-II

Fig. 13. Examples of morphed images that failed to attack FRS (a) morphed face images generated using proposed MIPGAN-I (b) morphed face images
generated using proposed MIPGAN-II.

• Training MAD algorithms with one type of landmarks-

based method did not show the improvement in detection

performance of another kind of landmarks-based morph

generation method.

• When MAD mechanisms are trained using the

Landmarks-I [7] method, the degraded performance

is noted for all other morph generation methods except

for the StyleGAN [1] based approach. This fact is

also noted when we train the MAD techniques using

StyleGAN [1] generated samples and test it with

Landmarks-I [7] samples. Thus, the StyleGAN [1] based

morph generation is easy to detect even when MAD

mechanisms are not trained using the images from same

morph generation scheme.

• When MAD algorithms are trained using Landmarks-

II [44] samples, MAD algorithms indicate degraded

performance on all other morph generation techniques.

• When MAD mechanisms are trained using the proposed

MIPGAN-I generated samples. The MAD mechanisms

indicate an excellent detection performance on MIPGAN-

II samples. However, the detection performance of MAD

methods is deceived with other morph generation tech-

niques.

• It is interesting to note that when MAD mechanisms are

trained using MIPGAN-I/MIPGAN-II, higher detection

accuracy can be observed for print-scan and print-scan

with compression data when compared to digital morph

data. A possible reason is that the noise generated

together with the morphed images using the proposed

MIPGAN-I/MIPGAN-II can approximate the generated

noise resulting from the print-scan and print-scan com-

pression process.

• Based on the results of the inter-database MAD anal-

ysis, the detection of Landmarks-II [44] samples are

challenging.

IV. LIMITATIONS OF CURRENT WORK

AND POTENTIAL FUTURE WORKS

Despite this work presenting a new approach to generate

strong morphing attacks, which are empirically evaluated using

COTS FRS, our work has a few noted limitations. In the cur-

rent scope of work, we evaluate the impact of print and scan

(re-digitizing) using one printer reflecting a realistic scenario.

The MAD mechanism employed in this work has not been

investigated with a wide range of printers and scanners that

may impact the MAD performance. While we assert that the

MAD performance may not vary extremely, when tested with

a wider combination of printers and scanners, that empirical

evaluation is yet to be conducted in future works.

A second aspect is that the proposed approach needs pre-

selection of ethnicity for generating stronger attacks. Figure 13

shows example morphed face images generated using the
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proposed method using MIPGAN-I and MIPGAN-II that fail

to get verified to contributing subjects when ethnicity pre-

selection is not performed [7]. We notice that the selection of

contributing subjects plays an important role with the proposed

method to generate stronger attacks with MIPGAN. It is our

assertion that the selection of contributing subjects with sim-

ilar geometric structures (particularly ethnicity and age) can

improve the performance of the proposed system, but that

aspect needs further investigation.

V. CONCLUSION

Addressing the limitations of generating the strong and

severe morphing attacks using GAN, we have proposed a

new architecture for generating face morphed images in this

work. The proposed approach (MIPGAN with two variants)

for devising strong morphing attacks uses identity prior driven

GAN with a customized loss exploiting perceptual quality and

identity factors to generate realistic images that can strongly

threaten FRS. In order to validate the attack potential of the

proposed morph generation method, we have created a new

dataset consisting of 30, 000 morphed images and 15, 240

bona fide images. Both COTS and deep learning based FRS

were evaluated empirically to measure the success rate of

the new approach and vulnerability was reported indicating

the applicability of the new approach and newly generated

database. In a similar direction, the dataset is also validated

for detection performance by studying two state-of-art MAD

mechanisms. Despite the high attack detection success rate

by employed MAD, we note that the morphed images gener-

ated by MIPGAN can severely threaten FRS in a present state

without MAD in FRS.
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