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miR-10b-5p expression in Huntington’s disease
brain relates to age of onset and the extent of
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Abstract

Background: MicroRNAs (miRNAs) are small non-coding RNAs that recognize sites of complementarity of target

messenger RNAs, resulting in transcriptional regulation and translational repression of target genes. In Huntington’s

disease (HD), a neurodegenerative disease caused by a trinucleotide repeat expansion, miRNA dyregulation has

been reported, which may impact gene expression and modify the progression and severity of HD.

Methods: We performed next-generation miRNA sequence analysis in prefrontal cortex (Brodmann Area 9) from 26

HD, 2 HD gene positive, and 36 control brains. Neuropathological information was available for all HD brains, including

age at disease onset, CAG-repeat size, Vonsattel grade, and Hadzi-Vonsattel striatal and cortical scores, a continuous

measure of the extent of neurodegeneration. Linear models were performed to examine the relationship of

miRNA expression to these clinical features, and messenger RNA targets of associated miRNAs were tested for

gene ontology term enrichment.

Results: We identified 75 miRNAs differentially expressed in HD brain (FDR q-value <0.05). Among the HD brains,

nine miRNAs were significantly associated with Vonsattel grade of neuropathological involvement and three of

these, miR-10b-5p, miR-10b-3p, and miR-302a-3p, significantly related to the Hadzi-Vonsattel striatal score (a continuous

measure of striatal involvement) after adjustment for CAG length. Five miRNAs (miR-10b-5p, miR-196a-5p, miR-196b-5p,

miR-10b-3p, and miR-106a-5p) were identified as having a significant relationship to CAG length-adjusted age of onset

including miR-10b-5p, the mostly strongly over-expressed miRNA in HD cases. Although prefrontal cortex was the

source of tissue profiled in these studies, the relationship of miR-10b-5p expression to striatal involvement in the disease

was independent of cortical involvement. Correlation of miRNAs to the clinical features clustered by direction of effect

and the gene targets of the observed miRNAs showed association to processes relating to nervous system development

and transcriptional regulation.

Conclusions: These results demonstrate that miRNA expression in cortical BA9 provides insight into striatal involvement

and support a role for these miRNAs, particularly miR-10b-5p, in HD pathogenicity. The miRNAs identified in our studies of

postmortem brain tissue may be detectable in peripheral fluids and thus warrant consideration as accessible biomarkers

for disease stage, rate of progression, and other important clinical characteristics of HD.
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Background
Huntington’s disease (HD) is an inherited disorder

caused by a CAG trinucleotide repeat expansion in HTT

which leads to progressive motor and cognitive impair-

ment due to the gradual loss of neurons within striatal

and cortical brain regions [1]. Although monogenic, HD

displays remarkable variation in clinical expression, most

readily observed by the range in age at clinical onset as

determined by the manifestation of motor symptoms,

varying from age 4 years to age 80 [2]. While onset age

is unequivocally related to the size of the expanded

CAG repeat, with longer repeats leading to earlier onset,

only 50% to 70% of the variation can be attributed to re-

peat size [3,4]. The remaining variation is highly herit-

able (h2 = 0.56), suggesting a strong role for genes that

modify disease progression [3].

MicroRNAs (miRNAs) are small non-coding RNAs

that negatively regulate the expression of genes in a

sequence-specific manner, binding to the 3′-untranslated

region (3′UTR) to initiate cleavage or translational re-

pression of target transcripts [5,6]. miRNAs influence a

diverse range of cellular processes [7] and consequently,

their altered expression may lead to or influence disease-

related pathological phenotypes, or reveal unknown aspects

of the disease process. In the central nervous system (CNS),

miRNAs are abundant, as brain-specific miRNAs assist in

various neuronal processes such as synaptic development,

maturation and plasticity [8,9]. Altered miRNA expression

has been observed in diseases of the CNS, particularly in

age-dependent neurodegenerative diseases, which suggests

that the expression of miRNAs may contribute to neuro-

pathogenesis [10,11].

In HD, the dysregulation of miRNAs has been re-

ported in HD in vitro models, transgenic HD animals

and human HD brain [12-24]. We hypothesize that post-

transcriptional regulation by miRNAs plays a role in

modifying the progression and severity of HD. Recently,

we completed a study of miRNA expression obtained

through next-generation sequencing technology in hu-

man HD and control brain samples to investigate the

presence of altered miRNA expression in HD and its

role in transcriptional dysregulation [13]. The original

study provided sample power to detect large miRNA

changes, but the sample size was not sufficient to detect

more subtle changes in miRNA expression and did not

represent a wide enough range of HD pathology to in-

vestigate relationships to clinical features of HD. There-

fore, to follow-up on these findings, we have sequenced

small RNAs in an additional 16 HD brains, two of which

are gene positive asymptomatic Vonsattel grade 0 cases,

and 27 control samples, for a combined study of 28 HD

and 36 control samples. The increased sample size en-

ables the detection of significantly altered miRNAs with

lower levels of differential expression as well as more

comprehensive characterization of the relationship of

these miRNAs to relevant clinical features of the disease,

including the age at motor onset of the disease, disease

duration (the time between onset and death), age at

death and extent of pathological involvement in the stri-

atum and cerebral cortex. A deeper understanding of the

global miRNA expression in HD may elucidate patho-

genic mechanisms of disease progression in HD and

suggest new therapeutic targets.

Results
Differential expression analysis highlights disrupted

miRNA expression in HD brain

To evaluate the relationship of miRNA expression to sa-

lient clinical and pathological features of HD, we profiled

miRNA expression using small RNA-sequencing of pre-

frontal cortex (Brodmann Area 9) of 26 symptomatic

HD and 36 control samples (see Table 1, Additional file

1: Table S1 and Additional file 2: Table S2). Although

the striatum is the most affected brain region in HD, dif-

ferences in miRNA expression between HD and un-

affected controls, independent of cellular composition,

would be difficult to assess due to the extent of neuron

loss and the increase of reactive astrocytosis in HD striatal

tissue [25]. Therefore, prefrontal cortex, which exhibits

hallmark characteristics of HD pathology [26], relates to

striatal involvement (Pearson r = 0.44, p < 2e-16) [27], but

experiences less extreme changes than the striatum

[28,29], was used for sequencing. In addition, previous

studies have found no difference in cell counts between

HD and controls from similar BA9 brain samples [13,30].

The HD samples consisted of Grade 2 (n = 4), Grade 3

(n = 15), and Grade 4 (n = 7) brains as determined by

Vonsattel grade, an assessment of striatal involvement

classified as 0 through 4 in order of the severity of

neuropathological involvement [25]. Sequenced samples

were also among the 523 HD brains characterized by the

recently established measure of pathological involvement

Table 1 Summary of the brain samples used for

miRNA-sequence analysis

Variable HD, grades
2 - 4

Asymptomatic
grade 0

Control

N 26 2 36

Age at death 59.5 ± 10.7 67.5 ± 26.1 68.6 ± 14.3

RNA integrity number 7.3 ± 0.9 7.7 ± 0.6 7.7 ± 0.7

Post mortem interval 15.7 ± 7.7 28.0 ± 7.9 14.4 ± 8.8

CAG repeat size 44.6 ± 2.9 42.0 ± 0

Age of onset 44.5 ± 11.8

Disease duration 15.0 ± 6.1

Striatal score 2.70 ± 0.65

Cortical score 1.25 ± 0.50
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termed the Hadzi-Vonsattel score (H-V score), which

independently characterizes both striatal and cortical

pathological involvement in each brain [28]. While

Vonsattel grading and H-V striatal score are closely

related, (Pearson r = 0.90, measured using 346 HD

brains), H-V scores are a continuous metric and there-

fore more amenable to adjustment of covariates such

as CAG repeat size in modeling of neuropathological

involvement and independently assesses striatal and

cortical involvement. H-V scores ranged from 0–4,

where 0 indicates no detectable neuropathological in-

volvement and 4 indicates severe neuropathological

involvement. Samples from symptomatic individuals

had striatal scores ranging 1.43–3.82 and cortical

scores ranging from 0.40–2.36 (see Table 1, Additional

file 2: Table S2). Additionally, two Grade 0 brains

(both with CAG repeat expansions of 42 repeats) were

small-RNA sequenced and analyzed separately from

the 26 HD brains used in differential expression ana-

lysis. Grade 0 brains were neuropathologically normal

and asymptomatic at the time of death (see Table 1).

After processing sequencing data to remove sequencing

artifacts, normalize using variance stabilization transform-

ation, and adjust for batch effects (see Methods), 938 miR-

NAs were reliably quantified and 75 of these were

significantly differentially expressed in HD versus control

brains after adjusting for multiple comparisons (FDR q-

value < 0.05, see Table 2; see Additional file 3: Table S3 for

sequencing read statistics). In HD, 46 miRNAs were iden-

tified as significantly up-regulated and 29 as down-

regulated in their expression. Hox-related miRNAs had

the most extreme, positive fold changes, where miR-10b-

5p was 3.9 log2 fold increased, miR-196a-5p was 2.4 log2

fold increased, miR-615-3p was 1.6 log2 fold increased,

miR-10b-3p was 1.5 log2 fold increased, and miR-196b-5p

was 1.3 log2 fold increased (see Figure 1, see Table 2).

Both the 5′ and 3′ mature miRNAs were differentially

expressed for eight miRNA precursors (miR-10b, miR-

129, miR-1298, miR-142, miR-144, miR-148a, miR-302a,

and miR-486). In HD and controls, most 5′-3′ miRNA

pairs were positively correlated in their expression, with

the exception of miR-1298 in HD and miR-10b and miR-

302a in controls (Additional file 4: Table S4).

To confirm our previously published findings, we re-

analyzed the twelve HD and nine controls samples from

our original study using our updated sequence analysis

pipeline (see Methods) and then used the newly se-

quenced samples, consisting of 14 HD and 27 control

brains, as a replication set. Fourteen miRNAs were sig-

nificantly differentially expressed (FDR q-value < 0.05) in

the original set using the updated analysis pipeline, com-

pared to five differentially expressed miRNA in the ori-

ginal study. Fourteen differentially expressed miRNAs

were significantly differentially expressed in the replication

set and thirteen of these fourteen were significant in the

combined sequence analysis. As previously reported, Hox-

related miRNA, including miR-10b-5p, were among the

most strongly differentially expressed across all three stud-

ies (see Table 2).

Firefly Bioworks microRNA assay, a multiplexed,

particle-based technology using flow cytometry to measure

miRNA levels, was used to quantify and orthogonally valid-

ate miRNA differential expression from sequencing (see

Methods). A subset of 21 controls and 15 HD samples from

the sequencing study were selected for the assay. Sixteen

miRNAs with moderately high expression levels were se-

lected for testing and an additional six miRNAs were used

as input normalizers (Additional file 5: Table S5). miR-10b-

5p was confirmed as significant after correcting for multiple

corrections (p-value = 3.0e-10, q-value = 6.6e-9). Seven out

of sixteen miRNAs assayed approached but did not reach

significance after adjustment in this subset (unadjusted p-

value < 0.05, miR-10b-5p, miR-194-5p, miR-223-3p, miR-

132-3p, miR-144-5p, miR-148a-3p, miR-486-5p). Eight of

the remaining nine miRNAs that failed to achieve signifi-

cance had the same direction of effect (Additional file 5

Table S5). These results were consistent with the reduced

power available from this subset.

Nine miRNAs relate to Vonsattel grade

To explore the relationship of miRNA expression to

principal clinical aspects of the disease, we next modeled

the expression of the 75 differentially expressed miRNAs

to the Vonsattel grade of neuropathological involvement.

Analysis of variance (ANOVA) was performed to com-

pare the expression of the 75 differentially expressed

miRNAs across Vonsattel grade in all 28 (Grade 0–4)

HD gene-positive and control brains. 65 miRNA were

found to be significant in the ANOVA (FDR-adjusted q-

value < 0.05), indicating differential expression may be

driven by the difference of controls to specific grades.

Next, ANOVA was performed exclusively in HD brains

to find whether miRNA differences exist across Vonsattel

grades. Nine miRNAs were significant in both ANOVA

tests after adjusting for multiple comparisons, indicating a

significant difference in the expression of these miRNAs

across Vonsattel grades (both FDR q-values < 0.05;

Additional file 6: Table S6). Last, pairwise comparisons

of each grade with the control group were performed

using post-hoc Tukey’s HSD (honestly significant different)

tests to find specific groups that significantly differed from

one another. Figure 2 highlights the nine miRNAs that are

associated with grade in order of statistical significance

from the ANOVA inclusive of control brains in the test. In

Figure 2, significant differences across grade and control

groups as determined by Tukey HSD are denoted by letters

(a-d) in the grey banner above each boxplot, whereby
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Table 2 Differentially expressed miRNAs in Huntington’s disease prefrontal cortex

miRNA Average
expression

Original study, N=21 Replication study, N=41 Combined study, N=64

logFC p-value FDR q-value logFC p-value FDR q-value logFC p-value FDR q-value

miR-10b-5p 11.62 4.31 4.56E-11 4.28E-08 3.40 4.30E-12 1.35E-09 3.94 1.28E-20 1.20E-17

miR-196a-5p 2.41 2.18 1.66E-09 7.80E-07 2.13 3.42E-12 1.35E-09 2.35 2.97E-20 1.39E-17

miR-615-3p 1.95 1.28 1.69E-06 3.97E-04 1.73 2.56E-13 2.40E-10 1.59 2.33E-16 7.28E-14

miR-10b-3p 2.02 1.37 4.64E-07 1.45E-04 1.15 2.93E-06 6.88E-04 1.45 2.13E-12 4.98E-10

miR-1298-3p 7.05 −0.56 1.72E-03 9.47E-02 −0.80 1.09E-05 2.04E-03 −0.78 5.52E-09 1.03E-06

miR-196b-5p 2.56 1.05 7.62E-05 1.02E-02 1.06 9.34E-04 5.84E-02 1.31 2.33E-08 3.64E-06

miR-302a-3p 2.28 0.64 6.22E-03 1.94E-01 0.84 3.57E-04 2.79E-02 0.81 3.72E-06 4.98E-04

miR-1247-5p 6.18 0.90 2.05E-05 3.84E-03 0.46 7.81E-03 1.63E-01 0.62 8.47E-06 9.55E-04

miR-144-3p 10.26 0.80 4.48E-02 3.73E-01 1.09 2.63E-04 2.47E-02 1.08 9.16E-06 9.55E-04

miR-223-3p 8.46 0.49 3.95E-02 3.54E-01 0.94 6.20E-05 7.33E-03 0.75 1.94E-05 1.82E-03

miR-3200-3p 9.75 −0.25 8.48E-02 4.65E-01 −0.29 4.20E-03 1.31E-01 −0.32 4.85E-05 4.14E-03

miR-302a-5p 2.99 0.52 2.86E-03 1.28E-01 0.62 1.97E-02 2.66E-01 0.70 5.70E-05 4.46E-03

miR-1264 5.00 −0.24 1.09E-01 5.15E-01 −0.69 3.87E-04 2.79E-02 −0.53 9.49E-05 6.36E-03

miR-6734-5p 2.79 −0.34 1.89E-01 6.19E-01 −1.16 1.63E-05 2.55E-03 −0.79 8.86E-05 6.36E-03

miR-144-5p 9.30 0.51 1.43E-01 5.71E-01 1.13 3.31E-04 2.79E-02 0.94 1.04E-04 6.53E-03

miR-138-2-3p 6.08 −0.44 3.59E-03 1.41E-01 −0.29 3.24E-02 3.01E-01 −0.38 1.43E-04 8.38E-03

miR-431-5p 5.65 −0.49 2.33E-02 3.09E-01 −0.51 7.64E-03 1.63E-01 −0.57 1.60E-04 8.84E-03

miR-132-3p 12.93 −0.48 1.57E-02 2.60E-01 −0.43 2.72E-02 2.89E-01 −0.54 1.99E-04 9.31E-03

miR-200c-3p 3.84 0.46 3.97E-02 3.54E-01 0.26 1.12E-01 4.84E-01 0.48 1.97E-04 9.31E-03

miR-23b-5p 3.18 −0.30 8.92E-02 4.66E-01 −0.62 2.02E-03 9.46E-02 −0.55 1.81E-04 9.31E-03

miR-448 4.02 −0.14 5.66E-01 8.91E-01 −0.80 9.98E-05 1.04E-02 −0.64 2.23E-04 9.96E-03

miR-486-3p 4.84 0.54 7.85E-02 4.57E-01 0.79 4.16E-03 1.31E-01 0.78 2.76E-04 1.04E-02

miR-490-5p 5.56 −0.45 6.53E-02 4.34E-01 −0.56 1.15E-02 2.12E-01 −0.62 2.62E-04 1.04E-02

miR-5695 3.30 0.38 3.04E-02 3.28E-01 0.48 4.02E-03 1.31E-01 0.47 2.73E-04 1.04E-02

miR-885-5p 10.46 −0.31 5.23E-02 4.07E-01 −0.27 3.12E-02 3.01E-01 −0.35 2.77E-04 1.04E-02

miR-1224-5p 8.08 −0.39 3.89E-02 3.54E-01 −0.53 4.83E-03 1.39E-01 −0.49 3.83E-04 1.20E-02

miR-1298-5p 6.43 −0.80 9.80E-03 2.17E-01 −0.65 3.24E-02 3.01E-01 −0.81 3.84E-04 1.20E-02

miR-142-3p 8.13 0.20 3.09E-01 7.41E-01 0.62 1.70E-03 8.39E-02 0.52 3.84E-04 1.20E-02

miR-346 8.21 −0.31 6.05E-02 4.26E-01 −0.27 1.74E-02 2.66E-01 −0.32 3.71E-04 1.20E-02

miR-891a-5p 5.84 0.79 5.16E-05 8.07E-03 0.18 3.68E-01 7.04E-01 0.50 3.69E-04 1.20E-02

miR-16-2-3p 7.23 0.30 3.45E-01 7.53E-01 0.83 6.97E-04 4.67E-02 0.71 3.98E-04 1.21E-02

miR-363-3p 11.07 0.39 1.08E-02 2.20E-01 0.30 2.71E-02 2.89E-01 0.34 4.14E-04 1.21E-02

miR-148a-3p 13.01 0.69 1.70E-02 2.60E-01 0.47 7.34E-02 4.18E-01 0.69 4.57E-04 1.29E-02

miR-199a-5p 7.66 0.69 3.46E-02 3.35E-01 0.66 4.30E-02 3.45E-01 0.82 4.66E-04 1.29E-02

miR-4449 3.25 −0.96 1.83E-03 9.51E-02 −0.86 5.21E-02 3.68E-01 −1.09 5.28E-04 1.42E-02

miR-106a-5p 6.28 0.52 9.97E-03 2.17E-01 0.40 3.15E-02 3.01E-01 0.44 5.64E-04 1.43E-02

miR-142-5p 11.47 0.20 4.43E-01 8.36E-01 0.71 1.66E-03 8.39E-02 0.60 5.77E-04 1.43E-02

miR-549a 3.25 0.57 9.95E-02 4.89E-01 0.86 1.84E-02 2.66E-01 0.95 5.67E-04 1.43E-02

miR-214-5p 3.99 0.81 8.21E-03 2.12E-01 0.42 2.23E-01 5.96E-01 0.84 6.62E-04 1.59E-02

miR-141-3p 5.43 0.48 1.12E-01 5.20E-01 0.34 2.00E-02 2.66E-01 0.47 8.05E-04 1.89E-02

miR-5680 5.39 −0.20 1.92E-01 6.23E-01 −0.41 5.42E-03 1.40E-01 −0.35 9.93E-04 2.27E-02

miR-3065-5p 6.04 0.37 1.10E-01 5.15E-01 0.40 6.86E-03 1.57E-01 0.42 1.04E-03 2.33E-02

miR-224-5p 4.95 0.71 5.90E-02 4.20E-01 0.82 1.98E-02 2.66E-01 0.88 1.19E-03 2.60E-02
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groups with different letters are significantly different from

one another while those which share letters are not.

Several patterns in the relationship of grade to miRNA

expression were observed. First, the expression of miR-

10b-5p was significant in nearly all comparisons; pair-

wise contrasts between all grades as well as with the

control group were different except for grade 0, although

grade 0 was different than grades 2, 3 and 4 (see

Figure 2A). Second, the expression of miRNAs in

grade 0 brains was rarely different than controls,

with the exception of miR-200c-3p, where its expres-

sion in grade 0 brains was significantly lower than

both controls and grades 2–4 brains (see Figure 2G).

Third, the expression of miRNAs in grade 3 and 4

Table 2 Differentially expressed miRNAs in Huntington’s disease prefrontal cortex (Continued)

miR-4787-3p 5.94 −0.25 1.84E-01 6.15E-01 −0.30 1.29E-02 2.23E-01 −0.33 1.23E-03 2.62E-02

miR-452-5p 4.76 0.32 2.06E-01 6.41E-01 0.68 2.02E-02 2.66E-01 0.67 1.29E-03 2.69E-02

miR-129-1-3p 9.79 −0.42 3.13E-02 3.33E-01 −0.28 5.47E-02 3.79E-01 −0.38 1.36E-03 2.76E-02

miR-4443 5.69 0.92 1.10E-02 2.20E-01 0.41 1.54E-01 5.39E-01 0.75 1.39E-03 2.77E-02

miR-101-5p 9.55 0.30 2.49E-02 3.11E-01 0.20 1.08E-01 4.74E-01 0.28 1.47E-03 2.88E-02

miR-483-5p 4.39 1.03 5.31E-02 4.07E-01 0.78 8.24E-02 4.31E-01 1.16 1.52E-03 2.91E-02

miR-2114-5p 3.41 0.39 3.34E-02 3.33E-01 0.29 1.85E-01 5.72E-01 0.48 1.65E-03 3.09E-02

miR-1185-1-3p 5.32 −0.24 2.34E-01 6.71E-01 −0.43 8.49E-03 1.67E-01 −0.41 1.70E-03 3.12E-02

miR-670-3p 6.70 −0.46 5.50E-02 4.13E-01 −0.39 7.24E-02 4.18E-01 −0.52 1.77E-03 3.19E-02

miR-129-5p 12.39 −0.13 3.31E-01 7.47E-01 −0.50 3.31E-03 1.20E-01 −0.35 1.95E-03 3.22E-02

miR-135b-5p 4.45 −0.49 1.70E-02 2.60E-01 −0.44 5.58E-02 3.82E-01 −0.52 1.97E-03 3.22E-02

miR-194-5p 8.77 0.23 8.25E-02 4.64E-01 0.32 3.68E-02 3.29E-01 0.33 1.99E-03 3.22E-02

miR-208b-3p 6.41 0.46 1.10E-02 2.20E-01 0.28 7.05E-02 4.18E-01 0.36 1.89E-03 3.22E-02

miR-4488 2.97 −1.38 3.79E-04 3.24E-02 −0.91 1.35E-01 5.16E-01 −1.32 1.96E-03 3.22E-02

miR-888-5p 2.83 0.56 3.39E-02 3.35E-01 0.39 7.20E-02 4.18E-01 0.56 1.91E-03 3.22E-02

miR-126-5p 15.88 0.41 2.59E-02 3.16E-01 0.23 6.10E-02 4.03E-01 0.29 2.46E-03 3.88E-02

miR-34c-5p 9.25 −1.09 6.77E-04 4.75E-02 −0.40 1.41E-01 5.26E-01 −0.64 2.48E-03 3.88E-02

miR-218-1-3p 6.08 0.30 5.80E-02 4.20E-01 0.39 2.29E-02 2.76E-01 0.35 2.53E-03 3.89E-02

miR-150-5p 10.20 0.42 2.03E-02 2.84E-01 0.33 6.04E-02 4.02E-01 0.39 2.74E-03 4.11E-02

miR-486-5p 14.08 0.70 7.24E-02 4.52E-01 0.66 4.08E-02 3.39E-01 0.75 2.76E-03 4.11E-02

miR-433-3p 10.55 −0.01 9.48E-01 9.91E-01 −0.36 1.23E-03 7.24E-02 −0.24 2.85E-03 4.18E-02

miR-219b-3p 3.11 −0.46 1.89E-02 2.78E-01 −0.24 3.09E-01 6.46E-01 −0.47 3.05E-03 4.40E-02

miR-548n 2.82 0.09 6.44E-01 9.27E-01 0.64 6.41E-03 1.50E-01 0.52 3.14E-03 4.46E-02

miR-663b 2.20 −0.73 1.49E-02 2.59E-01 −0.59 9.97E-02 4.58E-01 −0.81 3.21E-03 4.50E-02

miR-148a-5p 6.67 0.46 4.67E-02 3.81E-01 0.44 7.58E-02 4.18E-01 0.52 3.31E-03 4.57E-02

miR-29a-3p 15.37 0.20 1.33E-01 5.56E-01 0.22 4.17E-02 3.40E-01 0.23 3.46E-03 4.70E-02

miR-320b 5.63 1.13 1.69E-02 2.60E-01 0.56 1.93E-01 5.78E-01 0.97 3.54E-03 4.74E-02

miR-181a-3p 12.15 −0.43 2.97E-02 3.26E-01 −0.29 9.44E-02 4.51E-01 −0.38 3.60E-03 4.75E-02

miR-153-5p 7.32 0.55 7.08E-03 2.05E-01 0.22 1.80E-01 5.72E-01 0.37 3.78E-03 4.79E-02

miR-28-5p 10.13 0.24 1.37E-01 5.65E-01 0.22 6.84E-02 4.14E-01 0.27 3.75E-03 4.79E-02

miR-7-2-3p 6.06 0.25 8.90E-02 4.66E-01 0.26 4.67E-02 3.59E-01 0.27 3.78E-03 4.79E-02

miR-877-5p 7.14 −0.28 1.28E-01 5.50E-01 −0.29 2.07E-02 2.66E-01 −0.28 3.88E-03 4.85E-02

miR-3687 4.14 −1.37 3.47E-04 3.24E-02 −0.77 1.96E-01 5.78E-01 −1.20 4.25E-03 5.17E-02

miR-4516 3.82 −1.29 3.03E-04 3.16E-02 −0.77 1.72E-01 5.61E-01 −1.13 4.42E-03 5.24E-02

miR-3139 3.01 −0.82 4.64E-04 3.63E-02 0.00 9.86E-01 9.94E-01 −0.48 9.64E-03 8.37E-02

miR-663a 2.56 −1.02 1.61E-04 1.89E-02 −0.46 3.60E-01 6.98E-01 −0.86 1.40E-02 1.04E-01

miR-34b-3p 5.11 −0.92 7.09E-04 4.75E-02 −0.24 3.87E-01 7.16E-01 −0.49 1.77E-02 1.20E-01

miR-1538 2.63 0.20 3.04E-01 7.41E-01 −0.70 6.26E-05 7.33E-03 −0.21 1.30E-01 3.68E-01
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brains appeared relatively similar to one another,

with the exception of miR-10b-5p, as mentioned

above, and miR-4488, where grade 3 brains were sig-

nificantly lower than all other groups (see Figure 2D).

Although not significant in the HD-only ANOVA, sig-

nificant pairwise differences between grade 3 and 4

were observed for miR-1298-5p (Bonferroni q-value =

3.6e-2) and miR-615-3p (Bonferroni q -value = 2.2e-2).

To assess the sensitivity and specificity of miR-10b-5p

for predicting HD, area under the curve (AUC) values

were calculated using receiver operating characteristic

curves (ROC). When comparing HD to controls to pre-

dict HD, the AUC was 99.47% (95% confidence level was

98.46%-100%). In a comparison of asymptomatic HD to

HD to predict HD status, the AUC was 98.08% (95%

confidence level was 92.75-100%) and comparing asymp-

tomatic HD to controls, the AUC was 84.72% (95% CI:

71.09%-98.36%).

miRNA expression relates to striatal involvement and age

of onset in HD

To further elucidate the meaning of the associations of

the miRNAs to HD, we examined the relationship be-

tween the 75 differentially expressed miRNAs and other

salient features of the disease (age at motor onset, dis-

ease duration, age at death, and H-V scores of striatal

and cortical involvement). To avoid confounding the

analysis of these clinical features by the known, strong

relationship between HTT CAG repeat size and disease

pathology and onset [4,28,31,32], CAG-adjusted resid-

uals were calculated for all continuous clinical traits

(see Additional file 7: Figure S1).

Using linear regression analysis and applying FDR-

adjustment for the 75 comparisons, three miRNAs (miR-

10b-5p, miR-10b-3p, miR-302a-3p) were observed to

have a significant relationship to CAG-adjusted striatal

score (FDR q-values = 2.28e-2). All three were significant

in the analysis of miRNA expression to Vonsattel grade

(see above). Additionally, five miRNAs were identified as

having significant association to CAG-adjusted age of

onset (miR-10b-5p, FDR q-value = 3.49e-3; miR-196a-5p,

FDR q-value = 1.32e-2; miR-196b-5p, FDR q-value =

1.71e-2; miR-10b-3p, FDR q-value = 1.71e-2; miR-106a-

5p, FDR q-value = 1.71e-2). Figure 3 highlights the rela-

tionship of miR-10b to CAG-adjusted striatal score and

onset, where both 3p and 5p mature sequences of miR-

10b were the only miRNA species to have significant, lin-

ear association to these two clinical features independent

of CAG effect. No FDR-significant relationships of miRNA

to disease duration or death age were observed.

No significant relationship of the expression of the 75

differentially expressed miRNA to CAG-adjusted cortical

score was observed, although nominal associations were

seen. In order to account for the potential impact of cor-

tical involvement on the relationship of miRNA expres-

sion to striatal involvement, we performed a multivariate

regression analysis modeling miRNA expression to stri-

atal H-V score while correcting for cortical H-V score.

After CAG-adjusted cortical score correction, CAG-

adjusted striatal score remained significant (miR-10b-5p

p-value = 0.04, miR-10b-3p p-value = 0.01, miR-302a-3p

p-value = 0.005).

Last, to characterize the patterns of association of

miRNAs to clinical features, Pearson coefficients of

the correlation of the expression of the differentially

expressed miRNAs to five CAG-adjusted features (on-

set age, disease duration, death age, striatal score and

cortical score) were hierarchically clustered. Grade 0

and controls samples were not included in these ana-

lyses. Correlation coefficients rather than beta coeffi-

cients were used in order to standardize the direction

of effect. Here, we observed differentially expressed

miRNAs with correlation p-values < 0.05 clustered

into distinguishable patterns of association to clinical

variables (see Figure 4). Differentially expressed miR-

NAs increased in HD compared to controls tended

to have negative correlations with onset and death,

and positive correlations with striatal and cortical

score. Conversely, differentially expressed miRNAs

with negative relative fold changes had positive cor-

relations with onset and death, and negative correla-

tions with striatal and cortical scores.

Figure 1 Characterization of miRNA in Huntington’s disease

brain. Volcano plot of 75 significantly differentially expressed miRNA

after FDR-adjustment for 938 comparisons. Points labeled red were

up-regulated in HD and points labeled as blue were down-regulated

in HD. Hox-related miRNA points are labeled and represent the top

differentially expressed miRNA in HD.
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Targets of HD-related miRNAs are associated with nervous

system development and transcriptional regulation

To attempt to understand the potential functional im-

pact of miRNA dysregulation in HD, gene ontology en-

richment was performed using predicted targets for

miRNAs that correlated with clinical features and were

suitably annotated in Targetscan (twelve miRNAs in

total). 5712 unique mRNA targets for miRNAs with

positive fold change in HD (miR-106a/302a-5p, miR-

196a/miR-196b, miR-302a-3p, miR-363, miR-10b, miR-

615-3p), and 6572 mRNA targets for negative fold

change in HD (miR-129-3p, miR-129-5p, miR-132-3p,

miR-4449, miR-4488, miR-490-5p) were found using

Targetscan [33], and stratified by fold change for gene

A B C

D E F

G H I

Figure 2 Nine miRNAs are associated with Vonsattel grade. In HD brains, expression of differentially expressed miRNA was compared across

Vonsattel grades 0–4. Boxplots represent nine FDR-significant miRNAs (A. miR-10b-5p, B. miR-196a-5p, C. miR-10b-3p, D. miR-196b-5p, E. miR-302a-3p,

F. miR-200c-3p, G. miR-4488, H. miR-4449, I. miR-663b) (FDR q < 0.05, adjusted for 75 contrasts) associated with Vonsattel grade by analysis of variance

(ANOVA). X-axes represent Vonsattel grade, classified 0–4 in order of the severity of striatal involvement and Y-axes show the VST expression values after

batch correction. Significant differences across grades and controls are denoted by letters in the grey banner above the boxplot, labeled a-d. Groups

with different letters are significantly different from one another while those with the same letter are not, after correcting for multiple comparisons. For

example, group “a” would be significantly different from group “b” and “c.” Conditions represented by multiple letters indicate no significant difference

among those groups. For example, group “ab” would not be significantly different than groups “a” and “b,” but would be different group “c.”
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ontology term (GO) enrichment analysis. Using Top-

GO’s weight algorithm with Fisher’s Exact Test for gene

ontology term enrichment and a weighted p-value cut-

off less than p < 0.05, 354 GO Biological Processes, 86

GO Molecular Functions and 62 GO Cellular Com-

ponent terms for mRNA targets of down-regulated

miRNA were significant. 260 GO Biological Pro-

cesses, 78 GO Molecular Functions, 48 GO Cellular

Component terms for mRNA targets of up-regulated

miRNA were significant.

To make these long lists of GO terms more intelli-

gible, terms were summarized using semantic similarity

measures to remove gene-set and GO term redundancy

(see Methods).

Targets of up- and down-regulated miRNAs had substan-

tial overlap in their overall function. Three of the top

twenty collapsed GO Biological Processes terms were

shared between the two sets of targets (see Figure 5A).

These terms were “nervous system development,” “Fc-

epsilon receptor signaling pathway,” and “proteasome

−mediated ubiquitin − dependent protein catabolic

process.” “Nervous system development” was the most

significant term in both sets (Up p = 8.5e-5, Down p =

9.9e-7). The top enriched term was “positive regula-

tion of transcription, DNA-templated”, (N = 1678, p =

2.7e-4) for the positive gene set and “synaptic trans-

mission”, (N = 3166, p = 3.4e-6) for the negative gene

set. Of the 78 up-regulated Molecular Function terms

and 86 down-regulated terms, fifteen terms were the

same (see Figure 5B). Top terms were included “se-

quence-specific DNA binding transcription factory ac-

tivity”, “sequence-specific DNA binding” and “calcium

ion binding”. Though shared between the two groups,

“transcription factor binding” was enriched higher in

down-regulated miRNAs than positive ones. For GO

Cellular Component, six terms were the same between

the two gene sets. These terms included “nucleus” and

“cytoplasm” as well as “cell junction” (see Figure 5C).

A B

C D

Figure 3 miR-10b is associated with age of onset and striatal involvement. In 26 Vonsattel grade 2, 3 and 4 HD brains, both mature miR-10b

sequences (−5p and −3p) have FDR-significant relationships to CAG-adjusted Hadzi-Vonsattel striatal score (A and B) and CAG-adjusted onset

age (C and D). Y-axes show the variance stabilizing transformation expression values after batch correction and shows that miR-10b-5p is

expressed at much higher levels than miR-10b-3p. Grade 0 cases are not included, as they have neither onset age nor H-V striatal score.
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Discussion
In a next-generation sequence analysis of small non-

coding RNAs in 26 HD and 36 control brains we de-

tected 938 miRNAs and 75 of these were differentially

expressed. All five miRNAs reported as differentially

expressed in our previous study (miR-10b-5p, miR-196a-

5p, miR-196b-5p, miR-615-3p and miR-1247-5p) were

significantly differentially expressed in this study [13].

These results were independently validated in the 41 (14

HD and 27 control brains) newly studied brains (see

Table 2), and support the presence and robust up-

regulation of Hox-related miRNAs in HD brain [13].

The increased number of differentially expressed miR-

NAs is likely due to an increase in sample size. Increas-

ing our sample size (from N = 21 to N = 62) enhanced

the statistical power to detect additional miRNAs with

smaller but significant changes in miRNA expression.

We believe these miRNA signals are not attributed to a

change in BA9 architecture, influenced by neuronal cell

death or reactive glial response, because cell numbers

between HD and controls from the same brain samples

were indistinguishable [13,30].

Dysregulation of several miRNAs from our study have

been observed in HD in other contexts. Concordant with

our findings, miR-132-3p down-regulation in human HD

parietal cortical tissue [15] and in brains of R6/2 and

YAC128 HD mouse models has been observed [15,18].

miR-132 is highly enriched in the brain [34,35] and its ex-

pression has been shown to affect neuron morphogenesis

and enhance neurite outgrowth by suppressing the

GTPase-activating protein p250GAP (p250GAP/RICS)

[36]. Another target of miR-132 is acetylcholinesterase

(ACHE), which encodes an enzyme responsible for the

breakdown of the neurotransmitter acetylcholine at the

neural synapse [37]. Acetylcholinesterase is critically in-

volved in cognition, and acetylcholinesterase inhibitors are

FDA-approved for the treatment of cognitive impairments

in Alzheimer’s disease [37]. Thus, decreased miR-132

levels may negatively impact brain health, through the

dysregulation of p250GAP (limiting its suppression) and

ACHE (indirectly decreasing acetylcholine levels).

Differentially expressed miRNAs may also target HTT

transcripts as a response to mutant HTT to reduce HTT

transcriptional levels and limit toxicity. miRNAs that target

the HTT 3′UTR and reduce HTT transcript levels in vitro,

miR-148a-5p, miR-150-5p and miR-214-5p, were signifi-

cantly up-regulated in their expression [21,38]. Although

miR-196a does not directly target HTT [33], increased miR-

196a expression was observed in a primate model of HD

and its over-expression in vitro and in animal transgenic

models suppressed mutant HTT expression [24]. The miR-

NAs with the largest effect in our study, miR-10b-5p, puta-

tively targets HTT by binding to two 3′UTR sites (both

7mer-1A seed, positions 2742–2748 and 3301–3307) and

may reduce expression of HTT although it is not clear

whether or not this would be neuroprotective [33].

However, miR-10b-5p also targets brain-derived neuro-

trophic factor (BDNF) [39], a growth factor required for the

survival and differentiation of striatal neurons [40]. BDNF

has been extensively studied in HD [41], as normal hun-

tingtin protein is reported to up-regulate BDNF levels,

while mutant huntingtin impairs BDNF protein abundance

which may consequently lead to death of striatal neurons

[42]. Because of the potential biological importance of

BDNF, and the possibility that miR-10b-5p may diminish

translation of BDNF, over-expression of miR-10b-5p might

be harmful to neuronal cells. However, in Hoss et al. [13],

we showed that ectopic expression of miR-10b-5p in PC12

Figure 4 CAG-adjusted clinical features of HD show patterns of association with miRNA expression. CAG-adjusted measures of onset age,

disease duration, death age, Hadzi-Vonsattel (H-V) striatal and cortical score were correlated with differentially expressed miRNAs in HD brains.

miRNAs with at least one nominal p-value < 0.05 are shown. Pearson correlation coefficients and features were independently hierarchically clustered.

Red boxes indicate positive correlations and blue boxes indicate negative correlations. Seven miRNAs in the left section are down-regulated in HD and

the ten miRNAs in the right section are up-regulated. Unsupervised clustering separated miRNA by their direction of fold change.
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cells expressing a mutant huntingtin fragment enhanced

cell survival [13], and miR-10b-5p has been observed to

facilitate neurodifferentiation [43]. Given its high levels of

differential expression, strong relationship to striatal in-

volvement and age at onset, more research into miR-10b-

5p is justified to understand its role in the pathogenesis of

HD, its potential as a biomarker of disease progression

and its potential as a therapeutic target.

The cell type most responsible for miRNA changes

cannot be determined from these data. Tissue homogen-

ate was used for sequencing, so the source of miRNA

signal is likely both neuronally and non-neuronally de-

rived. To determine the miRNA cellular specificity in

the brain, Jovicic et al. [16] measured miRNA expression

in cultured neurons, oligodendrocytes, microglia and as-

trocytes to find miRNAs enriched for each cell type.

Based upon this study, miRNAs found to be specifically

enriched in neuronal cultures (miR-129-3p, miR-129-5p,

miR-132, miR-135b, miR-431, miR-433) were all down-

regulated in our study whereas miRNAs enriched in

microglial cultures (miR-126-5p, miR-126-3p, miR-141,

miR-142-3p, miR-142-5p, miR-150, miR-200c and miR-

223) were all were up-regulated. According to these en-

richment categories, microglial activation miRNAs do

not relate to clinical features of the disease. Conversely,

three neuronal-related miRNAs, miR-129-3p/5p and

miR-132, were associated with pathological involvement

(see Figure 5). Therefore, we hypothesize that differential

expression of those miRNAs related to neuron function

may also relate to the HD pathology.

The relationship of the expression of miRNAs with

Vonsattel grade suggests expression changes may occur

early in the disease process (see Figure 2). Many of these

miRNA changes appear present ordinal trends with an

increase (miR-10b-5p, miR-10b-3p, miR-302a, miR-

196a-5p, miR-196b-5p) or decrease (miR-663b, miR-

4488, miR-4449) in their expression across grade. In

particular, miR-10b-5p was significantly different across

all groups, with the exception of the asymptomatic

grade 0 brains and we believe this is an issue of statis-

tical power. It is possible that the expression of these

miRNAs may relate to HTT aggregation or proteasomal

A B

C

Figure 5 Gene ontology terms are similar for mRNA targets of clinically relevant de-regulated miRNAs. (A) Illustrates the overlap in GO

Biological Processes between targets of increased miRNA (in orange) and decreased miRNA (in blue) in HD. The x-axis shows the number of gene

ontology terms that fall within a given semantic term set, and the y-axis lists the top twenty enriched terms for each set of miRNA targets. Darker

colored points represent terms with higher significance and the size of the points represents the union of all genes that fall within a given the

term. A number of terms, including “nervous system development” as well as terms relating to transcriptional regulation are shared across up- and

down-regulated miRNA target groups. The similarity targets of up-regulated miRNA (in orange) and down-regulated miRNA (in blue) for GO Molecular

Function are seen in (B) and for GO Cellular Component in (C).
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degradation, as intranuclear inclusions are observed in

pre-symptomatic HD [44] and the density of aggregate

formation continues over the course of the disease.

Three miRNAs (miR-10b-3p/5p, miR-302a) related to

H-V striatal score, independent of the CAG repeat expan-

sion size and for miR-10b-5p, independent of cortical in-

volvement. These results suggest the relationship of

miRNA expression to striatal involvement in the disease is

independent of cortical involvement, which is a critical

finding, because prefrontal cortex was the source of tissue

profiled in these studies.

Based on correlation (see Figure 4), up-regulated miR-

NAs clustered together based on their relationships to

clinical features. Generally, these miRNAs had strong,

positive associations to striatal and cortical H-V scores,

weak positive association with disease duration and

strong negative associations to onset and death age.

Down-regulated miRNAs clustered together as well but

were less defined in their relationships to clinical features.

Most down-regulated miRNAs were inversely associated

with H-V scores and duration, opposite to up-regulated

miRNAs. These patterns suggest that decreasing up-

regulated miRNAs and increasing down-regulated miRNA

may be beneficial. However, it remains to be determined

which altered miRNAs are compensatory and potentially

neuroprotective and which are pathological and neuro-

toxic. Furthermore, it is unknown whether these changes

are consequential, revealing important molecular aspects

of the disease process, or are simply innocent by-products.

However, using target analysis and GO term enrich-

ment, we observed predicted targets of both up- and

down-regulated miRNAs shared many of the same bio-

logical processes and overall systems relating to “nervous

system development.” Both sets contained several tran-

scriptional regulation related terms (transcriptional regula-

tion, DNA-dependent or RNA polymerase II, chromatin

remodeling, post-transcriptional gene regulation, chroma-

tin remodeling, etc.). Both sets of genes contained terms

on metabolism, apoptosis, metal-binding and ubiquitin.

Disruption to any of these systems may affect neuron

health. Overall, these finding imply both up- and down-

regulated miRNAs many be part of the same or similar

biological pathways.

Conclusions
Our findings identify many miRNA alterations in HD

brain and a large number of these are related to clinical

manifestations of the disease, where the signal is inde-

pendent of the size of the CAG repeat expansion. The

study of Grade 0 cases suggests that miR-10b-5p expres-

sion changes may occur pre-symptomatically. Up- and

down-regulated miRNAs may target genes in similar

biological systems, and these genes are involved in tran-

scriptional regulation, neuronal development and other

important aspects surrounding neuron function. These

miRNAs represent attractive candidates for predicting

onset age and overall health of the striatum in HD. Stud-

ies pursuing these miRNAs as potential biomarkers for

HD are in progress, as miRNAs may be detectable in

peripheral fluids [45] and thus have potential to function

as accessible biomarkers for disease stage, rate of pro-

gression, treatment efficacy and other important clinical

characteristics of HD.

Methods
Sample information

Frozen brain tissue from prefrontal cortex Brodmann

Area 9 (BA9) was obtained from the Harvard Brain and

Tissue Resource Center McLean Hospital, Belmont MA,

Banner Sun Health Research Institute, Sun City, Arizona

[46] and Human Brain and Spinal Fluid Resource Center

VA, West Los Angeles Healthcare Center, Los Angeles,

CA. 26 Huntington’s disease (HD) samples, 2 asymp-

tomatic HD gene carriers, and 36 neurologically and

neuropathologically normal control samples were se-

lected for the study (Additional file 1: Tables S1 and

Additional file 2: Table S2). HD subjects had no evidence

of other neurological disease based on neuropathological

examination. HD samples and controls were not differ-

ent in postmortem interval (PMI) (p-value = 0.69), RNA

integrity number (p-value = 0.08) or gender (p-value =

0.51) but differed in ages at death (HD mean age =59.5,

control mean age =68.6; p-value = 0.01) (see Table 1).

Asymptomatic HD samples did not differ in age at death

(mean age =67.5) in comparison to HD or control sam-

ples (control p-value = 0.92; HD p-value = 0.40). Infor-

mation on CAG genotype, onset age, death age, disease

duration, Vonsattel grade, Hadzi-Vonsattel striatal and

cortical scores for HD samples can be found in Additional

file 2: Table S2.

Total RNA was isolated using QIAzol Lysis Reagent

and purified using miRNeasy MinElute Cleanup col-

umns. RNA quality for sequencing was assessed using

either Agilent’s BioAnalyzer 2100 system and RNA 6000

Nano Kits to determine RNA Integrity Number or Agi-

lent 2200 TapeStation and Agilent DNA ScreenTape

assay RNA Quality Number. For each brain sample, 1 ug

of RNA was used to construct sequencing libraries using

Illumina’s TruSeq Small RNA Sample Prep Kit, accord-

ing to the manufacturer’s protocol, and sequenced using

1x51nt single-end reads on Illumina’s HiSeq 2000 system

at Tufts University (http://tucf-genomics.tufts.edu/) or

the Michigan State sequencing core facility (http://

rtsf.natsci.msu.edu/genomics/).

miRNA sequence analysis

Reads were quality filtered, removing reads below 80%

Q20, using FASTX-toolkit FASTQ quality filter (version

Hoss et al. BMC Medical Genomics  (2015) 8:10 Page 11 of 14

http://tucf-genomics.tufts.edu/
http://rtsf.natsci.msu.edu/genomics/
http://rtsf.natsci.msu.edu/genomics/


0.0.13.2, http://hannonlab.cshl.edu/fastx_toolkit/). Adapter

sequence (5′-TGGAATTCTCGGGTGCCAAGG-3′) was

removed from the 3′ end of all reads using cutadapt 1.2.1

(http://code.google.com/p/cutadapt/) and reads less than

15 nucleotides in length were discarded [47]. Reads were

collapsed using FASTX-toolkit FASTA/Q collapser. Reads

were aligned to the UCSC human reference genome (build

hg19) using Bowtie version 1.0.0, using no mismatch

alignments and a limit of 200 multiple mapping instances

[48]. Aligned reads that overlapped with the human

miRNA annotation, miRBase version 20, (http://www.mir-

base.org/ftp.shtml) were identified using BEDTools Inter-

sectBed [49]. Reads longer than 27 bases were removed.

miRNA reads were counted if ±4 nucleotides from the

mature, annotated 5′ start coordinates. Reads that mapped

to multiple locations, represented by a single mature

miRNA, were recorded as a single miRNA count. Multi-

mapped reads represented by multiple mature miRNA an-

notations were discarded. Additional file 3: Table S3 for

read statistics. R version 3.1.0 and Bioconductor 2.1.4 ver-

sion were used for differential expression analysis. DESeq2

version 1.40.0 was used for estimation of library size and

correction, as well as variance-stabilizing transformation

(VST) [50,51]. miRNAs with a mean less than 2 raw read

counts across all samples were removed. Batch effect was

corrected using ComBat with default options through the

Bioconductor package sva 3.10 [52,53]. All samples were

included in VST and batch correction. Using 36 controls

and 26 HD grades 2–4, differential expression analysis was

performed with LIMMA version 3.20.8 [54,55], adjusting

for age at death in the model. Q-values were FDR-adjusted

for 938 comparisons. The unprocessed fastq files, normal-

ized miRNA counts and results from miRNA differential

expression analysis have been deposited in NCBI’s Gene

Expression Omnibus [56], and are accessible through

GEO Series accession number GSE64977 (http://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE64977).

Firefly miRNA assay

A panel of 16 differentially expressed miRNAs with moder-

ate to high expression (miR-10b-5p, miR-194-5p, miR-223-

3p, miR-132-3p, miR-144-5p, miR-148a-3p, miR-486-5p,

miR-363-3p, miR-199a-5p, miR-16-2-3p, miR-142-3p, miR-

34c-5p, miR-129-5p, miR-433-3p, miR-885-5p, miR-346)

and six stably expressed miRNAs in sequencing (miR-9-5p,

miR-92a-3p, miR-98-5p, miR-101-3p, miR-151a-3p, miR-

338-3p) was used for validation. In a 96-well filter plate,

Firefly Multimix (Firefly BioWorks, www.fireflybio.com)

was incubated with 25ul Hybridization Buffer and 25ul total

RNA at a concentration of 1 ng/ul at 37°C for 60 minutes.

After rinsing to removing unbound RNA, 75ul of Labeling

Buffer was added to each well, and the plate was incubated

for 60 minutes at room temperature. Adapted-modified

miRNAs were released from the particles using 90°C water,

and PCR amplified using a fluorescently-label primer set.

PCR product was hybridized to fresh Firefly Multimix for

30 minutes at 37°C and re-suspended in Run Buffer for

readout. Particles were scanned on an EMD Millipore

Guava 8HT flow cytometer. Raw output was background

subtracted, normalized using the geometric mean of the six

normalizer miRNAs and log-transformed. LIMMA version

3.20.8 [54] was used to calculate significance.

HD feature analysis

For analysis of miRNA expression to Vonsattel grade,

Tukey HSD statistics and compact letter display were

generated by the multcomp R package [57]. CAG-

adjusted age of onset was calculated using the logarith-

mic model from Djousse et al. 2003 [4]. Hadzi-Vonsattel

striatal and cortical scores were measured in 523 HD

brain samples as previously described [28]. Samples with

greater than 55 repeats or missing CAG information

were excluded from analysis, leaving 346 samples. To

provide robust residual estimates for the subset of sam-

ples included in the sequencing project, H-V striatal

score, H-V cortical score, death age and disease duration

features were corrected for CAG size by modeling each

feature to CAG size within the HD dataset (N = 346)

and the residuals from the model were extracted for

each sample (Additional file 7: Figure S1) [28]. VST-

batch corrected counts were used for all subsequent

analyses. CAG-adjusted residuals and miRNA expression

relationships were analyzed using linear regressions. Co-

variates (PMI, RIN, age at death) were not included in lin-

ear models, as neither PMI nor RIN were determined to

have an effect on the outcome of the results. Age at death

could not be included in the analysis due to the relation-

ship of age at death and HD clinical pathology. Q-values

were FDR-adjusted for 75 differentially expressed miRNA

contrasts for linear regressions were reported.

For the cluster analysis in Figure 4, Pearson correla-

tions for miRNA expression to clinical feature were per-

formed and those miRNAs with p-values < 0.05, without

adjustment for multiple comparisons, were reported.

Pearson correlation coefficients were hierarchically clus-

tered using Euclidean distance and unsupervised complete

clustering method through the R-package pheatmap ver-

sion 0.7.7.

Target prediction and gene ontology enrichment

Targetscan, release 6.2 [33] was used to select mRNA

targets of miRNAs with at least one relationship to clin-

ical feature. Fourteen miRNAs were available on Tar-

getscan and twelve miRNAs had unique seed sequences.

Targets were removed with total context scores ≥ −0.1.

miRNAs with positive fold change in HD (miR-106a/

302a-5p, miR-196a/miR-196b, miR-302a-3p, miR-363,

miR-10b, miR-615-3p), and negative fold change in HD
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(miR-129-3p, miR-129-5p, miR-132-3p, miR-4449, miR-

4488, miR-490-5p) were stratified for gene ontology

term (GO) enrichment analysis. GO term enrichment

for “biological processes,” “molecular function,” and “cel-

lular component,” was performed using topGO [58] with

the “weight01” algorithm and Fisher statistic within the

R statistical environment. A weighted Fisher p-value < 0.05

threshold was used to select significant GO enrichment.

Significant terms were collapsed by semantic similarity

using the program REVIGO [59], with p-value included

for each term and using the “Small (0.5)” similarity setting.

The union of genes from REVIGO “parent” terms was cal-

culated using topGO’s genes.in.term function.

Ethics review

This study was reviewed by the Boston University

School of Medicine Institutional Review Board (Protocol

H-28974), and was approved as exempt because the

study involves only tissue collected post-mortem, and

consequently not classified as human subjects.

Additional files

Additional file 1: Table S1. Sample information for 36 control brains

used for miRNA-sequencing.

Additional file 2: Table S2. Sample information for 28 Huntington’s

disease brains used for miRNA-sequencing.

Additional file 3: Table S3. Read statistics for miRNA-sequence

analysis.

Additional file 4: Table S4. Correlation of differentially expressed

miRNA precursor pairs.

Additional file 5: Table S5. Summary statistics for Firefly BioWorks

assay.

Additional file 6: Table S6. Linear regression analysis modeled the

relationship of miRNA expression and Vonsattel grade.

Additional file 7: Figure S1. Association of clinical features to HD CAG

repeat size. CAG-adjusted residuals for onset age, death age, duration, H-V

striatal score and H-V cortical score were computed from data derived from

346 HD brain samples with CAG repeat sizes <56 from Hadzi et al. [28]. Red

dots represent samples studied in these analyses.
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