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ABSTRACT 
 

Drug resistance is still a major obstacle for efficient treatment of hepatocellular carcinoma (HCC) during the 

cisplatin-based chemotherapy. Recent studies have demonstrated that CD133 positive population of cancer 

cells are responsible for multiple drug resistance. We are supposed to take strategies to sensitize CD133+ HCC 

cells to cisplatin treatment. In the present study, CD133+ HCC cells showed significant cisplatin-resistance 

compared to the CD133- HCC cells. Downregulation of miR-124 was observed in CD133+ HCC cells. However, 

enforced expression of miR-124 can increase the sensitivity of CD133+ HCC cells to cisplatin treatment in vitro 

and in vivo. Mechanically, overexpression of miR-124 was found to inhibit the expression of SIRT1 and thus 

promoted the generation of ROS and phosphorylation of JNK. As the results, overexpression of miR-124 

expanded the apoptosis in cisplatin-treated CD133+ HCC cells. We then demonstrated that overexpression of 

miR-124 sensitized cisplatin-induced cytotoxicity against CD133+ hepatocellular carcinoma cells by targeting 

SIRT1/ROS/JNK pathway. 
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INTRODUCTION 
 

Hepatocellular carcinoma (HCC) is one of the most 

commonly diagnosed malignancy and the leading cause 
of cancer-related death in the world [1, 2]. Despite 

advances of modern treatments, chemotherapy is still a 

main and effective approach to control the development 
of HCC and prolong patients’ life. However, many 

HCC cases show poor response to chemotherapy [3, 4]. 

Chemoresistance is still a major obstacle for HCC 
patients to obtain a satisfactory curative effect. Recent-

ly, studies demonstrate that a population of CD133+ 
cancer cells exhibited significant resistance against 

chemotherapy in some cancers [5-7]. 

 
In human cells, CD133 is a pentaspan transmembrane 

glycoprotein encoded by the prominin 1 (PROM1) 

gene. In some cancers, CD133 has been identified as an 
important molecular marker of stem-like cells and 

called cancer stem cells (CSCs). Studies have reported 
that CD133+ cancer cells display high tumorigenicity, 

proliferation, self-renewal and drug resistance [8-11]. 

CD133+ cancer cells have become important targets in 
cancer therapy. 

 
MicroRNAs (miRNAs) are a class of endogenously 

expressed and non-coding small RNAs. Cellular 

miRNAs act as gene suppressors through binding to 
3’untranslated region (3’ UTR) of targeted mRNAs 

followed by induction of translational repression [12-

14]. As approximate 60% of all human genes were 
regulated by miRNAs, miRNAs participate in various 

biological processes including cell proliferation, 
differentiation, migration, self-renewal, metabolism and 

apoptosis in cancer cells [15, 16]. Furthermore, studies 

have demonstrated that miRNA dysregulation is a 
frequent incidence and is responsible for chemo-

resistance in various cancers including HCC [17-19]. 
Correction of miRNA disorder may be a potential 

approach for improving the cancer therapy. 

 
SIRT1 is a histone deacetylase in human cells. As 

SIRT1 has been reported to act as a potential oncogene, 

it is usually overexpressed in multiple human cancers 
including hepatocellular carcinoma, osteosarcoma, lung 

cancer and colorectal cancer [20-24]. Furthermore, 
Overexpression of SIRT1 is found to promote cancer 

development and implicate poor prognosis in cancer 

patients [25, 26]. Recently, studies also demonstrate that 
SIRT1 overexpression is responsible for chemoresis-

tance in cancers [27, 28]. SIRT1 has become a potential 
target in cancer treatment. In the present study, we 

found that SIRT1 was overexpressed and was targeted by 

miR-124 in CD133+ HCC cells. The aim of this study is 
to explore the effect of miR-124/SIRT1 axis on cisplatin-

based chemotherapy against CD133+ HCC cells. 

RESULTS 
 

CD133+ HCC cells exhibit resistance to cisplatin 

 

To investigate the drug resistance of CD133 positive 
HCC cells, we first sorted and collected the CD133+ and 

CD133- population of HepG2 and Huh7 cells through 
flow cytometry (Figure 1A). The purity of CD133+ and 

CD133- cells was tested by using the CD133-FITC 

antibody (Figure 1B). Results of MTT assays showed 
that the sensitivity of CD133+ HepG2 and Huh7 cells to 

cisplatin was obviously lower than the CD133- HCC 

cells when they were under the equal concentrations of 
cisplatin (Figure 1C). Specifically, IC50 of cisplatin to 

CD133+ HepG2 cells was 5.02 fold higher than the IC50 
of cisplatin to CD133- HepG2 cells. Meanwhile, IC50 of 

cisplatin to CD133+ Huh7 cells was 4.09 fold higher 

than the IC50 of cisplatin to CD133- Huh7 cells (Figure 
1D). These results indicated that CD133+ HCC cells 

exhibit resistance to cisplatin. 
 

Overexpression of SIRT1 is responsible for the 

cisplatin resistance in CD133+ HCC cells 

 

Results of qRT-PCR and western blot analysis showed 

that CD133+ HepG2 and Huh7 cells expressed 
obviously higher level of SIRT1 compared to CD133- 

HepG2 and Huh7 cells at the mRNA level (Figure 2A) 
and protein level (Figure 2B), respectively. To 

investigate whether the overexpression of SIRT1 is 

responsible for the cisplatin resistance of CD133+ 

HepG2 and Huh7 cells, we performed the loss-of-

function and gain-of-function assays in HCC cells. The 
effect of SIRT1 siRNA and plasmid in CD133+/- HepG2 

and Huh7 cells were shown in Figure 2C. Despite 

CD133+ HepG2 and Huh7 cells were not sensitive to 
SIRT1 overexpression, results of cytotoxicity assays 

showed that transfection with SIRT1 siRNA increased 

the sensitivity of CD133+ HepG2 and Huh7 cells to 
cisplatin treatment. On the contrary, transfection with 

SIRT1 plasmid induced resistance to cisplatin in 
CD133- HepG2 and Huh7 cells (Figure 2D). These data 

indicated that overexpression of SIRT1 is responsible 

for the cisplatin resistance in CD133+ HCC cells. 
 

SIRT1 is targeted by miR-124 in HCC 

 

To investigate the mechanism by which SIRT1 was 

overexpressed in CD133+ HCC cells, public miRNA 
prediction databases of TargetScan, miRanda and 

PicTar were used to search the upstream miRNA of 

SIRT1. All of these databases showed that 3’ UTR of 
SIRT1 gene contained highly conserved sequence 

paired with miR-124 (Figure 3A). Furthermore, in con-
trast with upregulation of SIRT1 in CD133+ HCC cells, 

expression of  miR-124  was  significantly  decreased in  
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CD133+ HepG2 and Huh7 cells (Figure 3B). We thus 

predicted that SIRT1 was targeted by miR-124 in HCC. 
To confirm this speculation, we performed luciferase 

reporter assays after co-transfection with miR-124 

mimics or inhibitors and pMIR plasmid contained 
SIRT1 3’ UTR. The results showed that co-transfection 

with miR-124 mimics was able to decrease the luci-
ferase activities of pMIR reporters contained with wild 

type SIRT1 (pMIR-wtSIRT1) but not the empty repor-

ters or pMIR reporters contained with mutant type SIRT1 
(pMIR-mtSIRT1). Besides, co-transfection with anti-

miR-124 increased the luciferase activities of pMIR-

wtSIRT1  (Figure  3C).  Furthermore,  results  of western 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
blot analysis showed that recovery of miR-124 was found 

to decrease the protein level of SIRT1 in CD133+ HepG2 
and Huh7 cells, whereas knockdown of miR-124 in 

CD133- HepG2 and Huh7 cells increased the protein 

level of SIRT1 (Figure 3D). Taken together, these results 
indicated that SIRT1 was targeted by miR-124 in HCC. 

 

Overexpression of miR-124 sensitizes the CD133+ 

HCC cells to cisplatin through suppression of SIRT1 

 
To investigate the role of miR-124/SIRT1 axis in 

changing the sensitivity of CD133+ HCC cells to cispla- 

cisplatin.  Effect  of  miR-124,  SIRT1 plasmid and cis- 

Figure 1. Cisplatin resistance of CD133+ HCC cells. (A) CD133+ HCC cells were identified by using CD133 antibody in HepG2 and 

Huh7 cells. (B) Purity of sorted CD133+ and CD133- HepG2 and Huh7 cells was tested by flow cytometry. (C) CD133+ and CD133- HepG2 

and Huh7 cells were treated with different concentrations of cisplatin (0~30 μM) for 48 h. Cell viability curve was conducted by MTT 
assays. (D) IC50 of cisplatin to CD133+ and CD133- HepG2 and Huh7 cells was calculated according to the MTT assays. *P<0.05. 
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tin, we transfected the CD133+ HepG2 and Huh7 cells 

with miR-124 and SIRT1 plasmid before treatment with 

Figure 2. Effect of SIRT1 on regulating the sensitivity of cisplatin to HCC cells. (A) qRT-PCR analysis was performed to detect 

the expression of SIRT1 in CD133+ and CD133- HepG2 and Huh7 cells at the mRNA level. *P<0.05. (B) Western blot analysis was 

performed to detect the expression of SIRT1 in CD133+ and CD133- HepG2 and Huh7 cells at the protein level. *P<0.05 vs. HepG2 

CD133- cells. #P<0.05 vs. Huh7 CD133- cells. (C) Transfection efficiency of SIRT1 siRNA (50 pmol/mL) and plasmid (2 μg/mL) in CD133+/- 

HepG2 and Huh7 cells after 24 h transfection. *P<0.05 vs. NCO group. (D) CD133+ and CD133- HepG2 and Huh7 cells were transfected 

with SIRT1 siRNA (50 pmol/mL) or plasmid (2 μg/mL). 24h later, these cells were treated with cisplatin (10 μM) for another 48 h. MTT 
assays were performed to measure the cell viability of these cells. *P<0.05 vs. cisplatin + NCO group. 

 

 



www.aging-us.com 2555 AGING 

platin on changing the SIRT1 expression was shown in 
Figure 4A. Results of MTT assays showed that trans-

fection with miR-124 significantly enhanced the 
cytotoxicity of cisplatin to CD133+ HepG2 and Huh7 

cells. However, enforced expression of SIRT1 decreas-

ed the effect of miR-124 on sensitizing the CD133+ 

HepG2 and Huh7 cells to cisplatin (Figure 4B). Besides,  

 

 
 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

we found that knockdown of miR-124 by using anti-
miR-124 induced resistance of cisplatin in CD133- 

HepG2 and Huh7 cells (Figure 4C). Taken together, 
these results indicated that miR-124/SIRT1 axis in-

reased cisplatin sensitivity in HCC cells. Recovery of 

miR-124 expression was able to sensitize the CD133+ 
HCC cells to cisplatin through suppression of SIRT1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. SIRT1 is targeted by miR-124 in HCC. (A) Complementary sequence of SIRT1 3’ UTR paired with miR-124. (B) Expression of 

miR-124 in CD133+ and CD133- HepG2 and Huh7 cells was detected by qRT-PCR. (C) Effect of miR-124 mimics and inhibitors on changing 

the luciferase activities of pMIR plasmid contained SIRT1 3’ UTR. *P<0.05 vs. NCO group. (D) CD133+ and CD133- HepG2 and Huh7 cells 

were transfected with miR-124 (50 pmol/mL) or anti-miR-124 (50 pmol/mL) for 24h. Western blot analysis was then performed to detect 

the expression of SIRT1 in these cells. *P<0.05 vs. NCO group. 
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Figure 5. miR-124 enhanced the cisplatin-induced cytoxocity against CD133+ HCC cells through SIRT1/ROS pathway. (A) CD133+ 

HepG2 and Huh7 cells were treated with miR-124 (50 pmol/mL), SIRT1 plasmid (2 μg/mL) and NAC (2 mM). 24h later, these cells were treated 

with cisplatin (10 μM) for another 48 h. Cellular ROS was detected by flow cytometry. (B) CD133+ HepG2 and Huh7 cells were treated with miR-

124 (50 pmol/mL), SIRT1 plasmid (2 μg/mL) and NAC (2 mM). 24h later, these cells were treated with cisplatin (10 μM) for another 48 h. Cell 
viability was detected by MTT assays. *P<0.05 vs. cisplatin + NCO group. #P<0.05 vs. cisplatin + miR-124 group. (C) CD133+ HepG2 and Huh7 cells 

were treated with miR-124 (50 pmol/mL), SIRT1 plasmid (2 μg/mL) and NAC (2 mM). 24h later, these cells were treated with cisplatin (10 μM) for 
another 48 h. Flow cytometry analysis was then performed to detect the cell apoptotic rate. *P<0.05 vs. cisplatin + NCO group. #P<0.05 vs. 

cisplatin + miR-124 group. 

 

Figure 4. MiR-124 sensitizes HCC cells to cisplatin through suppression of SIRT1. (A) CD133+ and CD133- HepG2 and Huh7 cells were 

transfected with miR-124 (50 pmol/mL), anti-miR-124 (50 pmol/mL), SIRT1 siRNA (50 pmol/mL) and SIRT1 plasmid (2 μg/mL). 24h later, these cells 
were treated with cisplatin (10 μM) for another 48 h. Expression of SIRT1 in these cells was then detected by western blot analysis. *P<0.05 vs. NCO 

group. #P<0.05 vs. cisplatin + NCO group. &P<0.05 vs. cisplatin + miR-124 group. (B) CD133+ HepG2 and Huh7 cells were transfected with miR-124 

(50 pmol/mL) and SIRT1 plasmid (2 μg/mL). 24h later, these cells were treated with cisplatin (10 μM) for another 48 h. Cell viability was then 

detected by MTT assays. *P<0.05 vs. cisplatin + NCO group. #P<0.05 vs. cisplatin + miR-124 group. (C) CD133- HepG2 and Huh7 cells were tran-

sfected with anti-miR-124 (50 pmol/mL) and SIRT1 siRNA (50 pmol/mL). 24h later, these cells were treated with cisplatin (10 μM) for another 48 h. 
Cell viability was then detected by MTT assays. *P<0.05 vs. NCO group. #P<0.05 vs. cisplatin + NCO group. &P<0.05 vs. cisplatin + miR-124 group. 
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Effect of miR-124 on sensitizing the cisplatin-

induced cytotoxicity to CD133+ HCC was dependent 

on the ROS pathway 

 

SIRT1 has been reported to prevent the generation of 

ROS in human cells [29]. We thus tested the role of 
ROS in miR-124-promoted cell death in cisplatin-

treated CD133+ HCC cells. Results of flow cytometry 

analysis showed that combination with miR-124 
increased the production of ROS in the cisplatin-treated 

CD133+ HepG2 and Huh7 cells. However, over-
expression of SIRT1 was found to abolish the effect of 

miR-124 on promoting the ROS generation (Figure 5A). 

It indicated that miR-124 was able to promote the ROS 
production through the SIRT1 pathway. Next, we 

evaluated the role of ROS in cisplatin-induced cyto-
toxicity to CD133+ HCC by using the N-acetylcysteine 

(NAC) which is used as a ROS scavenger [30]. Our data 

showed that NAC significantly improve the cell 
viability of CD133+ HepG2 and Huh7 cells which were 

co-treated with cisplatin and miR-124 (Figure 5B). 

Furthermore, despite combination with cisplatin and 
miR-124 induced significant apoptosis of CD133+ 

HepG2 and Huh7 cells, we showed that either SIRT1 
plasmid or NAC can protect these HCC cells from the 

cytotoxicity of cisplatin and miR-124 co-treatment 

(Figure 5C). Taken together, we demonstrated that miR-
124 increased the sensitivity of CD133+ HCC cells to 

cisplatin-induced apoptosis through the SIRT1/ROS 
pathway. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

JNK is the downstream of miR-124/SIRT1/ROS 

pathway in CD133+ HCC cells 
 

It has been reported that JNK is a molecular linkage 
between oxidative stress and cell apoptosis [31]. We 

thus tested the role of JNK in miR-124-promoted cell 

death in cisplatin-treated CD133+ HCC cells. Results of 
western blot analysis showed that combination with 

miR-124 enhanced the phosphorylation of JNK in the 
cisplatin-treated CD133+ HCC cells. However, we 

found that either SIRT1 plasmid or NAC could inhibit 

the phosphorylation of JNK (Figure 6A). Furthermore, 
we found that SP600125 which is used as a inhibitor of 

JNK [32] failed to prevent the ROS production in the 
cisplatin and miR-124 co-treated CD133+ HepG2 and 

Huh7 cells (Figure 6B).  It indicated that  the SIRT1/ROS 

pathway was the upstream of JNK in CD133+ HCC 
cells. Next, we showed that SP600125 could protect 

CD133+ HepG2 and Huh7 cells from the cytotoxicity of 

cisplatin and miR-124 co-treatment (Figure 6C). Taken 
together, we demonstrated that JNK is the downstream 

of miR-124/SIRT1/ROS pathway. Activation of JNK is 
essential for the miR-124-promoted cell death in 

cisplatin-treated CD133+ HCC cells. 
 

Overexpression of miR-124 decreases the resistance 

of CD133+ HCC cells to cisplatin treatment in vivo 
 

To investigate the role of miR-124 in resistance of 
CD133+ HCC cells to cisplatin treatment in vivo,  we ino- 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

 

 

Figure 6. JNK is the downstream of miR-124/SIRT1/ROS pathway in CD133+ HCC cells. (A) CD133+ HepG2 and Huh7 cells were 

treated with miR-124 (50 pmol/mL), SIRT1 plasmid (2 μg/mL), NAC (2 mM) and SP600125 (50 µM). 24h later, these cells were treated with 

cisplatin (10 μM) for another 48 h. Phosphorylated JNK in these cells was then detected by western blot analysis. *P<0.05 vs. cisplatin + NCO 

group. #P<0.05 vs. cisplatin + miR-124 group. (B) CD133+ HepG2 and Huh7 cells were treated with miR-124 (50 pmol/mL), SIRT1 plasmid (2 

μg/mL), NAC (2 mM) and SP600125 (50 µM). 24h later, these cells were treated with cisplatin (10 μM) for another 48 h. Cellular ROS was then 
detected by flow cytometry. (C) CD133+ HepG2 and Huh7 cells were treated with miR-124 (50 pmol/mL), SIRT1 plasmid (2 μg/mL), NAC (2 

mM) and SP600125 (50 µM). 24h later, these cells were treated with cisplatin (10 μM) for another 48 h. Cell viability cells was measured by 

MTT assays. *P<0.05 vs. cisplatin + NCO group. #P<0.05 vs. cisplatin + miR-124 group. 
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culated the nude mice with the CD133+ HepG2 cells 
transfected with lentivirus carrying miR-124 precursor 

(LT-miR-124). Under the administration of equal dose 
of cisplatin (5 mg/kg), the tumor growth of miR-124-

overexpressed CD133+ HepG2 cells was obviously 

slower than the control CD133+ HepG2 tumors (Figure 
7A). Finally, the sizes of cisplatin and miR-124 co-

treated tumors were smaller than the control tumors 

treated with equal dose of cisplatin (Figure 7B). After 
euthanasia of mice, we found significant upregulation of 

miR-124 in LT-miR-124-transfected tumors (Figure 
7C). In contrast, expression of SIRT1 was decreased in 

the LT-miR-124-transfected tumors. In addition, we 

found that miR-124 enhanced the phosphorylation of 
JNK in the cisplatin-treated CD133+ HepG2 tumors 

(Figure 7D). Taken together, we demonstrated that 
overexpression of miR-124 could decrease the resistance 

of CD133+ HCC cells to cisplatin treatment in vivo. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Overexpression of miR-124 decreases the resistance 

of CD133+ HCC cells to other platinum-based 

chemotherapeutic drugs 

 

The results of the cell viability assays showed that the 

CD133+ HepG2 and Huh7 cells exhibited resistance to 

carboplatin (Figure 8A) and oxaliplatin (Figure 8B) 

compared to the CD133- HepG2 and Huh7 cells 

respectively. We then investigated the effects of miR-

124 on carboplatin- and oxaliplatin-induced cytotoxicity 

against CD133+ HepG2 and Huh7 cells. We found that 

overexpression of miR-124 expression decreased the 

IC50 of CD133+ HepG2 and Huh7 cells to carboplatin 

(Figure 8C) and oxaliplatin (Figure 8D). Thus, we 

demonstrated that recovery of miR-124 expression can 

decrease the resistance of CD133+ HCC cells to 

platinum-based chemotherapy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. MiR-124 enhanced the cytotoxicity of cisplatin to CD133+ HCC tumors in vivo. (A) Tumor growth of CD133+ 

HepG2 tumors treated with cisplatin (5 mg/kg). (B) Separated tumors after 28 days inoculation. (C) Expression of miR-124 in resected 

tumor tissues. *P<0.05 vs. LT-empty. #P<0.05 vs. LT-empty + cisplatin group. (D) Expression of SIRT1 and phosphorylated JNK in 

resected tumor tissues. *P<0.05 vs. LT-empty. #P<0.05 vs. LT-empty + cisplatin group. 
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DISCUSSION 
 
In the treatment of HCC, platinum-based chemotherapy 

is commonly used in preoperative or postoperative 
chemotherapy. Sensitivity of chemotherapy severely 

determines the prognosis of HCC patients [32, 33, 34]. 

Cisplatin is an important member of platinum-based 
chemotherapeutic drug. In cancer cells, cisplatin in-

duces DNA crosslink and thus inhibits DNA replication 
and induces DNA damage and cell apoptosis [35, 36]. 

Therefore, cisplatin is commonly used in HCC treat-

ment. However, drug resistance against cisplatin usually 
occurs in many cases [37, 38]. It is urgent to explore the 

potential mechanisms and take strategies to reduce the 

cisplatin resistance in HCC. 
 

MiRNAs have been reported to be dysregulated 
frequently in various cancers including HCC. Further-

more,  miRNAs dysregulation has been found to be  res- 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
ponsible for development of drug resistance in cancer 

cells [39, 40]. Therefore, cancer-related miRNAs are 
potential targets in cancer therapy. MiR-124 has been 

reported to act as a tumor suppressor in some cancers. 
Cellular miR-124 can inhibit growth, invasion and 

tumorigenesis of gastric cancer, ovarian cancer, lung 

cancer and renal cell carcinoma. Downregulation of 
miR-124 usually predicts a poor prognosis for cancer 

patients [41-44]. Therefore, recovery of miR-124 may 

be a potential strategy in cancer therapy. 
 

In the present study, we found that the population of 

CD133+ HCC cells showed significant resistance to 

cisplatin and some other platinum-based chemo-

therapeutic drugs compared to the CD133- HCC cells. It 

suggested that the CD133+ HCC cells were responsible 

for drug resistance in HCC. After analysis of miR-124 

expression between CD133+ and CD133- HCC cells, we 

found the downregulation of miR-124 in CD133+ HCC 

Figure 8. Effects of miR-124 on reversing resistance of CD133+ HCC cells to platinum-based chemotherapeutic drugs. (A) 

Carboplatin IC50 to CD133+ and CD133- HepG2 and Huh7 cells (*P<0.05). (B) Oxaliplatin IC50 to CD133+ and CD133- HepG2 and Huh7 cells 

(*P<0.05). (C) Effects of miR-124 (50 pmol/mL) on decreasing carboplatin IC50 to CD133+ HepG2 and Huh7 cells (*P<0.05). (D) Effects of 

miR-124 (50 pmol/mL) on decreasing oxaliplatin IC50 to CD133+ HepG2 and Huh7 cells (*P<0.05). 
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cells. Next, we compulsively recovered the expression 

level of miR-124 in CD133+ HCC cells by transfection 

with miR-124 mimics. Interestingly, we found that co-

treatment with miR-124 sensitized these CD133+ HCC 

cells to treatment of platinum-based chemotherapeutic 

drugs in vitro and in vivo. Our study demonstrated that 

overexpression of miR-124 may represent a novel 

strategy to overcome the drug resistance in CD133+ 

HCC cells. 

 

SIRT1 is a histone deacetylase in cancer cells [45]. 

Overexpression of SIRT1 increases the cellular level of 

superoxide dismutase (SOD) which is a key cellular 

antioxidant, and thus eliminates the generation of ROS 

which is apoptosis promoter [29, 46, 47]. In the 

downstream pathway of ROS-dependent apoptosis, JNK 

is a key molecular linkage between oxidative stress and 

cell apoptosis. Activation of JNK induces the over-

expression of pro-apoptotic proteins and inhibits the 

function of anti-apoptotic proteins [48, 49]. Thus, 

SIRT1/ROS/JNK pathway is one of the important 

signals that regulates cell apoptosis in cancers. 

 

In this study, we found that SIRT1 was overexpressed 

in CD133+ HCC cells. High level of SIRT1 prevented 

the generation of ROS induced by cisplatin treatment 

in HCC cells. Therefore, CD133+ HCC cells exhibited 

lower response to apoptosis compared to the CD133- 

HCC cells. Furthermore, we found that the mechanism 

by which miR-124 sensitized the CD133+ HCC cells to 

cisplatin treatment was dependent on the decrease of 

SIRT1 expression. That is to say, SIRT1 was the target 

of miR-124 in HCC. Our results indicated that 

recovery of miR-124 decreased the SIRT1 expression 

and thus promoted the production of ROS and 

activation of JNK in the cisplatin-treated CD133+ HCC 

cells. And finally, overexpression of miR-124 resen-

sitized the CD133+ HCC cells to cisplatin-induced 

apoptosis. 

 

CONCLUSION 
 

This study indicated the effect of miR-124 on sensitizing 

cisplatin-induced cytotoxicity to CD133+ HCC cells in 

vitro and in vivo. The miR-124/SIRT1/ROS/JNK path-

way may represent a potential target in attenuating the 

cisplatin resistance in CD133+ HCC cells. 

 

MATERIALS AND METHODS 
 

Cell culture 

 

The HCC cell lines HepG2 and Huh7 were purchased 

from the Institute of Biochemistry and Cell Biology, 

Chinese Academy of  Sciences  (Shanghai,  China)  and  

maintained in RPMI-1640 (Gibco, USA) supplemented 

with 10% fetal bovine serum (FBS, Gibco) at 37°C in a 

humidified 5% CO2 incubator. For separation between 

CD133+ HCC cells and CD133- HCC cells, HepG2 and 

Huh7 cells were incubated with fluorescein isothio-

cyanate (FITC) conjugated CD133 antibody (Miltenyi 

Biotec, Germany) for 20 min at room temperature. 

Subsequently, CD133+ and CD133- HepG2 and Huh7 

cells were sorted by FACS vantage (FACSCALIBUR, 

BD Biosciences, USA). 

 

Quantitative reverse transcriptase real time PCR 

(qRT-PCR) 

 

Total RNAs of HCC cells were extracted with TRIzol 

reagent (Invitrogen, USA). For reverse transcription, 

One Step PrimeScript miRNA cDNA Synthesis Kit 

(Takara Bio, Inc., Otsu, Japan) was used to synthesize 

the cDNA of HCC cells according to the manufacturer’s 

instruction (Takara Bio, Inc., Otsu, Japan). qPCR was 

performed in triplicate by using the SYBR Premix Ex 

Taq II (Takara Bio, Inc.) on ABI PRISM 7900 

Sequence Detection system (Applied Biosystems, 

USA). GAPDH gene was used as the internal reference 

to determine the relative expression of SIRT1, and the 

expression of miR-124 was determined according to the 

internal control of U6 snRNA. SIRT1 forward primer 

sequence: 5’-TGATGAACCGCTTGCT-3’, reverse se-

quence: 5’-TGGTCTTACTTTGAGGGA-3’. GAPDH 

forward primer sequence: 5’-ATCCCATCACCATCT 

TCC-3’, reverse sequence: 5’-GACCCTTTTGGCTC 

CC-3’. 

 

Transfection 

 

Human miR-124 mimics (5’-UUAAGGCACGCGGUG 

AAUGC-3’), 2’-Omethyl modified miR-124 antisense 

oligonucleotide (anti-miR-124, 5’-GCAUUCACCGC 

GUGCCUUAA-3’) and negative control oligo-

nucleotide (NCO, 5’-GUAGGAAUCGUGGCUACG 

CA-3’) were purchased from Genepharma Company 

(Shanghai, China). Open reading frame of SIRT1 gene 

was amplified by PCR and then inserted into the 

pcDNA3.1 (Invitrogen) to conduct the SIRT1 

eukaryotic expression plasmid. SIRT1 siRNA (forward: 

5’-GUAUUGCUGAACAGAUGGAUU-3’, reverse: 5’-

UCCAUCUGUUCAGCAAUACUU-3’, Genepharma 

Company) and plasmid was used for loss-of-function 

and gain-of-function experiments, respectively. For 

transfection, miR-124 mimics (50 pmol/mL), anti-miR-

124 (50 pmol/mL), NCO (50 pmol/mL), SIRT1 siRNA 

(50 pmol/mL) and SIRT1 plasmid (2 μg/mL) were 

transfected into the HCC cells by using Lipofectamine 

2000 (Invitrogen) according to the instruction of the 

manufacturer. 
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Cell viability and IC50 

 

A total of 5 × 103 transfected HCC cells were seeded in 

96-well plates overnight for adherence. Then, the cells 

were treated with different concentrations of cisplatin 

for 48 h. After treatment, cells were incubated by 3-(4, 

5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bro-

mide (MTT) for 4 h. Subsequently, dimethyl sulfoxide 

(DMSO) was added and the absorbance in each well 

was measured at 570 nm using a microplate reader 

(Sunrise Microplate Reader, TECAN, Switzerland). 

Half maximal inhibitory concentration (IC50) of 

cisplatin was calculated according to the cell viability 

viability curves of HCC cells. 

 

Western blot analysis 

 

Whole cell lysates were prepared by using RIPA 

buffer (Cell Signaling Technology, Beverly, USA). 

Equal amount of protein samples was separated by 10 

% sodium dodecyl sulfate polyacrylamide gel electro-

phoresis (SDS-PAGE) and then transferred to poly-

vinylidene fluoride (PVDF) membranes (Millipore, 

Billerica, MA, USA). Subsequently, the membranes 

were probed by primary antibodies of SIRT1, GAPDH 

and phosphorylated JNK (p-JNK) (Cell Signaling 

Technology, USA) overnight. After incubation with 

appropriate secondary antibodies, the protein bands 

were detected by using an enhanced chemilu-

minescent substrate (Thermo Fisher Scientific, Inc, 

USA). 

 

Luciferase reporter assay 

 

SIRT1 3’ UTR fragment sequence containing the 

predicted binding site paired with miR-124 was 

amplified and cloned into the downstream of firefly 

luciferase gene in the pMIR-REPORT™ miRNA 

Expression Reporter Vector (Thermo Fisher Scientific, 

Inc.) according to the manufacturer’s instruction. The 

recombinant plasmid was named as pMIR-wtSIRT1. To 

conduct the mutant SIRT1 3’ UTR-luciferase reporter 

plasmid, QuikChange Site-Directed Mutagenesis kit 

(Stratagene, USA) was used based on the pMIR-

wtSIRT1 plasmid according to the manufacturer’s 

instruction. The recombinant plasmid was named as 

pMIR-mtSIRT1. To perform the luciferase reporter 

assays, cells were co-transfected with the pMIR 

plasmid, Renilla luciferase pRL-TK vectors (Promega, 

USA) and the miR-124 mimics by using the lipo-

fectamine 2000. 48 h after incubation, luciferase 

activities were measured by using Dual-Luciferase 

Reporter assay system (Promega) according to the 

manufacturer’s instruction. 

 

Flow cytometry 

 

Generation of reactive oxygen cluster (ROS) and cell 
apoptosis were measured by flow cytometry analysis. For 

detection of ROS, cells were stained with dihydro-

ethidium (DHE) (Molecular Probes, USA) for 15 min at 
room temperature. After washing with PBS for three 

times, cells were analyzed by flow cytometry (Becton 

Dickinson, USA). For measurement of apoptosis, cells 
were incubated with the Annexin V/Propidium Iodide 

(PI) (Sigma-Aldrich, USA) for 15 min at room 
temperature according to the manufacturer's instructions. 

Subsequently, cells were collected and washed with PBS 

followed by analysis on flow cytometry. 
 

Tumor growth in nude mice 

 

CD133+ HepG2 cells which were stably overexpressed 

miR-124 (LT-miR-124) were generated by using a 
lentiviral-based system through Genechem Co., Ltd and 

selectively cultured in 1 μg/mL puromycin for 2 weeks. 

CD133+ HepG2 cells which were transfected with 
empty lentivirus were used as control. For xenograft, 

5×106 transfected cells were injected subcutaneously 
into the right armpit of mice (four-week-old and female 

immunodefcient nude BALB/c mice (Shanghai Super-

B&K Laboratory Animal Corp., Ltd., Shanghai, China). 
Cisplatin (5 mg/kg) were administrated by intra-

peritoneal injection twice a week when the xenografts 
reached 0.5 cm in diameter. The experimental animals 

were divided into four groups (8 mice/ group). The 

tumor volume (V) was calculated based on the 
following equation: 1/2 × length × width2. 28 days post 

inoculation, mice were sacrificed and the tumor tissues 

were separated. The animal care and experimental 
protocols were approved by the Animal Care 

Committee of Sun Yat-sen Memorial Hospital, Sun Yat-
sen University. 
 

Statistical analysis 
 

Data are represented as mean ± standard deviation (SD) 

and obtained from three independent experiments. Data 

were analyzed by using SPSS 15.0. For comparison 
analysis, two-tailed Student’s t-tests were used to 

estimate the statistical differences between two groups. 
One-way analysis of variance (ANOVA) and 

Bonferroni’s post hoc test were used to determine the 

differences between three or more groups. P<0.05 was 
considered to indicate a statistically significant 

difference. 
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