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Abstract

Background: The human amnion plays a pivotal role in parturition. Two of its compartments, the placental amnion and the
reflected amnion, have distinct transcriptome and are functionally coordinated for parturition. This study was conducted to
determine the microRNA (miRNA) expression pattern and its significance in the placental amnion and the reflected amnion
in association with labor at term.

Methodology/Principal Findings: MicroRNA microarray, real-time quantitative RT-PCR (qRT-PCR), and miRNA in situ
hybridization analyses of the placental amnion and the reflected amnion (n = 20) obtained at term were conducted.
Luciferase assay, transfection, and qRT-PCR analyses of primary amnion epithelial cells (AECs) and amnion mesenchymal
cells (AMCs) were performed. MicroRNA microarray analysis demonstrated differential expression of 32 miRNAs between the
placental amnion and the reflected amnion after labor. Thirty-one (97%) miRNAs, which included miR-143 and miR-145, a
cardiovascular-specific miRNA cluster, were down-regulated in the reflected amnion. Analyses of miR-143 and miR-145 by
qRT-PCR confirmed microarray results, and further demonstrated their decreased expression in the reflected amnion with
labor. Interestingly, expression of miR-143 and miR-145 was higher in AMCs than in AECs (p,0.05). Luciferase assay and
transfection confirmed miR-143 binding to 39 UTR of prostaglandin-endoperoxidase synthase 2 (PTGS2) mRNA and miR-143
regulation of PTGS2 in AMCs.

Conclusions: We report region-specific amniotic microRNAome and miR-143 regulation of PTGS2 in the context of human
labor at term for the first time. The findings indicate that miRNA-mediated post-transcriptional regulation of gene
expression machinery in the amnion plays an important role in the compartments (placental amnion vs reflected amnion)
and in a cell type-specific manner (AECs vs AMCs) for parturition.
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Introduction

Human parturition has distinct features unique from other

species, and biological activation of the chorioamniotic membranes

is a key component of a cascade of events leading to labor at term

[1,2]. The amnion is the inner layer of the chorioamniotic

membranes which play critical roles in the maintenance of

pregnancy and the initiation of parturition [3–5]. It is composed

of a monolayer of amnion epithelial cells (AECs) and amnion

mesenchymal cells (AMCs) [6] which have phenotypic character-

istics of myofibroblasts or macrophages [7–9]. Many studies have

elegantly addressed both mechanical and biochemical properties of

the amnion [10–13]. Although it is a single structure, the amnion is

anatomically divided into three distinct compartments: placental

amnion (amnion over the placental disc), reflected amnion (amnion

of the free chorioamniotic membranes), and umbilical amnion

(amnion of the umbilical cord) [14]. We have reported that there is

an intriguing, stark difference between the placental amnion and the

reflected amnion in the transcriptome [15]. Furthermore, the

analyses of expression in amniotic prostaglandin-endoperoxidase

synthase 2 (PTGS2) and prostaglandin E2 (PGE2) indicated spatial

and functional coordination between the placental amnion and the

reflected amnion for parturition at term [16]. The placental amnion

is responsible for increasing tonic production of prostaglandins with

progression of gestation, whereas there is a surge of PTGS2 synthesis

and PGE2 production in the reflected amnion with labor at term.
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MicroRNAs (miRNAs) are a class of non-coding small RNAs

ranging from 18 to 25 nucleotides in size, involved in post-

transcriptional regulation of gene expression by mRNA degrada-

tion or translational repression through binding to the comple-

mentary sequence of the 39-untranslated region (39 UTR) of their

target mRNA [17,18]. As more than 1,000 miRNAs are predicted

in the human genome [19], which would target approximately

60% of mammalian genes [20], the role of miRNAs is profound in

various physiologic and pathologic processes such as development

and cancer [21–23]. Not surprisingly, recent studies have reported

significant changes in placental miRNA expression associated with

placental development and pregnancy complications such as

preeclampsia [24,25], fetal growth restriction [26], and acute

chorioamnionitis [27]. Changes in miRNA expression patterns in

the chorioamniotic membranes also clearly indicated an important

role for miRNA in human parturition; yet, amnion-specific

characterization of a role for miRNAs has not been investigated.

Considering the crucial nature of the amnion in parturition,

elucidation of post-transcriptional regulation by miRNAs in the

amnion would provide important information about the biology of

parturition.

The purpose of this study was to compare miRNA expression

patterns in the human placental amnion and the reflected amnion

associated with labor at term and thereby to elucidate post-

transcriptional gene expression regulatory mechanisms involved in

human parturition.

Materials and Methods

Patients and tissue collection
Tissue samples of placental amnion and reflected amnion were

collected by blunt dissection as described previously [15]. Paired

samples for miRNA microarray analysis were obtained from

women at term not in labor (TNL, n= 5) and at term in labor

(TIL, n= 5). To confirm microarray results by real-time

quantitative reverse transcription PCR, an additional 11 pairs of

placental amnion and reflected amnion from TNL (n= 5) and TIL

(n= 6) cases were used. The indication for Cesarean section in 8

out of 10 term not in labor cases was previous Cesarean delivery.

The other two cases included a case of fetal malpresentation (frank

breech presentation) and a case of suspected fetal macrosomia.

The patient demographics and clinical information are summa-

rized in Table 1. For primary AEC and AMC cultures, reflected

amnion tissues were obtained from term placentas delivered by

caesarean section in the absence of labor. All patients delivered at

Hutzel Women’s Hospital, Detroit, Michigan, and provided

written informed consent. The collection and use of materials

for research purposes were approved by the Institutional Review

Boards of Wayne State University and the Eunice Kennedy Shriver

National Institute of Child Health and Human Development,

National Institutes of Health, U.S. Department of Health and

Human Services.

MicroRNA microarray
Amnion tissues were liquid nitrogen-pulverized using a mortar

and pestle, and total RNA was isolated using Trizol (Invitrogen,

Carlsbad, CA). The quality of the total RNA was verified using the

Agilent 2100 Bioanalyzer (Agilent Technologies, Wilmington,

DE). All samples were DNased and cleanup-purified with an

RNeasy minicolumn (Qiagen, Valencia, CA). Total RNA (300 ng)

from each sample and reference (pooled RNA) were labeled with

Hy3TM and Hy5TM, respectively, using the miRCURYTM LNA

Array Power Labeling Kit (Exiqon, Vedbaek, Denmark) according

to the manufacturer’s instructions. The Hy3TM-labeled sample

and a Hy5TM-labeled reference RNA sample were mixed pair-

wise and hybridized onto the miRCURYTM LNA array version

11.0 (Exiqon). Twenty RNA samples were analyzed individually.

The array platform contains capture probes targeting all human,

Table 1. Patient demographics and clinical information of cases used for microarray and confirmation analyses.

Term in labor Term no labor

n=11** n=10

Maternal age (years)* 22 (20–39) 29 (19–38) NS

Race (%) NS

Black 81.8 60.0

White 0.0 30.0

Hispanic 9.1 0.0

Others 9.1 10.0

Parity (Nullipara, %) 0.0 20.0 NS

Chronic hypertension (%) 0.0 10.0 NS

Diabetes mellitus (%) 0.0 0.0 NS

Delivery mode (C/S) 0.0 100.0 ,0.001

Gestational age at delivery (weeks)* 39.4 (37.1–40.7) 38.9 (37.4–39.4) NS

Birth Weight (g)* 3270 (2915–3945) 3532.5 (2545–4655) NS

Placental Weight (g)* 500 (383–660) 527.5 (360–639) NS

Labor duration (hr)* 8.5 (1.0–21.0) 0.0 (0.0–0.0) ,0.001

Anesthesia before delivery (%) 72.7 100 NS

Oxytocin use before delivery (%) 27.3 0 NS

*, median (range).
**, The number of term in labor cases is 11 because 6 additional cases were used for qRT-PCR analysis.
NS, not significant.
doi:10.1371/journal.pone.0024131.t001
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mouse, and rat miRNAs registered in the miRBASE version 13.0 at

the Wellcome Trust Sanger Institute, Hinxton, Cambridge, United

Kingdom. The hybridization was performed according to the

miRCURYTM LNA array manual using a Tecan HS4800TM Pro

hybridization station (Tecan Austria GmbH, Grödig, Austria). All

microarray data is MIAME compliant and that the raw data has

been deposited in a MIAME compliant database (GEO; accession

number GSE27441) as detailed on the MGED Society website

http://www.mged.org/Workgroups/MIAME/miame.html.

Real-time quantitative reverse transcription PCR (qRT-
PCR)
Total RNA was reverse transcribed using the TaqMan

MicroRNA Reverse Transcription Kit (Applied Biosystems, Foster

City, CA) and the Improm-II Reverse Transcription System

(Promega, Madison, WI) for miRNA and mRNA analyses,

respectively. All PCR analyses were carried out by TaqMan

assays (Applied Biosystems). For miRNA expression analysis, miR-

143 (002146) and miR-145 (002149) TaqMan assays were used

with 5S ribosomal RNA (4332078) as a normalizer. For the

analysis of PTGS2 mRNA expression (Hs 01573477_g1), RPLPO

(large ribosomal protein) was used for normalization. PCR

reactions were done using the 7500 Fast Real-Time PCR System

(Applied Biosystems).

MicroRNA in situ hybridization
For in situ hybridization, a 59-DIG labeled mercury miR-143

LNA probe (Exiqon, Cat. 38515-01) was 39-end double labeled

using a DIG Oligonucleotide Tailing Kit (Roche, Mannheim,

Germany). A scrambled LNA detection probe was used as a

negative control (Exiqon, Cat. 99004-01). Ten-mm-thick frozen

tissue sections were obtained on silanized slides and fixed with

4% (wt/vol) paraformaldehyde for 10 min. After fixation,

sections were acetylated for 10 min using the acetylation solution

(1.34% of triethanolamine, 0.2% of HCl, 0.6% of acetic

anhydride). Acetic anhydride was added to the solution

immediately before use. PBS was used for washing after each

step. Following the proteinase K (5 mg/ml) treatment at room

temperature for 5 min, sections were incubated with a hybrid-

ization buffer containing the probe (2 rmol/slide) for 5 min at

60uC; then it was hybridized for 15 h at 37uC. Probes were

denatured at 65uC for 5 min and then quickly chilled on ice

before application. A hybridization buffer was composed of 50%

formamide, 56 SSC, 56 Denhardt’s solution, 200 mg/ml yeast

RNA, 500 mg/ml salmon sperm DNA, 2% blocking reagents

(Roche), 0.25% CHAPS, and 0.5% Tween 20. After hybridiza-

tion, slides were washed with 0.26SSC and 2% BSA at 4uC for

5 min, and incubated with an anti-DIG-alkaline phosphatase

antibody (1:500; Roche) at 37uC for 30 min. The signal was

detected using a fast red substrate system (DAKO, Carpinteria,

CA), and counterstaining and mounting were carried out using

Prolong Gold Antifade Reagent with DAPI (Invitrogen).

Primary amnion cell culture
The reflected amnion was cut into 2 cm62 cm pieces. To

isolate AMCs, approximately one-third of the obtained amnion

fragments were transferred into two tubes containing 25 ml of

collagenase A (1 mg/ml) and incubated at 37uC with gentle

shaking for 3 h. The digests were then filtered through a 100-

micron nylon mesh, and centrifuged at 2006g for 10 min. AMCs

were suspended in DMEM (Mediatech, Herndon, VA) containing

10% fetal bovine serum and antibiotics. The remaining two-thirds

of the amnion fragments were then placed in 10 ml of 0.05% (w/v)

trypsin/EDTA (Invitrogen) and gently shaken for 30 sec to isolate

AECs; the fragments were transferred to two new tubes and 15 ml

of trypsin/EDTA were added, followed by incubation at 37uC

with gentle shaking for 10 min. This trypsin digestion supernatant

was discarded; amnion fragments were transferred into a new tube

containing 25 ml of fresh trypsin/EDTA solution and were

incubated for an additional 40 min at 37uC. After digestion, the

supernatant was mixed with an equal volume of DMEM and

centrifuged for 10 min at 2006g. The pellet was resuspended in

DMEM. Remaining amnion trypsin digests were additionally

treated with 25 ml of trypsin/EDTA at 37uC for 40 min.

Collected AECs were pooled with the previous cell suspension

[28]. AECs and AMCs were kept in DMEM, and all experiments

were performed with the cells at passage 2 and passage 4.

Transfection
For the transfection with miR-143 mimic and inhibitor, 56105

of AMCs and 16106 of AECs were split in 6-well plates, kept

overnight, and transfected with miRIDIAN miR-143 mimic

(50 nM; Dharmacon, Lafayette, CO; C-301057-01-0005) or

miR-143 hairpin inhibitor (200 nM; IH-301057-02-0005) using

Lipofectamine 2000 (Invitrogen). The miRIDIAN microRNA

negative controls (mimic; CN-001000-01-05, hairpin inhibitor;

IN-001005-01-05) were used at equimolar concentrations. To

estimate transfection efficiency prior to the transfections using

miR-143 mimic and inhibitor, the cells were transfected with Cy3-

labeled Pre-miRTM negative control #1 (Applied Biosystems)

using Lipofectamine 2000, and visualized under an immunoflu-

orescence microscope.

Generation of PTGS2 39 UTR reporter construct
The PTGS2 39 UTR carrying a putative miR-143 binding site

was PCR amplified, sequence confirmed, and cloned into a SpeI

and HindIII site of the pMIR-REPORTTM miRNA Expression

Reporter Vector (Ambion, Austin, TX). The PCR was performed

using an upstream primer (59- CAAGATGGATGCAAA-

GAGGCTAGTGCCTCA-39) bearing a SpeI site and a down-

stream primer (59-AGAGGTAACCCCAAAGAAGATATACT-

GATT-39) bearing a HindIII site. The PCR product of 355 bp

was purified from 1% agarose gel after electrophoresis with a

PureLinkTM Quick Gel Extraction Kit (Invitrogen), and its

sequence was verified by DNA sequencing using ABI 3100

sequencer (Applied Biosystems).

Luciferase assay
To assess miR-143 binding to PTGS2 mRNA 39 UTR in

AECs, 16106 cells were transfected with 200 ng of pMIR-

REPORT plasmid or 200 ng of pMIR-REPORT-PTGS2 39

UTR, 10 ng of Renilla luciferase reporter pSV40-RL (transfection

control; Promega), and miRIDIAN miR-143 mimic (100 nM) or

miR-143 hairpin inhibitor (50 nM) or equal amounts of negative

controls using Lipofectamine 2000 (Invitrogen). At 48 h after

transfection, luciferase assays were carried out using the Dual-

Luciferase Reporter Assay System (Promega). For luciferase

analysis of AMCs, 56105 cells were transfected with 500 ng of

pMIR-REPORT plasmid or 500 ng of pMIR-REPORT-PTGS2

39 UTR , 10 ng of Renilla luciferase reporter pSV40-RL, and

miRIDIAN miR-143 mimic (100 nM) or miR-143 hairpin

inhibitor (50 nM) or equal amounts of negative controls using

Lipofectamine 2000 (Invitrogen). At 48 h after transfection,

luciferase assays were carried out using the Dual-Luciferase

Reporter Assay System (Promega) according to the manufacturer’s

instructions.

Amniotic microRNA and Human Parturition
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Immunofluorescence staining
The AECs and AMCs were grown in DMEM on coverslips

placed in 6-well plates. Cells were then fixed with 4% of

paraformaldehyde and permeabilized with 0.25% triton X-100,

and incubated with 5% (w/v) BSA in PBS for 30 min at room

temperature. Cells were immunostained using a rabbit polyclonal

anti-cytokeratin-7 (1:25; Abcam, Cambridge, MA) or a mouse

monoclonal anti-type I procollagen (1:25; Developmental Studies

Hybridoma Bank at the University of Iowa City, IA) or mouse

monoclonal anti-smooth muscle actin alpha (Vector, Burlingame,

CA). Alexa FluorH 594 goat anti-rabbit IgG and Alexa FluorH 488

goat anti-mouse IgG (Invitrogen) were secondary antibodies,

respectively. Stained cells were mounted with Prolong Gold

Antifade Reagent with DAPI (Invitrogen), and were examined

using a Leica TCS SP5 spectral confocal system (Leica Micro-

systems Inc., Wetzlar, Germany).

Immunoblotting
Total proteins were isolated using RIPA buffer (Sigma-Aldrich)

containing a protease inhibitor cocktail (Roche). Fifteen mg of

protein were subjected to 10% SDS-polyacrylamide gel electro-

phoresis, and electro-transferred onto nitrocellulose membranes.

Membranes were blocked with 5% nonfat dry milk in Tris-

buffered saline containing 0.1% v/v Tween 20, and were probed

overnight at 4uC with a rabbit polyclonal anti-PTGS2 (1:500; Cell

Signaling, Danvers, MA) and a mouse monoclonal anti-b-actin

(1:5,000; Sigma-Aldrich). A horseradish peroxidase-conjugated

anti-rabbit or anti-mouse IgG was used as a secondary antibody,

and signals were detected by chemiluminescence. Densitometric

analyses were carried out using Multi Gauge software version 3.1

of the imaging system LAS-4000 (Fujifilm, Tokyo, Japan).

Statistical analysis
The two-channel miRNA microarray data were background-

corrected using the normexp [29] algorithm and then normalized

using a global loess procedure [30]. miRNAs with a signal lower

than the background in most samples were discarded. A linear

model was fitted for each miRNA by fitting miRNA expression

levels on two factors of interest – placental region and labor status.

Moderated t-tests [31] were used to assess the significance of the

effects, and correction for multiple testing was implemented.

Significance was inferred by controlling the false discovery rate at

5%. All procedures were applied using the limma package of

Bioconductor [32]. To compare the results of other experiments,

Student’s t-test or the Mann-Whitney U test for independent

variables and the paired t-test or Wilcoxon signed rank tests for

related variables were performed as appropriate, using the SPSS

version 15.0 (SPSS Inc, Chicago, IL).

Results

MicroRNA expression profiling of the amnion
To determine region-specificity of the miRNA profile in the

context of labor, expression of 875 human miRNAs was screened

by microarray analysis of the placental amnion and the reflected

amnion obtained from TNL and TIL cases. The complete

microRNA microarray dataset is available in Gene Expression

Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?token=xtebjacumgweulo&acc=GSE27441). A linear model-

based analysis of microarray data showed differential expression

of 32 miRNAs between the placental amnion and the reflected

amnion in TIL cases (Table 2). Of note, 31 (97%) out of 32

differentially expressed miRNAs were down-regulated in the latter.

Significant differential expression of miRNAs was not found in

other comparisons: between the placental amnion and the

reflected amnion in TNL cases, between the TNL placental

amnion and the TIL placental amnion, and between the TNL

reflected amnion and the TIL reflected amnion. Of note, the

comparison between TNL reflected amnion and TIL reflected

amnion demonstrated that the differences in the expression of 23

miRNAs had a raw p value less than 0.05 although they were not

significant after adjustment for multiple comparisons. These 23

miRNAs are miR-517a, miR-519a, miR-521, miR-515-5p,

miRPlus-E1170, miRPlus-E1112, miR-515-3p, miRPlus-E1108,

miR-520c-3p, miR-518f*, miR-519b-3p, miR-512-3p, miR-517b,

miR-143, miR-1323, miR-518f, miR-335, miR-145, miR-934,

miR-99a, miRPlus-F1195, miR-1283, and miR-520d-5p. All of

these miRNAs except miRPlus-E1112 were down-regulated in

TIL cases.

Table 2. Differentially expressed miRNAs between placental
amnion (PA) and reflected amnion (RA) with labor.

Term In Labor

ID P Value Fold Change Up-regulated in:

Has-miR-509-3p 0.011 2.55 PA

Has-miR-143 0.011 3.24 PA

Has-miR-431 0.011 3.47 PA

Has-miR-145 0.011 2.45 PA

Has-miR-409-3p 0.011 2.95 PA

hsa-miR-376b 0.013 2.38 PA

hsa-miR-654-3p 0.019 2.22 PA

hsa-miR-514 0.019 2.01 PA

hsa-miR-199a-5p 0.019 2.61 PA

hsa-miR-199a-3p/
hsa-miR-199b-3p

0.020 2.71 PA

hsa-miR-379* 0.021 2.35 PA

hsa-miR-369-3p 0.022 2.10 PA

hsa-miR-154* 0.024 2.49 PA

hsa-miR-411* 0.024 2.50 PA

hsa-miR-487a 0.024 2.45 PA

hsa-miR-410 0.024 2.25 PA

hsa-miR-146b-5p 0.024 1.99 PA

hsa-miR-495 0.025 2.28 PA

hsa-miR-127-5p 0.031 2.69 PA

hsa-miR-377 0.031 1.94 PA

hsa-miR-146a 0.031 1.84 PA

hsa-miR-1308 0.032 2.00 PA

hsa-miR-199b-5p 0.032 2.05 PA

hsa-miRPlus-E1038 0.032 2.08 PA

hsa-miRPlus-E1170 0.038 1.79 PA

hsa-miR-376a 0.041 1.76 PA

hsa-miR-134 0.047 2.36 PA

hsa-miR-889 0.048 1.80 PA

hsa-miR-432 0.049 1.87 PA

hsa-miR-34a 0.049 2.14 PA

hsa-miR-1273 0.050 1.70 PA

hsa-miR-486-5p 0.044 1.76 RA

doi:10.1371/journal.pone.0024131.t002
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Because the miR-143/miR-145 cluster was also among the

miRNAs whose differential expression had a raw p value of less than

0.05 between TNL reflected amnion and TIL reflected amnion as

described above, expression of the cluster was subjected to further

confirmation. When we confirmed their expressions by qRT-PCR,

the miR-143/miR-145 expression was significantly lower in the

reflected amnion of both TNL and TIL cases (p,0.05 for each); and

its expression in the reflected amnion also significantly decreased

with labor (p,0.05).The results were consistent and confirmed the

microarray data. The miR-143 and miR-145 expressions were 7.7-

fold and 5.7-fold higher in the placental amnion than in the

reflected amnion of TIL cases, respectively (p,0.005 for each). The

miR-143 and miR-145 expressions in the TNL reflected amnion

were 3.2-fold and 2.4-fold higher than in the TIL reflected amnion,

respectively (p,0.005 for each) (Figure 1A and 1B). Localization of

miR-143 expression by in situ hybridization demonstrated readily

detectable hybridization signals in both the amnion epithelial cells

and the mesenchymal cells (Figure 1C).

Prostaglandin-endoperoxidase synthase 2 as a putative
target of miR-143
When we performed a computational search (www.targetscan.

org; pictar.mdc-berlin.de) to determine a functionally relevant

target in the context of labor, PTGS2, a key enzyme of labor at

term, was among the putative targets of miR-143. As the amnion is

composed of two different cell populations, and miRNA profile

and function can markedly differ in various types of cells, we

decided to study AECs and AMCs separately [33]. Immunoflu-

orescence staining of isolated AECs and AMCs for cytokeratin-7

and type I procollagen demonstrated more than 95% purity for

both populations of cells, AECs staining for cytokeratin-7 and

AMCs for type I procollagen (Figure 2A).

Interestingly, qRT-PCR analysis showed a marked difference in

miR-143 expression between AECs and AMCs. The miR-143

expression in AMCs was 15-fold greater (p=0.028) than that of

AECs (Figure 2B). On the other hand, densitometric analysis of

PTGS2 protein expression of AMCs was 1.53-fold less (p=0.043)

than that of AECs (Figure 2C), while there was no difference in

PTGS2 mRNA expression between AECs and AMCs (Figure 2D).

These data suggested involvement of post-transcriptional regula-

tion of PTGS2 expression.

miR-143 binding to PTGS2 39 UTR in amnion
mesenchymal cells
To confirm miR-143 binding to 39 UTR of PTGS2 mRNA, a

transient transfection experiment was carried out using a luciferase

reporter plasmid with PTGS2 39 UTR containing the putative

Figure 1. miR-143/miR-145 cluster expression in PA and RA. A,
qRT-PCR analysis of miR-143 expression in PA and RA obtained from
women at term not in labor (TNL; n = 10) and in labor (TIL; n = 10) to
confirm microarray results. TNL cases are composed of 5 cases
subjected to microarray analysis and 5 additional cases, while TIL cases
are composed of 4 cases used in the microarray analysis and 6
additional cases because of RNA availability. miR-143 expression is
significantly higher in the PA than in the RA in both groups, and its
expression in the RA is significantly higher in TIL cases than in TNL
cases. *, p,0.05 **, p,0.005. B, The differential expression patterns of
miR-145 are basically identical to those of miR-143. C, In situ

hybridization for miR-143 in the RA obtained from a TNL case.
Hybridization signals are readily detected in the amnion epithelial cells
(arrows) and mesenchymal cells (asterisks). Inset shows scrambled LNA
in situ hybridization results used for negative control. Original
magnification6400. PA: placental amnion. RA: reflected amnion.
doi:10.1371/journal.pone.0024131.g001
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miR-143 binding site (Figure 3A). Results of the luciferase assay

were different between AECs and AMCs. In AECs, there was a

decrease in luciferase activity by 58.5% (p=0.008) following

transfection with a miR-143 mimic (Figure 3B), but there were no

significant changes in luciferase activity following transfection with

a miR-143 hairpin inhibitor. Findings were most likely related to

the low basal endogenous level of miR-143 expression in AECs. In

AMCs, however, effects of both miR-143 mimic and hairpin

inhibitor were readily detected (Figure 3B). While miR-143 mimic

transfection decreased luciferase activity by 25.9% compared to

the control (p=0.008), inhibition of miR-143 resulted in a 46.2%

increase (p=0.008) in luciferase activity compared to the vector

control (Figure 3C).

miR-143 regulation of PTGS2 by translational repression
To determine whether post-transcriptional regulation of PTGS2

by miR-143 occurs via translational repression or mRNA degrada-

tion mechanisms [18,34], AECs and AMCs were transfected with

either miR-143 mimic or hairpin inhibitor, and the changes in miR-

143 and PTGS2 expression following transfection were determined

by qRT-PCR and immunoblotting, respectively. When AECs and

AMCs were transfected with Cy3-labeled Pre-miRTM negative

control #1, the efficiency of transfection was well over 80% in both

cell types.

In AECs, miR-143 mimic transfection significantly increased

(p=0.014) miR-143 expression while decreasing PTGS2 expression.

Figure 2. Characterization of isolated amnion epithelial cells (AECs) and amnion mesenchymal cells (AMCs). A, Morphological and
immunophenotypic characteristics of AECs and AMCs on hematoxylin & eosin staining (H&E) and immunofluorescent staining of cytokeratin-7 (red),
type I procollagen (green). AECs are positive for cytokeratin-7, while AMCs are positive for type I procollagen. B, qRT-PCR analysis of miR-143
expression which was normalized to 5S rRNA shows significantly higher expression in AMCs than AECs. C, Densitometric analysis of PTGS2 expression
level was normalized to b-actin. PTGS2 protein is less abundant in AMCs than in AECs. D, PTGS2 mRNA expression is not different between AECs and
AMCs. AECs and AMCs obtained from five women at term not in labor (TNL) were used for all experiments (B–D). *, p,0.05.
doi:10.1371/journal.pone.0024131.g002
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However, effects of miR-143 inhibitor transfection were minimal on

miR-143 and PTGS2 expressions, which were consistent with the

luciferase reporter assay data (Figure 4A and 4B). In AMCs, miR-

143 mimic and hairpin inhibitor transfections significantly increased

and decreased (p=0.014 for both) the expression of miR-143,

respectively (Figure 4A). Consequently, PTGS2 protein expression

was decreased upon miR-143 mimic transfection, and inhibition of

miR-143 increased PTGS2 expression (p=0.014; Figure 4B).

Figure 3. miR-143 binding to the 39 UTR of PTGS2 mRNA. A, Putative miR-143-binding site in 333 bp of PTGS2 39 UTR construct cloned into
pMIR-REPORTTM for luciferase reporter assay. B, Luciferase reporter assay of PTGS2 mRNA 39 UTR in AECs and AMCs. Luciferase activities from AECs
and AMCs transfected with 200 ng (AEC) or 500 ng (AMC) of luciferase reporter plasmid containing PTGS2 39 UTR (pMIR-REPORT_PTGS2), 10 ng of
Renilla luciferase reporter pSV40-RL, and miRIDIAN miR-143 mimic (100 nM) or miR-143 hairpin inhibitor (50 nM) or equal amounts of negative
controls were measured using Dual-Lucifrerase Reporter Assay System (Promega). pMIR-REPORT was used as a control. In AECs, there is a 58.5% of
decrease in luciferase activity following transfection with miR-143 mimic but transfection of miR-143 hairpin inhibitor does not alter luciferase activity.
In AMCs, miR-143 mimic transfection decreased luciferase activity by 25.9% compared to the control, while inhibition of miR-143 increased luciferase
activity by 46.2% compared to control. Renilla luciferase activity was used for normalization of firefly luciferase activity (n = 5). The graphs show
means and SE. *, p,0.05.
doi:10.1371/journal.pone.0024131.g003

Amniotic microRNA and Human Parturition

PLoS ONE | www.plosone.org 7 September 2011 | Volume 6 | Issue 9 | e24131



Figure 4. Effects of miR-143 on PTGS2 expression in AECs and AMCs. A, qRT-PCR analysis shows that 50 nM of miR-143 mimic transfection
significantly increases miR-143 expression, while transfection with 200 nM of miR-143 inhibitor has no effect in AECs. In AMCs, miR-143 mimic
(50 nM) and hairpin inhibitor (200 nM) transfections significantly increased and decreased the expression of miR-143, respectively. miR-143 and miR-
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PTGS2 mRNA expression levels, however, in both AECs and

AMCs (Figure 4C) were not significantly changed by miR-143

transfection. These results suggested that miR-143 regulation of

PTGS2 expression occurs largely by translational inhibition than by

PTGS2 mRNA degradation in the amnion, particularly in AMCs.

Discussion

The role of the amnion in human parturition is critical, and all

findings in the present study indicate that post-transcriptional

regulation of amniotic gene expression by miRNAs is an integral

component of human parturition. Primary findings of interest

include: (1) the placental amnion and the reflected amnion of TIL

cases also have distinct miRNA expression patterns as is the case with

transcriptome; (2) the miR-143/miR-145 cluster is among the down-

regulated miRNAs in the reflected amnion with labor; (3) miR-143/

miR-145 expression is significantly higher in AMCs than in AECs;

(4) miR-143 targets PTGS2 39 UTR in amnion cells; and (5) miR-

143 regulation of PTGS2 occurs largely by translational repression.

We have previously analyzed miRNA expression patterns in the

chorioamniotic membranes including the amnion obtained from

women at term not in labor, term in labor, and preterm labor with

intact membranes, and found differential expression of miRNAs

between term and preterm cases [15,27]. Findings suggested that

global down-regulation of miRNA in the chorioamniotic mem-

branes precedes parturition at term. This study reports comparative

microRNAome of the placental amnion and the reflected amnion for

the first time, which revealed global down-regulation of differentially

expressed miRNA in the reflected amnion compared to the placental

amnion in the presence of labor at term. Therefore, human labor

seems to be linked to de-repression of post-transcriptional inhibition

of gene expressions by miRNA in the reflected amnion. This down-

regulation of miRNA expression in the reflected amnion with labor

could be attributed to the decreased expression of miRNA

processing enzyme Dicer because decreased expression of Dicer is

a feature of labor at term both in the amnion and the chorion [35].

Among miRNAs down-regulated with labor in the reflected

amnion, we found the presence of miR-143 and miR-145 as well

as their relative abundance in AMCs intriguing and relevant. The

miR-143/miR-145 cluster has been widely studied in vascular

smooth-muscle cells [36]. Cordes et al have demonstrated that

the miR-143/miR-145 cluster is abundant in the developing

heart and in their localization in smooth muscle cells and neural

crest stem cell-derived vascular smooth muscle cells [37]. This

cluster was the transcriptional target of the serum response factor,

myocardin and NK2 transcription factor related, locus 5 (Nkx2-

5), especially miR-145 could induce smooth muscle differentia-

tion of neural crest stem cells. Conversely, this cluster targeted

key cellular machinery, such as myocardin, Klf-4, and Elk-1, for

smooth muscle differentiation. In miR-143/miR-145 knockout

mice, vascular neointima formation after injury is blocked due to

perturbations in actin stress fiber formation [38]. AMCs have a

myofibroblast phenotype expressing smooth muscle actin, and

acquire macrophage immunophenotype on meconium exposure

or during inflammation [7]. Higher expression of miR-143/miR-

145 in AMCs than in AECs, therefore, could be explained by

intrinsic phenotype of the cells and is biologically quite relevant.

In this context, it is also possible that the difference in miR-143/

miR-145 expression between placental amnion and reflected

amnion can be related to a potential difference in the ratio of

amnion epithelial and mesenchymal cells between placental

amnion and reflected amnion.

PTGS2 is a key enzyme in the synthesis of prostaglandins.

There is good correlation between PTGS2 and PGE2 expression

levels in the amnion [16]. Regulation of PTGS2 is a complex

process involving both transcriptional and post-transcriptional

events [39]. It has been shown that a complex of cytosolic proteins

binds to an AU-rich sequence element in PTGS2 mRNA 39 UTR

and inhibits PTGS2 synthesis [40]. Chakrabarty et al recently

demonstrated the functional significance of uterine expression of

mmu-miR-101a and mmu-miR-199a and their regulation of

PTGS2 in a murine embryo implantation model [41]. Findings in

the present study indicate that the changes in miR-143 regulation

of PTGS2 plays a role in labor at term in addition to the increase

in transcription of PTGS2 mRNA. This miR-143 regulation is

cell-type specific restricted to AMCs. The miRNAs which can

potentially target PTGS2 are miR-199a*, miR-26a, miR-26b,

miR-144, and miR-101, and it is noteworthy that miR-199a-5p

and miR-199a-3p are also among the significantly down-regulated

miRNAs in the reflected amnion of term in labor cases compared

to the placental amnion.

The biological importance of other differentially expressed

miRNAs in the present study needs further investigation. For

example, miR-146a is one miRNA whose expression was lower in

the reflected amnion, and it was shown to increase PGE2

expression in lung fibroblasts. miR-146a caused degradation of

PTGS2 mRNA in lung fibroblasts, and its decrease increased the

half-life of PTGS2 mRNA [42]. It has also been shown that miR-

146a and Kruppel-like factor 4 constitute a feedback loop and that

miR-146a promotes proliferation of vascular smooth muscle cells

[43]. This miRNA is also a key molecule of innate immune

response because it represses translation of interleukin 1 receptor

associated kinase 1 (IRAK1), a critical mediator of Toll-like

receptor signaling [44,45].

In summary, all the findings herein clearly indicate that post-

transcriptional regulation of gene expression by miRNA is

important in human parturition, and this particularly seems to

be the case in the reflected amnion. Furthermore, expression

patterns of the miR-143/miR-145 cluster strongly suggest that

miRNA-mediated regulation of gene expression in the amnion is a

cell type-specific event. We report region-specific amniotic

microRNAome (placental amnion vs reflected amnion) and

miR-143 regulation of PTGS2 in amnion mesenchymal cells for

the first time. This study reveals that there is a novel association

linking a cellular differentiation program (AECs vs AMCs) and

initiation of physiologic human labor.
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145 expression levels were normalized with 5S rRNA expression. B, Immunoblot analysis of PTGS2 expression in AECs and AMCs transfected with
mimic negative control (lane 1), mimic-miR-143 (lane 2), hairpin inhibitor negative control (lane 3), and inhibitor-miR-143 (lane 4). In AECs, PTGS2
protein expression was 1.5-fold decreased in transfection with miR-143 mimic (p = 0.014), but no changes in transfection with miR-143 inhibitor. In
AMC, miR-143 mimic and hairpin inhibitor transfections 1.8-fold increased and 1.3-fold decreased the expression of PTGS2 protein (p = 0.014 for
each), respectively. PTGS2 protein level was normalized to that of b-actin. C, qRT-PCR analysis of PTGS2 mRNA in transfected AEC and AMC shows
there are no significant differences. The PTGS2 mRNA expression was normalized on the content of RPLPO. n= 4 for each experiments; the graphs
show means and SE. *, p,0.05.
doi:10.1371/journal.pone.0024131.g004
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