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Abstract

The mechanisms of hypothalamic–pituitary–adrenal (HPA) axis regulation have been 

studied persistently but still are not elucidated. Considering the emerging roles of 

microRNA in stress response, we conducted a microRNA microarray in mice hypothalamus 

to identify the potential role of microRNAs in regulating the HPA axis. In total, 

41 microRNAs changed during heat stress in which we found that miR-212 contains 

a binding sequence with corticotropin-releasing hormone (Crh) 3′UTR according to 

a sequence analysis. We observed that miR-212 expression in the hypothalamus was 

escalated by repeated heat and restraint stress. By overexpression or inhibition of 

miR-212 and the dual-luciferase reporter assay, we proved that miR-212 could bind 

with Crh 3′UTR to regulate its expression in mice hypothalamus primary cells and in 

the hippocampus neuron cell line HT-22. In addition, we injected miR-212 agomir or 

antagomir in mice hypothalamus to overexpress or inhibit miR-212, which leads to 

alterations of CRH expression and HPA axis activity in vivo. Furthermore, miR-212 and 

CRH were both transcribed by the cAMP response element-binding protein (CREB). 

Overexpression and inhibition of miR-212 affect CREB-dependent CRH expression. Taken 

together, our results suggest an inhibitory role of miR-212 on the HPA axis, which acts in 

a counter-regulatory manner.

Introduction

The hypothalamic–pituitary–adrenal (HPA) axis plays a 

pivotal role in prompting management, adaptation and 

recovery from stress (Sapolsky et al. 2000, de Kloet et al. 

2005, McEwen 2007). It is well documented, however, 

that overactivity of the HPA axis is accompanied 

by impaired physical functions, including growth, 

metabolism, circulation, reproduction, inflammation and 

immunity (Charmandari  et  al. 2005, Chrousos & Kino 

2007, Nicolaides et al. 2015). The mechanisms of the HPA 

axis regulation continue to intrigue researchers (McEwen 

1998, 2008, Glaser & Kiecolt-Glaser 2005, Reynolds 2013). 

As the starting point of the HPA axis, corticotropin-

releasing hormone (CRH) is a key element in managing 

HPA axis activity, and numerous researchers have studied 

its regulation extensively (Kovacs 2013). The dominant 

way by which CRH is regulated is through the negative 

feedback of glucocorticoids (GC) (Herman  et  al.  2016). 

Other factors also seem to be involved, however, as 
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treatment with GC in adrenalectomized rats does not 

prevent an increase in stress-induced CRH hnRNA 

(Kageyama & Suda 2009). In addition, a decline in CRH 

after stress exposure is independent of circulating GC 

because adrenalectomized rats, which lack GC, display 

an identical pattern (Shepard  et  al. 2005). Aside from 

GC, many negative regulating factors of CRH have been 

identified so far, including GABAergic neurons (Gunn et al. 

2015), endocannabinoid signaling (Hill & Tasker 2012) 

and inflammatory cytokines (Felger & Lotrich 2013). 

The network of transcription factors and co-regulators 

of regulation of CRH expression, however, remain to be 

explored (Kovacs 2013).

Since their discovery, microRNAs have been found to 

be involved in various biological processes and usually 

function as negative regulators through post-transcription 

regulation by binding target mRNA to inhibit mRNA 

translation or facilitate mRNA degradation (Zeng  et  al. 

2002, Bartel 2004). Recently, it has been indicated that 

microRNAs participate in stress response (Leung & Sharp 

2010, Hollins & Cairns 2016). A study reported that adult 

male rats subjected to both acute and chronic restraint 

stresses show altered expressions of numerous miRNAs 

in the brain (Meerson  et  al. 2010). More specifically, 

Rinaldi et al. found that expressions of let-7a, miR-9 and 

miR-26a/b increase in the frontal cortex in acute-restraint 

stress mice (Rinaldi  et  al. 2010). Furthermore, several 

studies have reported that alterations of microRNA 

expression, induced by stress, indirectly affect regulation 

of HPA axis activity. An in vitro study demonstrates that 

miR-34c reduces the responsiveness of cells to CRH by 

regulating corticotrophin-releasing hormone receptor 1 

(CRHR1) (Haramati  et al. 2011). Additionally, miR-449a 

contributes to CRHR1 downregulation induced by 

GC in the pituitary during stress (Nemoto  et  al. 2013). 

Another proof is disclosed by the finding that the GC 

receptor is regulated by miR-18 and miR-124 in the brain 

(Vreugdenhil et al. 2009). Nevertheless, direct connections 

between microRNAs and regulation of the HPA axis are 

absent. Whether the CRH expression is regulated by 

microRNAs in the hypothalamus remains unknown.

To this end, our study investigates the potential role 

of microRNAs in regulating CRH and HPA axis activity. 

By using a microRNA microarray in the hypothalamus 

and conducting subsequent validation experiments, we 

prove that miR-212 can bind with Crh 3′UTR to regulate 

its expression in a counter-regulatory manner in vitro and 

can further affect HPA axis activity in vivo. On the basis 

of our findings, we propose a new perspective of HPA 

axis regulation, which may be helpful for developing 

gene therapy interventions for patients with HPA axis 

overactivity diseases.

Materials and methods

Animals

We purchased male C57BL/6 (8 weeks old) mice from Slac 

Laboratory Animal (Shanghai, China) and maintained at 

22 ± 2°C, 12 h light/12 h dark cycle (07:00 light on/19:00 

light off) with food and water freely available. We 

conducted all animal experiments in accordance with 

the ‘Guide for the Care and Use of Laboratory Animals’, 

and with the approval of the Second Military Medical 

University Institutional Animal Care and Use Committees.

Repeated stress process

After being acclimated for 1  week, 40 mice weighing 

approximately 22 ± 2 g were divided randomly into five 

groups (n = 8) for repeated heat stress, including day  0 

(without exposure), day 1 (exposed 1 time), day 3 (exposed 

3 times), day 7 (exposed 7 times) and day 14 (exposed 14 

times). We also randomly divided another 40 mice in the 

same batch into five groups for repeated restraint stress with 

an identical set of groups. Details of the stress procedures 

are as follows: (1) Heat stimulus: mice were placed in an 

artificial climate cabin with a temperature of 40°C and 

relative humidity of 60% for 1 h; (2) immobilization: 

mice were placed in a 50-mL centrifuge tube (28 mm 

diameter × 105 mm long) with a punching hole for 1 h. 

All experiments were conducted between 09:00 h and 

10:00 h every day. We decapitated the mice at the end of 

exposure, and then we immediately collected the blood 

and hypothalamus. We centrifuged the blood at 3000 g for 

20 min to obtain serum for adrenocorticotropic hormone 

(ACTH) and corticosterone (CORT) detection. We used the 

hypothalamus to extract RNA and protein for real-time 

polymerase chain reaction (PCR) and Western blot.

MicroRNA microarray and data analysis

We obtained the hypothalamus from another 15 

decapitated mice at day 0, day 1 and day 7 (five mice in each 

group). We abstracted a total of 15 RNA samples by using 

Trizol reagent (Catalog #15596-026, Invitrogen), which we 

processed in an Affymetrix GeneChip miRNA3.0 (Catalog 

#902017, Invitrogen) to profile the patterns of microRNA 
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expression. The random-variance model (RVM, which is 

commonly used for comparison of more than two groups) 

F-test was applied to filter the differentially expressed 

microRNAs for the three groups because the RVM F-test 

can raise degrees of freedom effectively in small samples. 

After conducting analyses to determine significance and 

the false discovery rate, we selected the differentially 

expressed microRNAs according to the P value threshold 

(Wright & Simon 2003, Clarke et al. 2008).

Injection of miR-212 agomir and antagomir in 

mice hypothalamus

We injected microRNAs agomir and antagomir to the 

local site for functional research (Hou  et  al. 2011). We 

divided the 45 mice weighing between 26 g and 28 g 

into five groups (day 0, 1, 3, 7 and 14), and each group 

had three subgroups (n = 3), which we injected with 2 μL 

negative control, miR-212 agomir and miR-212 antagomir 

(Genepharma, Shanghai, China) at a concentration of 

1 OD/μL (~2.5 nmol/μL) in the paraventricular nucleus 

PVN, respectively. We completed the injection by mouse 

brain stereotaxic apparatus. The injection coordinates 

were 0.82 mm caudal and 0.1 mm lateral from Bregma and 

4.75 mm ventral from the surface of the skull at Bregma, 

according to Paxinos & Franklin (2003).

Determination of serum hormone concentrations

We measured serum ACTH and CORT by radioimmunoassay 

kits (Catalog #D14DJB and Catalog # D10PJB, North 

Institute of Biological Technology Co. Beijing, China) 

following the manual protocol.

Mice hypothalamic primary cells and HT-22 cells

We purchased primary cells of mice hypothalamus and 

HT-22 cells, a kind of mice hippocampus neuron cell line, 

with identification reports from Zhongqiaoxinzhou Biotech 

Inc. (Shanghai, China) and cultured the cells in the primary 

neurons’ culture system (Catalog #PriMed-iCell-005, 

iCell, Shanghai, China) with precoated poly-L-lysine or in 

Dulbecco’s Modified Eagle Medium (Catalog #SH30022.01B, 

HyClone; GE Healthcare) supplemented with 10% fetal 

bovine serum (Catalog #10099-141, Gibco Laboratories) 

and 1% antibiotic solution (Catalog #15140-122, 

Gibco Laboratories) and incubated the cells in a humidified 

5% carbon dioxide atmosphere at 37°C.

Transfection

For hypothalamic primary cell transfection, we used 

miR-212 agomir and antagomir (Genepharma) at a 

concentration of 50 nM and 100 nM, respectively. 

For HT-22 transfection, we used miR-212 mimics and 

inhibitors (Genepharma) at a concentration of 50 nM and 

100 nM, respectively. We transfected plasmids for cAMP 

response element-binding protein (CREB; Genepharma) 

at a concentration of 3 μg/mL. We performed all 

transfections by using micropoly-transfecter cell reagent 

(Catalog #MT115, Micropoly, NanTong, China), and 

extracted RNA and protein 48 h after the transfection for 

downstream experiments.

Dual-Luciferase reporter assay

We grew HT-22 cells on 96-well plates to approximately 50% 

confluence and co-transfected plasmids of GP-miRGLO 

(Genepharma) containing either the wild-type or mutated 

Crh 3′UTR with miR-212 mimics or negative control. 

Forty-eight hours after transfection, the cells underwent 

lysis for luciferase activity with a Dual-Luciferase Reporter 

Assay System (Catalog #E1910, Promega). We normalized 

firefly luciferase activity to Renilla luciferase activity for 

each cell culture.

Total RNA and protein extracted from mice 

hypothalamus and cells

Because of the small size of mice hypothalamus, we used 

All-In-One DNA/RNA/Protein Mini-preps Kit (Catalog 

#B618003, Sangon Biotech, Shanghai, China) to extract 

RNA and protein simultaneously. In general, after tissue 

homogenization and lysis, we centrifuged the liquid in 

an RNA purification column to obtain RNA and added 

the flow-through with protein precipitation solution to 

precipitate protein. In cells, we extracted RNA by Trizol 

reagent (Catalog #15596-026, Invitrogen) and extracted 

protein using a whole-protein extraction kit (Catalog 

#KGP250, Keygene, Nanjing, China).

Real-time quantitative PCR analysis

We reverse-transcribed 1 μg RNA of each sample to 

cDNA using a Reverse-Transcription Reagent Kit 

(Catalog #RR036A & #RR037A, Takara Bio). We performed 

real-time quantitative PCR amplification with the SYBR 

Green Kit (Catalog #QPK-201, Toyobo Bio Inc., Osaka, 
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Japan) using the StepOnePlus (Applied Biosystems). We 

normalized the mRNA expression of the target gene to 

18s and normalized miRNA to U6. We used the following 

primers: 18s-forward, GTAACCCGTTGAACCCCATT; 

18s-reverse, CCATCCAATCGGTAGTAGCG; Crh-

forward, TCTCACCTTCCACCTTCTGC; Crh-

reverse, AAGCGCAACATTTCATTTCC; Creb-forward, 

TGCCAACTCCAATTTACCAA and Creb-reverse, 

ACCCCATCGGTACCATTGTT. We purchased the primer 

set for U6 and miR-212 from Genepharma.

Western blot

We separated 30 μg denatured proteins by electrophoresis 

in SDS-page gel and transferred the proteins to the 

polyvinylidene difluoride membrane (Catalog #BSP0161, 

PALL Life Science, Port Washington, NY, USA) using the 

Bio-Rad system. We purchased the following antibodies 

from Abcam: anti-CRH antibody (Catalog #ab184238), 

anti-CREB antibody (Catalog #ab32515), anti-CREB 

(Phospho-S133, Catalog #ab32096) and anti-β-actin 

(Catalog #D110001, Sangon Biotech, Shanghai, China). 

We normalized grayscales of target protein, measured by 

GeneSnap from SynGene software package, to β-actin.

Statistics

We represented the data as mean ± S.E.M. The statistical 

difference between the two groups was assessed by an 

independent T-test. We performed one-way analysis 

of variance, followed by a Bonferroni test as the post-

test, to analyze differences among the three or more 

groups. Differences were considered significant at the 

95% confidence level (P < 0.05): *P < 0.05, **P < 0.01, and 

***P < 0.001; #P < 0.05, ##P < 0.01, and ###P < 0.001; &P < 0.05, 
&&P < 0.01, and &&&P < 0.001; and $P < 0.05, $$P < 0.01, and 
$$$P < 0.001.

Results

Hypothalamic miR-212 expression was escalated in mice 

exposed to repeated stress

To observe changes of hypothalamic microRNAs 

expression in mice exposed to repeated stress, we used 

Affymetrix GeneChip miRNA3.0 to investigate the 

expression pattern of microRNAs in the hypothalamus 

during heat stress as described in the Materials and 

methods section. Among all the microRNAs detected, 

we identified 41 microRNAs with significant changes 

and a cluster analysis was exhibited in Fig. 1A. Through 

sequence-matching analysis of these 41 microRNAs, we 

identified 1136 target genes in three microRNA databases: 

Targetscan, miRdb and miRanda. The most relevant gene 

ontology and pathway pertaining to these genes were 

the DNA-dependent regulation of transcription and the 

PI3K-Akt signaling pathway, respectively. We did find the 

direct link between the microRNA and the HPA axis in 

which miR-212-5p could bind with Crh 3′UTR at position 

284–290 (Fig. 2E) according to Targetscan. The expression 

of miR-212 increased gradually at day 1 and day 7 

compared with day 0 in the microarray.

To elucidate changes of miR-212 expression and HPA 

axis activity, we conducted two repeated stress processes 

on mice and added two groups: day 3 and day 14. Results 

showed that miR-212 expression escalated by the amount 

of time exposed to stress, whereas Crh expression was 

enhanced in the mice that were exposed to the stimulus 

at day 1 and climaxed at around day 3. Subsequently, the 

Crh expression showed a significant decrease at day 7 and 

day 14 in both heat and restraint stress models (Fig. 1B 

and C) as well as protein level (Fig. 1E and F). In addition 

to the CRH expression in the hypothalamus, the serum 

content of ACTH and CORT exhibited identical alterations 

(Fig. 1D and G) in both models, which indicated that the 

inhibitory mechanisms of HPA axis produced effects at 

day 7 and day 14.

Because of the inverse relationship between a gradual 

increase in miR-212 and a subsequent decrease in HPA 

axis activity in mice subjected to repeated stress, and 

more meaningfully, considering potential binding site 

for miR-212 exists in Crh 3′UTR, we hypothesized that 

miR-212 may bind with Crh and could be involved in 

regulating its expression and HPA axis activity during 

repeated stress.

miR-212-regulated CRH expression in primary cells of 

mice hypothalamus and hippocampus cell HT-22

To explore whether miR-212 had a role in regulating 

the CRH expression, we first observed changes of 

Crh expression in primary hypothalamic cells after 

overexpression or inhibition of miR-212. Hypothalamic 

primary cells extracted from mice were identified by 

immunofluorescence using the neuron specific enolase 

antibody. The purity of these primary cells was greater than 

95% according to the analysis of immunofluorescence 

(Fig.  2A). As shown in Fig.  2B, overexpression of 

miR-212 by miR-212 agomir transfection decreased 
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mRNA expression of Crh, whereas inhibition of miR-212 

by miR-212 antagomir transfection increased mRNA 

expression of Crh.

We used the cell line HT-22, a kind of hippocampus 

cell that also expresses CRH, to conduct a dual-luciferase 

reporter assay to further identify the binding activity 

of miR-212 and Crh 3′UTR. At first, we proved that 

transfection with miR-212 mimics could decrease 

mRNA and the protein expression of CRH and miR-

212 inhibitors could increase mRNA and protein 

expression of CRH (Fig. 2C and D). Next, we constructed 

GP-miRGLO plasmids that contained either a wild-

type or mutated binding site in Crh 3′UTR for miR-212 

(Fig. 2E). The result of the dual-luciferase reporter assay 

showed that co-transfection with wild-type plasmids and 

miR-212 mimics could significantly reduce the relative 

luciferase activity (firefly luminescence and Renilla 

luminescence); however, when the binding site was 

mutated, the effect of the miR-212 mimics disappeared 

(Fig.  2F). Taken together, our results showed that  

miR-212 could bind directly to Crh 3′UTR and could 

regulate the CRH expression in vitro.

A counter-regulatory pathway mediated by miR-212 to 

inhibit CRH expression in vitro

It has been reported that CREB-responsive elements 

in both miR-212 and CRH promoters are required for 

pCREB-dependent transcription of miR-212 in primary 

cortical neurons and THP-1 monocytes (Remenyi  et  al. 

2010, Nahid  et  al. 2013) and CRH in response to stress 

(Seasholtz et al. 1991, Kovacs & Sawchenko 1996, Kovacs 

2013). This finding inspired our curiosity to determine the 

underlying mechanism since we observed that miR-212 

and CRH displayed different expression patterns in the 

hypothalamus after stress (Fig. 1). To explore this, we first 

observed the expression of CREB in the hypothalamus. 

Results showed that mRNA expression (Fig. 3A), protein 

expression and phosphorylation level of CREB in both 

heat stress (Fig. 3B) and restraint stress (Fig. 3C) had the 

Figure 1

Hypothalamic miR-212 expression was escalated in mice exposed to repeated stress. (A) Cluster analysis of 41 signi�cantly changed microRNAs in the 

hypothalamus of heat-exposed mice (n = 5 in groups of day 0, 1 and 7). (B) miR-212 and CRH mRNA expressions (n = 8) in a 14-day heat stress process. 

(C) CRH protein expression in a 14-day heat stress. Grayscale of CRH protein bands normalized to β-actin. (D) Serum contents (n = 8) of ACTH and CORT in a 

14-day heat stress process. (E) miR-212 and CRH mRNA expressions (n = 8) in a 14-day restraint stress process. (F) CRH protein expression in a 14-day 

restraint stress process. (G) Serum contents (n = 8) of ACTH and CORT in a 14-day restraint stress process. Data were presented as mean ± S.E.M. *P < 0.05, 

**P < 0.01, and ***P < 0.001 (vs group of day 0); #P < 0.05, ##P < 0.01, and ###P < 0.001 (vs group of day 1); &P < 0.05, &&P < 0.01, and &&&P < 0.001 (vs group of 

day 3); and $P < 0.05, $$P < 0.01, and $$$P < 0.001 (vs group of day 7). A full color version of this �gure is available at http://dx.doi.org/10.1530/JME-17-0124.
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same trend as miR-212. The CRH expression, however, 

increased at first and subsequently decreased under 

the condition that CREB persistently increased during 

repeated stress process.

To observe the role of miR-212 in CREB-dependent 

CRH expression, we used HT-22 cells for transfection 

and set 5 groups: blank control (C), negative control of 

CREB plasmids (NC), CREB overexpression plasmids 

(CR), co-transfection of CREB plasmids and miR-212 

mimics (CRM), and co-transfection of CREB plasmids 

and miR-212 inhibitors (CRI). Transfection with CREB 

plasmids resulted in an increase in CREB, miR-212 and 

CRH (Fig.  3D and E; the group of CR), which meant 

that CREB was a transcriptional activator of miR-212 

and CRH gene expressions, which is in accordance with 

other research works (Remenyi et al. 2010, Kovacs 2013, 

Nahid  et  al.  2013). Co-transfection of CREB plasmids 

and miR-212 mimics reduced the increase in the CRH 

expression, whereas miR-212 inhibitors amplified the role 

of CREB overexpression on the CRH expression compared 

with the group that had only CREB overexpression 

(Fig.  3D and E; the group of CRM and CRI). Thus, we 

thought that miR-212 acted in a counter-regulatory way 

to prevent the overexpression of CRH when CREB was 

activated during stress.

miR-212-regulated CRH expression and further affected 

HPA axis activity in vivo

To observe the effects of miR-212 on CRH expression and 

HPA axis activity in vivo, we overexpressed or inhibited 

miR-212 in the hypothalamus through injection of 

miR-212 agomir or antagomir. At first, we observed that 

injection of miR-212 agomir could significantly increase 

Figure 2

miR-212-regulated CRH expression via direct binding in hypothalamic primary cells and HT-22 cells. (A) Identi�cation of primary hypothalamic cells by 

immuno�uorescence using NSE antibody. The purity of these primary cells was more than 95%. (B) Transfecting hypothalamic primary cells with miR-212 

agomir led to a decrease in the CRH mRNA expression, whereas miR-212 antagomir led to an increase in the CRH mRNA expression. Ago NC, negative 

control of miR-212 agomir; Ago, miR-212 agomir; Anta NC, negative control of miR-212 antagomir; Anta, miR-212 antagomir. (C) Transfecting miR-212 

mimics to HT-22 cells led to a decrease in CRH mRNA, whereas miR-212 inhibitors led to an increase in CRH mRNA. C, blank control; MN, miR-212 mimics 

negative control; M, miR-212 mimics; IN, miR-212 inhibitors negative control; I, miR-212 inhibitors. (D) Effects of miR-212 mimics and inhibitors 

transfection on the protein expression of CRH were consistent with the mRNA expression. (E) Binding sequences of wild-type and mutant CRH 3′UTR 

with miR-212-5p in GP-miRGLO plasmids. (F) Relative luciferase activity of co-transfection of (1) empty plasmids (empty) and miR-212 mimics or negative 

control; (2) wild-type CRH 3′UTR plasmids (WT) and miR-212 mimics or negative control and (3) mutant CRH 3′UTR plasmids (MUT) and miR-212 mimics 

or negative control. miR-212 mimics led to a decrease in relative luciferase activity of wild-type plasmid, but this effect disappeared as a result of a 

mutated binding sequence. Data were presented as mean ± S.E.M. *P < 0.05, **P < 0.01, and ***P < 0.001. A full color version of this �gure is available at 

http://dx.doi.org/10.1530/JME-17-0124.
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the miR-212 expression in hypothalamus. Meanwhile, 

CRH expression and HPA axis activity decreased after 

one-time heat stimulus (data not shown). After that, 

we conducted a 14-day heat stress process on mice by 

injecting a negative control, miR-212 agomir or miR-212 

antagomir into the hypothalamus.

During repeated stress, mice injected with miR-212 

agomir or antagomir showed a significant increase or 

decrease in miR-212 in the hypothalamus (Fig.  4A). 

Consistent with the results of experiments in vitro, 

overexpression of miR-212 decreased the CRH expression 

and inhibition of miR-212 increased the CRH expression 

at both mRNA and protein levels (Fig. 4B, D and E). CREB 

and pCREB levels increased gradually during repeated 

stress, independent of the injection (Fig. 4C, D, F and G). 

A more meaningful result was that injection of miR-212 

agomir led to a decreased serum content of ACTH and 

CORT compared with injection of the negative control 

(Fig.  4H), whereas injection of miR-212 antagomir 

augmented the stress response with an increased serum 

content of ACTH and CORT (Fig.  4I). Taken together, 

these results demonstrate that miR-212 could modulate 

HPA axis activity by regulating the CRH expression in vivo.

Discussion

Much is known about CRH regulation to date, and 

many aspects of the inhibitory mechanisms of CRH 

have been elucidated, including the following two 

main aspects: (1) negative feedback, which includes GC 

negative feedback (Di  et  al. 2003, Evanson  et  al. 2010), 

ACTH negative feedback (Silverman & Sternberg 2012) 

and negative feedback of other hormone or cytokine 

(Uchoa et al. 2014); and (2) counter-regulation, including 

an inhibitory neuron projecting to the PVN (Evanson & 

Herman 2015), an inhibitory factor inducible cyclic AMP 

Figure 3

CREB-mediated CRH expression was regulated by miR-212. (A) Effects of heat–restraint stress on the expression of CREB mRNA (n = 8) in a 14-day 

repeated stress process. (B) Protein expression of CREB and p-CREB in the heat stress process (n = 3). (C) Protein expression of CREB and p-CREB in the 

restraint stress process (n = 3). Data were presented as mean ± S.E.M. *P < 0.05, **P < 0.01, and ***P < 0.001 (vs group of day 0); #P < 0.05, ##P < 0.01, and 
###P < 0.001 (vs group of day 1); &P < 0.05, &&P < 0.01, and &&&P < 0.001 (vs group of day 3); and $P < 0.05, $$P < 0.01, and $$$P < 0.001 (vs group of day 7). (D) In 

HT-22 cells, overexpression of CREB (CR) led to an increase in miR-212 and CRH mRNA compared with group of control (C) or negative control (NC), 

co-transfection of CREB plasmids and miR-212 mimics (CRM) inhibited the increase in CRH mRNA, whereas co-transfection of CREB plasmids and miR-212 

inhibitors (CRI) ampli�ed the increase in CRH mRNA compared with the group of CR. (E) Changes of CRH and CREB protein resulted from co-transfection 

of CREB plasmids and miR-212 mimics or miR-212 inhibitors in HT-22 cells. Data were presented as mean ± S.E.M. *P < 0.05, **P < 0.01, and ***P < 0.001 

(vs group of C); #P < 0.05, ##P < 0.01, and ###P < 0.001 (vs group of NC); &P < 0.05, &&P < 0.01, and &&&P < 0.001 (vs group of CR); $P < 0.05, $$P < 0.01, and 
$$$P < 0.001 (vs group of CRM). A full color version of this �gure is available at http://dx.doi.org/10.1530/JME-17-0124.
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early repressor (Shepard et al. 2005), and the signaling of 

endocannabinoid (Hill & Tasker 2012). The complicated 

and precise networks of CRH regulators, however, are still 

not elucidated. Thus, it is meaningful to determine these 

networks to fully understand the regulation of HPA axis 

activity (Kovacs 2013, Gold 2015).

As verified by other research works, the HPA axis is 

activated when subjected to stressors and partly alleviated 

in long-term stress (Dallman 1993, Nyhuis et al. 2010a,b, 

Zimmerman  et  al. 2015). This study also shows that the 

HPA axis activity is partially returned to normal level when 

subjected to stressors for 14  days. By using a microRNA 

microarray analysis in the hypothalamus of mice subjected 

to heat stress, we found that miR-212, which is necessary 

for the proper development, maturation and function of 

neurons (Wanet et al. 2012), is capable of regulating CRH 

expression and HPA axis activity both in vitro and in vivo. 

As a concern, it was reported that dexamethasone treatment 

has no effect on miR-212 expression in rat adrenal 

glands (Hu  et al. 2013) and level of pCREB and CREB in 

hypothalamic 4B cells (Evans  et al. 2013). In our studies, 

the trend of corticosterone, which peaks at day 3, and 

that of miR-212, which rises continuously in 14 days, also 

suggested that the expression of miR212 is independent of 

the stress-induced adrenal steroid. In addition, our results 

show that treatment of CREB-overexpressed cells with miR-

212 inhibitors resulted in higher levels of CRH expression 

compared with the CREB-overexpressed group, whereas the 

lower level of CRH expression was exhibited in the group 

treated with miR-212 mimics. These results suggest that 

miR-212 acts as a counter-regulatory factor in regulating 

CRH expression and HPA axis activity. Another explanation 

for the alleviation of HPA axis activity is habituation, which 

is a whole body response to rebuilding homeostasis during 

unlethal repeated stress. Our results showed that miR-212, 

which escalated during repeated stress, may be a part of 

Figure 4

Effects of overexpression or inhibition of miR-212 on CRH expression and HPA activity in mice exposed to the heat stress process. (A) miR-212 expression 

in mice hypothalamus. Injection of miR-212 agomir signi�cantly increased the miR-212 expression in the hypothalamus, whereas injection of miR-212 

antagomir had an inhibitory effect. (B) Effects of miR-212 agomir and antagomir on the mRNA expression of CRH during the 14-day heat stress process. 

In mice injected with negative control, level of CRH mRNA increased at beginning and returned to baseline at the end. Compared to group of the 

negative control, the miR-212 agomir injection group showed a signi�cant decrease in the CRH mRNA expression. At the same time, the miR-212 

antagomir injection group showed an increase in the CRH mRNA expression. (D and E) The protein expression of CRH was in accord with the mRNA 

expression. (C) The CREB mRNA expression was escalated during the stress process independent of the miR-212 injection, as well as the protein 

expression of CREB and p-CREB (D, F and G). (H and I) Effects of miR-212 agomir and antagomir injection on serum contents of ACTH and CORT. Like CRH 

expression in the hypothalamus, serum contents of ACTH and CORT were also regulated by miR-212. The results show that miR-212 had a role in 

regulating HPA axis activity by modulating hypothalamic CRH expression. Data were presented as mean ± S.E.M. *P < 0.05, **P < 0.01, and ***P < 0.001  

(vs group of NC at each time-point respectively). A full color version of this �gure is available at http://dx.doi.org/10.1530/JME-17-0124.
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habituation processes since miR-212 could regulate HPA 

axis activity and level of serum corticosterone, which is 

important in adaptation and recovery from stress (Sapolsky 

et  al. 2000, de Kloet et  al. 2005, McEwen 2007). More 

important, because of the simultaneously synthesis of CRH 

and miR-212, we  thought that regulation of miR-212 on 

CRH expression and HPA axis activity was prompt and 

efficient. Therefore, we proposed that once exposed to 

stress, a switch is turned on to activate the HPA axis but 

at the same time, a fuse (which miR-212 seems to be) is 

triggered to prevent overactivation of HPA axis (Fig.  5). 

Future studies will continue to explore the relationships 

among miR-212, HPA axis and habituation.

Currently, increasing numbers of people are 

threatened by excess HPA axis activity, especially those 

suffering from chronic physiological or psychological 

stress. Epidemiological investigations show that high 

levels of endogenous GCs, or treatment with exogenous 

GCs, are associated with adverse metabolic profile, 

increased cardiovascular disease and altered mood and 

cognitive decline (Reynolds 2013). Additionally, a major 

depressive disorder is characterized by an increased 

release of GCs and hyperactivity of the HPA axis 

(Keller  et al. 2017). Other meaningful reports concluded 

that a decrease in miR-212 was linked with postpartum 

psychosis (Weigelt  et  al. 2013), mesial temporal lobe 

epilepsy (Haenisch  et  al. 2015) and Alzheimer’s disease 

(Pichler et al. 2017). More significantly, dysregulation of 

miR-212 was associated with schizophrenia and bipolar 

disorders (Kim  et  al. 2010). Because our study indicates 

that inhibition of miR-212 leads to an increase in CRH 

expression and overactivity of the HPA axis both in vitro 

and in vivo, loss of miR-212 may be one of the reasons 

resulting in overactivity of the HPA axis and therefore 

may induce these mental disorders. The relationships 

among loss of miR-212, overactivity of the HPA axis and 

relative mental diseases deserve further investigation.

Another concern is that interventions for people 

who suffer from an overreactive HPA axis are lacking 

(Reiche  et  al. 2004, Wingenfeld & Wolf 2011, Doom & 

Gunnar 2013, Walker  et  al. 2016, Roelofs & Pasman 

2017). As a kind of gene-based therapy, many researchers 

are intrigued by microRNA therapy, and currently, these 

therapies are undergoing testing in clinical trials (Kasinski 

& Slack 2011, Yin  et  al. 2014, Fernandez-Pineiro  et  al. 

2017, Ji  et  al. 2017). Therefore, microRNA intervention 

may be a promising method to help people who suffer 

from an overreactive HPA axis as our study shows that 

overexpression of miR-212 could significantly reduce 

CRH expression and HPA axis activity in vitro and in vivo.

In conclusion, our study illustrates that microRNA 

participates directly in the regulation of the HPA axis 

Figure 5

A counter-regulatory pathway is mediated by 

miR-212 to prevent overactivity of the HPA axis by 

regulating the CRH expression. A full color 

version of this �gure is available at http://dx.doi.

org/10.1530/JME-17-0124.
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and suggests that miR-212 may be the link between 

overactivity of the HPA axis and relative diseases. 

Preventive or therapeutic measures based on miR-212 will 

be helpful for those people who suffer from the adverse 

effects of an overactive HPA axis.
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