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Abstract

Schistosomes are parasitic helminths that cause schistosomiasis, a disease affecting circa

200 million people, primarily in underprivileged regions of the world. Schistosoma mansoni

is the most experimentally tractable schistosome species due to its ease of propagation in

the laboratory and the high quality of its genome assembly and annotation. Although there is

growing interest in microRNAs (miRNAs) in trematodes, little is known about the role these

molecules play in the context of developmental processes. We use the completely unaware

“miRNA-blind” bioinformatics tool Sylamer to analyse the 3’-UTRs of transcripts differentially

expressed between the juvenile and adult stages. We show that the miR-277/4989 family

target sequence is the only one significantly enriched in the transition from juvenile to adult

worms. Further, we describe a novel miRNA, sma-miR-4989 showing that its proximal geno-

mic location to sma-miR-277 suggests that they form a miRNA cluster, and we propose hair-

pin folds for both miRNAs compatible with the miRNA pathway. In addition, we found that

expression of sma-miR-277/4989 miRNAs are up-regulated in adults while their predicted

targets are characterised by significant down-regulation in paired adult worms but remain

largely undisturbed in immature “virgin” females. Finally, we show that sma-miR-4989 is

expressed in tegumental cells located proximal to the oesophagus gland and also distrib-

uted throughout the male worms’ body. Our results indicate that sma-miR-277/4989 might

play a dominant role in post-transcriptional regulation during development of juvenile worms

and suggest an important role in the sexual development of female schistosomes.

Author summary

Schistosomes are parasitic helminths that infect a range of different animals causing great

morbidity and some level of mortality among endemic populations in sub-Saharan Africa,

southeast Asia and regions of south America. RNA has long been known as a translator of

PLOSNeglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005559 May 23, 2017 1 / 24

a1111111111
a1111111111
a1111111111
a1111111111
a1111111111

OPENACCESS

Citation: Protasio AV, van Dongen S, Collins J,

Quintais L, Ribeiro DM, Sessler F, et al. (2017)

MiR-277/4989 regulate transcriptional landscape

during juvenile to adult transition in the parasitic

helminth Schistosoma mansoni. PLoS Negl Trop

Dis 11(5): e0005559. https://doi.org/10.1371/

journal.pntd.0005559

Editor: Paul J. Brindley, GeorgeWashington

University School of Medicine and Health Sciences,

UNITED STATES

Received: April 20, 2016

Accepted: April 5, 2017

Published:May 23, 2017

Copyright: © 2017 Protasio et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Schistosomula poly-

A enriched and small RNAseq data: European

Nucleotide Archive study accession number

PRJEB3190. Adult poly-A enriched RNAseq data:

ArrayExpress accession number E-ERAD-478.

Funding: The work was funded by the Wellcome

Trust (grant WT098051) to MB and NIH

(RO1AI121037_ to JJC. The funders had no role in

https://doi.org/10.1371/journal.pntd.0005559
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0005559&domain=pdf&date_stamp=2017-06-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0005559&domain=pdf&date_stamp=2017-06-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0005559&domain=pdf&date_stamp=2017-06-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0005559&domain=pdf&date_stamp=2017-06-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0005559&domain=pdf&date_stamp=2017-06-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0005559&domain=pdf&date_stamp=2017-06-05
https://doi.org/10.1371/journal.pntd.0005559
https://doi.org/10.1371/journal.pntd.0005559
http://creativecommons.org/licenses/by/4.0/


the message between DNA and protein. However, it is nowadays well accepted that RNA

roles go beyond that of a translator. Such RNAmolecules do not translate DNA into pro-

tein and are therefore referred to as non-coding RNAs. Here we study a particular type of

RNAmolecules called microRNA (miRNA). These small RNAmolecules are ~ 19–22

nucleotides (nt) in length and their most characterised function so far is that of regulating

the bioavailability of messenger RNA for the production of protein. We call this effect

post-transcriptional regulation. Previously, it has been shown that different stages of the

Schistosoma parasites express different types of miRNAs. Our work focuses in utilising dif-

ferences in gene expression as the readout of potential post-transcriptional regulation.

Using bioinformatics tools we found that members of one miRNA family called miR-277/

4989 might be responsible for the change in gene expression observed between juvenile

and adult worms. Furthermore, the effect of this miRNA seems to be more prominent in

the sexually matured females rather than in the immature “virgin” females.

Introduction

Schistosomes are parasitic flatworms and causative agents of schistosomiasis (intestinal or uri-

nary depending on the species), and are responsible for more than 200 million cases of human

disease across the globe. Three schistosome species infect humans: Schistosoma haematobium,

S. japonicum and S.mansoni. Although S. haematobium has the greatest clinical impact [1],

S.mansoni is more amenable to maintenance in laboratory conditions [2,3], and therefore is

the most studied. In addition, recent advances in functional genomics have been successfully

applied to S.mansoni [4–6] and S. japonicum [7,8], making functional characterisation of

genomic elements more amenable in these parasites.

Unusual among flatworms, schistosomes are dioecious (distinct male and female individu-

als), and adult worms dwell in copula in the blood circulatory system. Females only achieve

sexual maturity after pairing with a male worm, lodging in the male’s gynecophoral canal, and

laying hundreds of eggs each day. In the absence of a male worm, the female remains sexually

immature and stunted in size. The retention of eggs in host tissues drives the pathogenesis of

schistosomiasis, mainly characterised by chronic inflammation, fibrosis and formation of

granulomas in the liver in the case of intestinal schistosomiais. About half of the eggs traverse

the intestinal wall and are excreted with the faeces into the environment. When in contact

with fresh water, mature schistosome eggs hatch releasing free-living ciliated larvae (miracidia)

that swim seeking snails, the intermediate host, to infect. Within the snail the parasite under-

goes two rounds of asexual reproduction, finally releasing the second free-living human-infec-

tive larval stage, called cercariae, into the water environment [9]. The cercariae infect the

definitive host by penetrating through the skin [10,11] and once inside, transform into obligate

parasitic schistosomula via a rapid and irreversible series of morphological changes. The para-

sites develop and migrate through the circulatory system and after five to six weeks, adult

schistosomes reach the portal circulation where males and females pair (reviewed in [12] and

[13]). These extreme environmental changes are associated with rapid and specific physiologi-

cal transformation–such as the parasite surface membranes and carbohydrate coating chang-

ing from cercariae to schistosomula [14,15]–accompanied by transcriptional changes [16,17].

Establishment and development of male and female schistosome pairs has been well character-

ised at both morphological [13] and transcriptional levels [18,19]. However, the underlying

molecular cues that trigger such changes are still unknown.

The non-coding RNA component of the Schistosoma genomes (S.mansoni and S. japoni-

cum) was first described in silico [20] followed by reports featuring a combination of
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experimental and in silico approaches [21–29]. Furthermore, the microRNA (miRNA) path-

way in S.mansoni has been predicted using computational methods [30] and more recently,

progress in the experimental characterisation of individual components of the pathway [31] as

well as the role of individual miRNAs have been addressed [32]. With the increasing availabil-

ity of high-throughput sequencing technologies (mainly Illumina platforms), the number of

publications describing the miRNA, small RNA and non-coding RNA complement of Schisto-

soma spp has risen dramatically, in particular for S. japonicum. However, the S. japonicum

genome is highly fragmented (25,048 scaffolds in the WBPS9 release available fromWormbase

ParaSite—compared to 885 scaffolds for S.mansoni) making the genome localization of miR-

NAs and the analysis of their genomic context difficult. What is more, the lack of accurately

defined untranslated regions (UTR) makes assessing miRNA-target sites unreliable.

At only ~19–22 nucleotides, miRNAs play a central role in post-transcriptional gene re-

gulation. MiRNAs are encoded in the nuclear genome of most eukaryotic organisms and like

protein-coding genes are transcribed by RNA polymerase II, poly-adenylated at their 3’ ends

and capped at their 5’ ends. During transcription, a 1kb immature miRNA transcript, called

pri-miRNA or primary precursor miRNA, acquires a characteristic stem-loop secondary struc-

ture. While still in the nucleus, this structure serves as a target for two proteins, Drosha and

DGCR8 (microprocessor complex), which cleave the pri-mRNA at the base of the stem-loop

structure producing a pre-miRNA. The pre-miRNA–now 60–80 nt—binds to auxiliary pro-

teins that aid export of the microprocessor complex from the nucleus to the cytoplasm. Once

outside the nucleus, Dicer and Argonaut further process the pre-miRNA to form an RNA-

induced silencing complex (RISC), which carries the mature miRNA, while the passenger or

antisense miRNA (often designated as miRNA�) is degraded. RISC is responsible for directing

the miRNA to its target sequence, often (but not exclusively) located in the 3’-UTR of a mRNA,

which results in the repression of protein translation or the degradation of the target mRNA

molecule (reviewed in [33] and [34]).

MiRNAs have a pivotal role in organism development. For example, in the larval moults of

Caenorhabditis elegans, the miRNA lin-4 progressively accumulates in first-stage larvae, down

regulating LIN-14 protein and enabling second-stage larvae to develop. Subsequent larval

development from L3 to L4 is controlled in part by miRNAs of the let-7 family [35].

The development, pairing and consequently sexual maturation of schistosomes are of par-

ticular interest because they represent the cause of host pathology and transmission of this dev-

astating parasitic disease. To identify whether miRNAs exert an effect on the transcriptome we

adopted a non-conventional approach, instead of simply profiling the miRNAs as is common-

place [21,23,24,28,29], we use Sylamer [36], an algorithm that combines transcript expression

changes with the presence of potential miRNA recognition sites in well-annotated 3’-UTRs.

Our analyses suggest that the sma-miR-277/4989 family of miRNAs dominates the transcrip-

tional landscape changes during the transition from juvenile to adult worm. We show that

most of the targets for these miRNAs encode transcription factors, molecules involved in tran-

scriptional activation/repression as well as signalling and proteins associated with adult stem-

cell maintenance. Furthermore, a fraction of the targets are differentially expressed between

mature, sexually active females and immature “virgin” females suggesting a role in sexual mat-

uration or sexual reproduction.

Materials andmethods

1.1. Ethics statement

All animal experiments were conducted under Home Office Project Licence No. 80/2596. All

protocols were presented and approved by the Animal Welfare and Ethical Review Body
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(AWERB) of the Wellcome Trust Sanger Institute. The AWERB is constituted as required by

the UK Animals (Scientific Procedures) Act 1986 Amendment Regulations 2012.

1.2. Parasite material

Infected Biomphalaria glabrata snails were purchased from BioGlab Ltd. Nottingham, UK and

cercariae were harvested by exposure of infected snails to light for two hours in aquarium-con-

ditioned water. S.mansoni intra-mammalian stages were collected from Balb/c mice previ-

ously infected with 300-pooled cercariae. For single sex infections (to retrieve unpaired male

and female worms), mono-miracidia snail infections were performed and each snail tested for

the production of male or female cercariae, by sex-specific PCR [37]. Balb/c mice were infected

separately with either male or female cercariae. Juvenile and adult worms were recovered via

perfusion of mouse circulatory system [2] at the indicated times post-infection (see Results).

Male and female worms were separated, washed in DMEM, concentrated and stored in Trizol

reagent (Invitrogen, UK) at -80˚C.

1.3. RNA extraction, RNAseq library preparation and sequencing

RNA was isolated from samples stored in Trizol reagent (Invitrogen, UK) following manufac-

turer instructions. RNAseq libraries were prepared from 1ug of total RNA using TruSeq RNA

Library Preparation Kit (Illumina, UK). All samples were processed with three biological repli-

cates–worms from one mouse representing one biological replicate. Libraries were multi-

plexed and sequenced on Illumina HiSeq 2500 with 100 bp paired-end reads. Sequencing data

was submitted to ArrayExpress under accession number E-ERAD-478.

1.4. Processing of poly-A enriched RNAseq sequencing reads and
differential expression analysis of paired / unpairedmale and female worms

RNAseq data from juvenile and adult, male and female schistosome worms were mapped to

the reference S.mansoni assembly version 5.2 of the genome assembly [38] using Tophat2

(default parameters except: -g 1—library-type fr-firststrand -a 6 -i 10 -I 40000—microexon-

search—min-segment-intron 10—max-segment-intron 40000). The resulting binary align-

ment mapping (BAM) files were sorted using Samtools [39] and reads per transcript calculated

using HTseq-count [40] (parameters: -f bam -a 30 -t CDS -s reverse -m union). The GTF file

used to calculate reads per transcript can be found in Supplementary S1 Dataset; only features

starting with “Smp” (corresponding to protein coding genes) were taken into consideration.

After mapping and counting, differential expression analysis was performed using DESeq2

[41] in the R environment [42]. Pairwise differential expression values for male and females

worms (from mixed infections) between juveniles (21 days post infection d.p.i.) and adult

worms (38 d.p.i.) were calculated and used as input for Sylamer (see below). Time-course

expression data for male and female, paired and unpaired worms was generated using likeli-

hood ratio test incorporated in DESeq2 package.

1.5. UTR prediction and experimental validation

RNAseq data generated from polyadenylated-enriched samples was used to improve the anno-

tation of 3’-UTRs in the S.mansoni genome. BAM files generated with Tophat2 were merged

using Samtools [39] and used as input for Cufflinks [43,44] (using default parameters except:

-p 16—library-type fr-firststrand). To generate UTR sequences, RNAseq data and existing

annotation were combined using a script developed in-house (https://github.com/sanger-

pathogens/Assembly_tools/tree/master/assembly_tools/annotate_utrs_using_cufflinks).
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Briefly, for each existing gene, the script takes an intersecting annotation from the cufflinks

GTK output file and extends the existing gene model using the provided annotation, labelling

the new part of the annotation as a UTR. If the potential UTR happens to overlap a second

gene, then it is not used. As a result, 3,321 3’-UTRs from a total of 7,373 3’-UTRs were updated

using this method. Likewise, 4,081 5’-UTRs from a total of 7,271 5’-UTRs were updated. The

total number of protein-coding genes is 10,841. Note that this version of the annotation is a

“snapshot” and may not coincide with the current version in http://www.genedb.org/

Homepage/Smansoni or http://parasite.wormbase.org/Schistosoma_mansoni_prjea36577/

Info/Index/.

A selection of twelve 3’-UTRs with lengths� 600 bp, and a range of RPKM expression val-

ues between 9–3,600 in adult worms, were chosen for validation by PCR (Supplementary S1

Fig). Primers were designed using primer3 batch service [45] using default parameters except

amplicon length, which was set to 500 bp. PCR reactions were carried out using Qiagen Fast

Cycling PCRMix (Qiagen, UK) using standard conditions with annealing temperature 55C

and mix sex adult cDNA as template. The list of primers is shown in Supplementary S1 Table.

1.6. Sylamer analysis

Sylamer [36] is a tool to identify miRNA regulation effects from a list of differentially expressed

genes, independently from miRNA measurements. It can either be used to suggest candidate

miRNAs for follow-up analysis in the absence of miRNAmeasurements, or to confirm that

putative miRNA target genes are shifted concordantly with miRNA expression changes when

miRNAmeasurements are present. The latter is the case here. It has previously been used,

among many more applications, to identify the role of miRNAs in germcell tumors [46], the

effect of a miRNA seed mutation on gene expression [47], and identification of miRNA targets

in murine Dgcr8-deficient embryonic stem cell lines [48]. Sylamer’smodus operandi is briefly

described here, for full details refer to [36]. Several nucleotide words in the eight-nucleotide

stretch (8-mer) at the 5’ end of a miRNA are core determinants of miRNA binding [34,49].

These are the 8-mer itself, the two 7-mers, the core 6-mer, and the leading 6-mer. The nucleo-

tide sequences that are complementary to these miRNA seed words are called Seed Comple-

mentary Regions (SCR). Sylamer considers a list of differentially expressed genes and tests the

hypothesis that SCRs in 3’-UTRs are shifted towards one end of the gene list against the null

hypothesis that these sites are homogeneously distributed throughout the gene list. It does so

whilst taking into account UTR length and correcting for composition biases, using a hyper-

geometric model of nucleotide word occurrences in UTRs. Analogously to Gene Set Enrich-

ment Analysis [50], Sylamer employs a moving rank cut-off and can hence detect shifts of

SCRs that are dispersed to a greater or lesser extent.

Sylamer plots construction. All information produced by a Sylamer run can be summa-

rised in a single plot, as a collection of lines where each line represents a single SCR. In a single

Sylamer run, the word length is kept constant, so different plots are obtained for SCRs of

length 6, 7 and 8, respectively. A single line in a Sylamer plot describes a single SCR as follows:

at different cut-offs in the list of UTRs, a hypergeometric test is performed considering the

summed total length of the UTRs up to that cut-off (representing the number of all SCRs), the

summed total length of all UTRs, the number of occurrences of the particular SCR up to the

cut-off, and the total number of occurrences of the particular SCR in all UTRs. If the SCR is

enriched in the subset of UTRs, the -log10(p-value) is drawn (hence at the positive y-axis). If is

instead depleted, the log10(p-value) is drawn (at the negative y-axis). Multiple cut-offs are

tested and a large number of SCRs are tested. On the one hand, this requires multiple testing

correction, on the other hand this allows a single SCR result to be evaluated against the
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background of plotted lines for all SCRs. A Bonferroni-adjusted significance threshold of 0.05

(as drawn in Fig 1A and 1B) typically delineates and encloses the background distribution

with significant SCRs jutting out.

Additional significant SCRs above the Bonferroni-adjust threshold may occur in a Sylamer

plot. This can be due to several causes. Firstly, multiple regulatory elements besides SCR are

present in UTRs, such as poly-A and ARE (AU-rich element) signals. MiRNA SCRs may share

such motifs. Secondly, repeated sequence fragments in UTRs of related genes may cause sharp

Fig 1. MiRNA target prediction based on bothmiRNA-unaware andmiRNA-guided approaches. (A) Sylamer enrichment
landscape plots for 7mers in male (top) and female (bottom) expression data. The x-axis represents a list of transcripts, ranked from
more expressed in juveniles to more expressed in adults. The y-axis represents the significance values acquired for each 7mer at each
position in the ranked list of transcripts. Coloured boxes represent the fraction of transcripts significantly (adjusted p-value < 0.01)
differentially expressed between juvenile and adult worm as found using DESeq2. These transcripts were subsequently filtered based
on the presence of the 7mers TGCATTT or GCATTTA as found by Sylamer. The resulting sets are referred to as Male and Female
Sylamer genes. (B) Venn Diagram showing the intersection of Male and Female Sylamer genes with schistosome-conservedmiRNA
targets as found using TargetScan with conservation +miRanda. The overlap represents transcripts with highly conserved sma-miR-
277 target sites across the three Schistosome spp (S.mansoni, S. haematobium and S. japonicum) that are also significantly down
regulated during worm development.

https://doi.org/10.1371/journal.pntd.0005559.g001
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spikes in Sylamer plots, and stretches of low complexity sequence can cause significant results

for SCRs matching such a sequence. This is overcome (as done here) by pre-processing the

UTRs to remove low complexity stretches with DUST [51] and repeated sequence fragments

with the RSAT [52] interface to the Vmatch program (http://www.vmatch.de). Finally, a signif-

icant SCR signal can cause words that are very close to it to piggyback the signal and achieve

elevated significance. This is then evident from the words involved.

Sylamer result intergration over different word lengths. Sylamer was run with different

word lengths because miRNA determinants of binding can be found among words of different

length [34,36]. It is possible to run Sylamer with different word lengths, as we have done here.

This provides greater insight but also requires interpretation of multiple resources. We addi-

tionally apply the procedure described in [46] to integrate Sylamer results for different word

lengths were integrated into a single score for a given miRNA seed region, using a previously

described procedure [46]. By integrating results, sensitivity was increased. The procedure

assigned miRNAs to groups, each group defined by a common SCR of length eight. A single

score was assigned to each group by considering the Sylamer result (line) for each of the con-

stituent 6-mer, 7-mer and the 8-mer itself, obtained from different Sylamer runs. These lines

(log10 transformed p-values) represent a normalised view (via the hypergeometric test) of

word enrichment. The constituent lines were added together, after which the maximal ampli-

tude of the summed result was taken as a single score. As demonstrated in [46] the resulting

scores narrowly follow an extreme value distribution. The extreme value distribution parame-

ters were estimated with the R /evd/ package [53] using the 95% quantile of the data and then

obtain empirical p-values using these parameters. In the absence of a null hypothesis these

empirical p-values can be interpreted/translated as the percentile range into which a score falls

under the modeled distribution, i.e. a p-value of 0.0001 would correspond to the top 0.01

percentile.

1.7. miRNA target prediction (miRanda and TargetScan) and gene
ontology enrichment

Targets were predicted in the 3’-UTRs of 4,851 genes for previously reported S.mansoni and S.

japonicum miRNAs and the novel miRNA from the present study. First, miRanda (v 3.3a, ref.

[54]) was run with default parameters against the predicted set of S.mansoni 3’-UTRs. Second,

TargetScan (v 6.0, ref. [55]) was used to search the same 3’-UTRs dataset; the script targets-

can_60.pl was run with default parameters, using the seed sequences of each Schistosoma spp.

miRNA (from miRBase, release 21, ref. [56]) and alignments of orthologous 3’-UTRs (see

below) between S.mansoni, S. japonicum and S. haematobium. Using custom scripts, only S.

mansoni TargetScan target site predictions conserved among the three Schistosoma species

were retained, i.e. requiring the target prediction to be present on the same exact aligned loca-

tion on the all orthologous 3’-UTRs. Further to this, only a high-confidence set of predictions

found by both TargetScan and miRanda were retained. Except for S.mansoni, current 3’-UTR

predictions for the other two Schistosoma species used were not reliable; therefore new 3’-

UTR predictions for S. haematobium and S. japonicum were created based on orthology with

S.mansoni. For each S.mansoni gene the mRNA isoform was selected with the longest spliced

sequence, and for genes with annotated 3’-UTRs, orthologous genes in S. japonicum and S.

haematobium were identified using a custom-made EnsemblCompara database [57]. For each

S. japonicum or S. haematobium orthologue, a predicted 3’-UTR was created with the same

length of the 3’-UTR of the respective S.mansoni orthologous gene (up to maximum of 5 kb or

to the end of underlying sequence scaffold). These predicted sets of 3’-UTRs were termed

“orthologous 3’-UTRs”, even though orthology is based on the underlying gene product to
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which they correspond. Alignments of orthologous 3’-UTR sets for the TargetScan predictions

were produced with MUSCLE v3.8.31 [58], with default parameters. Assemblies and gene

sets of the three species used for accessing conservation of miRNA target predictions can

be downloaded at WormBase ParaSite release 4 (http://parasite.wormbase.org/ftp.html):

S. haematobium ‘S.haematobium.v3.0’ from the University of Melbourne, and S. japonicum

‘ASM15177v1’ from the Chinese National Human Genome Center. The S.mansoni assembly

used here is the most updated version reported previously [38].

Gene Ontology enrichment analysis was performed using the TopGO package [59].

1.8. Processing of small RNA-seq libraries and genomic localisation of
sma-miR-277/4989 cluster

We used previously generated small RNA-seq libraries from schistosomula stages of S mansoni

to assist our description of the sma-miR-277 locus (European Nucleotide Archive study

PRJEB3190). Kraken [60] was used to remove adapter contamination from libraries and col-

lapse identical reads into single sequences while maintaining annotated depth information

(Supplementary S2 Table). Reads were then mapped against each other using BLASTN [61,62]

to determine all pairwise similarities between reads allowing up to two mismatches (E-value<

= 0.1). A pairwise similarity matrix was used to cluster reads using MCL [60,63]. Multiple

sequence alignment of each cluster was performed using Clustal Omega [64]. From each clus-

ter, a ‘sentinel’ read was chosen with the highest depth and mapped to the reference genome

using Bowtie [65], allowing up to two mismatches.

After identifying the genomic location for the candidate and in order to obtain the putative

miRNA precursor sequence, the sequences were extended in both directions. The first exten-

sion took 50nt upstream and 100nt downstream while the second extension took 100nt

upstream and 50nt downstream of the cluster. Secondary structures of these putative miRNA

precursors were then assessed using RNAfold from the Vienna package [66], and structures

discarded with minimum free energy (MFE)> -20 kcal/mol. For each cluster, the extended

sequence with the lowest associated MFE structure was retained.

1.9. RT-qPCR / miRNA expression analysis

Real-time quantitative PCRs were performed across two life cycle stages of S.mansoni repre-

senting juvenile (28 days post-infection, d.p.i.) and adult worms (49 d.p.i.) using TaqMan

Small RNA Assays (Supplementary S1 Text) purchased from Applied Biosystems (Life Tech-

nologies, UK). Reverse transcription and quantitative PCR experiments were performed

according to manufacturer’s instructions in a StepOnePlus RT-qPCR machine (Applied Bio-

systems, Life Technologies, UK). S.mansoni U6 was used as the endogenous control [20]

(gene entry sma.U6.1.1 in http://www.genedb.org/Homepage/Smansoni) and fold changes to

miRNA expression were estimated using the delta-delta-Ct method [67].

1.10. Whole mount and fluorescence in situ hybridisation of miRNAs

Forty-two to 49 d.p.i. male and female worms from mixed infections were retrieved from

infected mice, as described above, and processed using previously published protocols for in

situ hybridization [68]. Parasites were hybridized with 21–22 nt antisense LNA-DNA probes

conjugated to Digoxigenin (Exiqon, Denmark) at a final concentration between 6.5–50 nM.

Arabidopsis thaliana ath-miR-159a or scrambled sequences were used as negative control. For

FISH to detect prohormone convertase 2 (Smp_077980) or Tegumental cells, we synthesized

FITC-conjugated probes generated from in vitro transcription of cloned cDNA. To robustly

detect tegumental cells we employed a mixture of four FITC-conjugated antisense probes
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targeting the following tegument-specific mRNAs: calpain (Smp_214190), gtp -4 (Smp_

105410), annexin (Smp_077720), and npp-5 (Smp_153390) (ref: [69–73]).

Results

2.1. Target-prediction suggests sma-miR-277/4989 are prominent post-
regulatory miRNAs in developing juvenile worms

In our analysis, Sylamer [36] was used to search for enriched short sequences, corresponding

to potential miRNA target sites, from a list of genes differentially expressed between juvenile

and adult male and female worms. Sylamer finds enriched “words” (in our case, Seed Comple-

mentary Regions or SCR) in the 3’-UTRs of transcripts with similar expression profiles (i.e.

up-regulated or down-regulated). The advantage of this method is that potential targets can be

identified without prior knowledge of the specific miRNAs that affect the transcriptome. Syla-

mer indicated that the 7mers TGCATTT/GCATTTA, corresponding to the SCR of miR-277

family, were significantly enriched in male (p-value = 1.62E-13, Supplementary S3A Table)

and female (p-value = 1.22E-06, Supplementary S3B Table) genes that were more highly

expressed in juvenile worms compared to adults (Fig 1A).

Genes with 3’-UTRs containing the 7mers TGCATTT/GCATTTA were selected from the

list of transcripts significantly upregulated (adjusted p-value� 0.01) in juveniles compared to

adult worms, using genes found in males (n = 1,099) and females (n = 1,857) separately. Among

these transcripts, 225 male and 429 female transcripts contained the 7mers TGCATTT/GCAT

TTA in their 3’-UTRs (as predicted by Sylamer) and therefore were regarded as potential targets

for miRNAs of the sma-miR-277 family. We refer to these groups as male and female “Sylamer

genes” (Supplementary S2 Fig).

Secondly, we employed miRanda [54] and TargetScan with conservation evidence [55] to

perform miRNA-guided predictions of potential targets in the transcriptome. This latter

approach is based on curated three-way alignments of 3’-UTR sequences from orthologous

genes from S.mansoni, S. haematobium and S. japonicum (see Materials and Methods). Unlike

Sylamer, the combined results of miRanda (Supplementary S4E Table) and TargetScan with

conservation (Supplementary S4F Table) only take into account known miRNA seeds in the

3’-UTRs and not the expression of their transcripts.

We further refined this list by selecting those Sylamer genes that also have conserved target

sites across the three schistosome species (Fig 1B) as identified by combining miRanda [54]

and TargetScan with conservation [55]. Notably, miRanda and TargetScan with conservation

alone found 98 potential targets for the sma-miR-277 family in the Schistosoma transcriptome

(Supplementary S4 Table), considerably higher than for any other miRNA in this study. Of

these, 46 genes were also “Sylamer genes” (26 male and 34 female gene with 14 shared between

the two genders—Fig 1B and Table 1), we called these “high confidence targets”. By perform-

ing a hypergeometric test, we calculated the probability that these overlaps are significant,

using as background the 1,476 protein-coding genes that possess at least the core sma-miR-

277 6mer GCATTT. Our results show that there is significant enrichment in the overlaps

between TargetScan+Miranda vs. Male Sylamer genes (p-value< 0.002) and also between Tar-

getScan+Miranda vs. Male (p-value< 1e-50) while the overlap between TargetScan+Miranda

vs. Female Sylamer genes was not significant.

Gene Ontology (Biological Processes) enrichment analysis of the male and female high

confidence targets shows significant enrichment (p-value< 0.01) for “chromatin assembly

or disassembly” (four genes: Smp_155060, Smp_041760, Smp_158610, Smp_079650),

“regulation of transcription, DNA-templated” (11 genes: Smp_042300, Smp_009630, Smp_

147950, Smp_139530, Smp_041760, Smp_158610, Smp_079650, Smp_021340, Smp_163240,
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Table 1. High confidence targets of the sma-miR-277 family identified with a combined approach (Sylamer, miRanda and TargetScanwith conser-
vation). F = female; M = male.

Gene Product description gender

Smp_163500 Protein Sprint F

Smp_052420 centaurin gamma 1A F

Smp_072140 Rho2 GTPase F

Smp_042300 PUR alpha protein F

Smp_009630 homeobox protein SIX6 F

Smp_172240 stress activated protein kinase JNK F

Smp_048560 Four and a half LIM domains protein 2 F

Smp_031270 hypothetical protein F

Smp_041760 chromodomain helicase DNA binding protein 2 F

Smp_127440 Serine rich adhesin for platelets F

Smp_173900 pyruvate dehydrogenase phosphatase F

Smp_015530 hypothetical protein F

Smp_156480 hypothetical protein F

Smp_078270 mps one binder kinase activator 2 like F

Smp_199010 ras GTP exchange factor son of sevenless F

Smp_210730 prolyl oligopeptidase (S09 family) F

Smp_141980 cAMP specific 3’,5’ cyclic phosphodiesterase 4D F

Smp_194640 serine:threonine protein kinase MARK2 F

Smp_198380 Argonaute F

Smp_143070 kelch 2, Mayven F

Smp_105970 Caprin 1 M

Smp_043100 Heterogeneous nuclear ribonucleoprotein A1 M

Smp_155060 phosphatase 2a inhibitor i2pp2a M

Smp_072110 programmed cell death involved protein M

Smp_211100 inner nuclear membrane protein man1 M

Smp_123630 ubiquitin carboxyl terminal hydrolase 49 M

Smp_100090 high mobility group protein B1 M

Smp_063040 actin 6a M

Smp_169320 protein phosphatase 1g M

Smp_006320 KH domain containing, RNA binding, signal M

Smp_044810 zinc finger CCCH domain containing protein 14 M

Smp_008830 SWI:SNF related, matrix associated, actin M

Smp_167320 serine threonine rich antigen M/F

Smp_129840 hypothetical protein M/F

Smp_173380 tyrosine kinase M/F

Smp_147950 bromodomain containing 2 M/F

Smp_139530 tumor protein p73 M/F

Smp_172700 cyclin dependent kinase 6 M/F

Smp_158610 TATA binding protein associated factor 172 M/F

Smp_079650 chromodomain helicase DNA binding protein 4 M/F

Smp_021340 max dimerization protein 3 M/F

Smp_163240 t box transcription factor tbx2 M/F

Smp_200020 FAD NAD binding oxidoreductase M/F

Smp_149000 protein phosphatase 2C M/F

Smp_166070 ras specific guanine nucleotide releasing factor M/F

Smp_165280 protein groucho M/F

https://doi.org/10.1371/journal.pntd.0005559.t001

Transcriptional regulation in S.mansoni

PLOSNeglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005559 May 23, 2017 10 / 24

https://doi.org/10.1371/journal.pntd.0005559.t001
https://doi.org/10.1371/journal.pntd.0005559


Smp_100090, Smp_008830) and “protein dephosphorylation” (three genes: Smp_173900,

Smp_169320, Smp_149000) categories (Supplementary S5 Table).

2.2. Genomic localisation, structural characterisation of sma-miR-277
and identification of sma-miR-4989

Using Drosophila melanogaster dme-miR-277 as a query in the miRBase database (Release 21,

[56]) we found full-length sequence similarity and seed sequence (nucleotides 2–7) identity

with sja-miR-277 from S. japonicum [28] as well as with two Echinococcus spp miRNA

sequences namely egr- or emu–miR-277 and miR-4989 [74].

Sma-miR-277 has previously been found in vesicles derived from cultured larval stages of S.

mansoni [75] as well as circulating in naturally infected patients and experimentally infected

animals [76]. However, in both reports the genomic location of this miRNA was not described.

In tapeworms, miR-277 is located within a cluster with miR-4989 [77], i.e. they are very close

together in the genome (less that 10 Kb) and miRNAs encoded in clusters are likely to be tran-

scribed as a single precursor unit [78]. A search for the genome locus of miR-277 in S.mansoni

showed that it is found in Chromosome 4 (21600667–21600688—reverse). We extended our

analysis to include alignments of previously generated small RNA-seq libraries resulting in the

identification of another miR-277 family member located in the vicinity of sma-miR-277.

Sma-miR-4989 (named by us “novel255”) is located within ~200 bp of sma-miR-277 suggest-

ing that, as is the case in tapeworms, these two miRNAs form a miRNA cluster. Other sequenc-

ing reads found in the same region suggested the presence of passenger strands or miRNA�

(Fig 2A). We found that sma-miR-4989 (novel255) folds into a stable structure with its passen-

ger strand (novel2620), the two miRNAs matching to form the lower part in a precursor with

an extended stem. The miRNAs sma-miR-277 and its passenger (novel3014) match up simi-

larly, again forming the lower part of an extended stem (Fig 2B). These two extended stem-

loop structures were consistently identified among different excisions of the region. They per-

sist when folding the whole (1,700 nt) genomic loci (Fig 2C), where the region folds into a

highly stable stem-rich structure with low minimum free energy. To assess the significance of

this fold, we randomly shuffled its sequence while preserving dinucleotide frequency. An

ensemble of 1,000 randomly shuffled sequences was folded. This yielded a distribution of mini-

mum free energy scores, leading to a Z-score of 3.5 for minimum free energy of the genomic

sequence fold, confirming the stability of the stem-rich structure. FASTA sequences for the

hairpins, mature and passenger strands are presented in Supplementary S2 Dataset and an

image comparing the folds obtained for different S.mansoni predicted miRNAs is presented in

Supplementary S4 Fig.

2.3. Targets of sma-miR-277/sma-miR-4989 are down regulated in
paired females compared with unpaired females

Female worms only achieve sexual maturity when they are coupled with a male worm. Al-

though highly unlikely in natural infections, it is possible to obtain unpaired “virgin” females

and unpaired males by infecting mice with single-sex cercariae. Using RNASeq data from

paired and unpaired males and females, we found that 16 out of the 34-female high-confidence

targets of sma-miR-277 family had significantly (adjusted p-value<0.01) lower expression in

paired females compared to unpaired “virgin” females (Fig 3B), while the male targets were

not differentially expressed between paired and unpaired males (Fig 3A). Furthermore, the

time-course expression analysis indicated that the expression of these targets was gradually

reduced as female maturation progressed. Notably, this was not observed in males.
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2.4. Sma-miR-4989 is up-regulated during juvenile to adult transition

Tentative miR-277 targets were down-regulated during the juvenile to adult transition. If the

miRNA effect is that of causing the decay of its targets, it is expected that the expression of

miRNAs from that family would show an opposite pattern to that of its targets, i.e. while the

targets of the miR-277 family are down-regulated, sma-miR-277 and sma-miR-4989 should

increase their expression.

Fig 2. Sma-miR-277 and sma-miR-4989 belong to a gene cluster. (A) The genomic locus in Chromosome 4 of sma-miR-277 and sma-miR-4989
suggests they belong to a gene cluster. The average distance between genes (represented by coloured boxes) is 109 bases. Here the mature
miRNAs (sma-miR2-277 and sma-miR-4989) and passenger miRNAs are represented with coverage plot and aligned reads from one of the small
RNA libraries. (B) Predicted stem-loop structures for sma-miR-277 and sma-miR-4989 –individual cases. Mature miRNAs are located in the 3’-end of
the hairpin. (C) Due to the cluster organisation of sma-miR-277/sma-miR-4989, it is likely that they are transcribed as one precursor RNAmolecule.
This figure represents the predicted stem-loop structure for sma-miR-277/sma-miR-4989 when arising from a larger transcript.

https://doi.org/10.1371/journal.pntd.0005559.g002
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The expression sma-miR-4989 was quantified by RT-qPCR during juvenile to adult devel-

opment. This miRNA showed significant up-regulated (28 vs. 49 d.p.i., males t-test p-value =

0.0097; females t-test p-value = 0.01) expression in developing worms (Fig 4) suggesting an

association between increased expression in miRNA levels and decreased expression of their

targets. Furthermore, sma-miR-277 is also up-regulated in a similar manner, as well as sma-

miR-4989 passenger miRNA novel2620 (Supplementary S3 Fig).

2.5. Sma-miR-4989 mRNA is localised in the male anterior oesophagus
gland

In order to gain insight into the potential functions of sma-miR-4989, we used both whole

mount in situ hybridisation (WISH), as well as fluorescence in situ hybridization (FISH) in

adult male and female worms. Given the small size of miRNAs we employed anti-sense Locked

Nucleic Acid (LNA) probes to detect the cells expressing these RNAs. To determine the speci-

ficity of this approach we performed control experiments with LNA probes targeting a 22nt

long sequence of the CathepsinB messenger RNA (Smp_103610), which is detected in the

intestine by WISH [68,79]. Consistent with previous reports, we robustly detected cathepsinB

in the intestine (Fig 5A). To further assess the feasibility to detect Schistosome miRNAs using

LNA probes we also examined sma-miR-124a-3p, whose closely related C. elegans homolog

(miR-124a) is expressed in the nervous system [80]. Consistent with the localization of miR-

124a in C. elegans, we detected the expression of sma-miR-124a-3p in the schistosome cephalic

ganglia and in the nerve chords by WISH (Fig 5B). To determine if this miRNA was broadly

expressed in the cephalic ganglia or in subsets of cells in the cephalic ganglia, we performed

double FISH with prohormone convertase 2 (pc2), that is expressed in the large number of cells

in the schistosome nervous system. Schistosomes possess a pair of cephalic ganglia whose

Fig 3. Sma-miR-277 family predicted targets downregulated in developing female parasites. Fold
change expression (Log2) of high confidence targets of sma-miR-277 family during the development of male
and female worms in two conditions: paired (solid line red) and unpaired (dashed green). Black lines represent
the mean expression of genes in paired (solid black line) and unpaired (dashed black line) worms.

https://doi.org/10.1371/journal.pntd.0005559.g003
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neuronal cell bodies surround a neuropil composed of a network of neural projections. The

individual ganglia are connected via a commissure of neural projections that extend across the

midline. We observed that sma-miR-124a-3p and pc2were co-expressed in cell bodies that

comprise both the cephalic ganglia and the nerve chords (Supplementary S5A Fig). Interest-

ingly, we detected sma-miR-124a-3p not just in pc2+ cell bodies but also broadly throughout

the neuropil of the cephalic ganglia (Supplementary S5B Fig). Since the neuropil is comprised

of neural projections (axons and dendrites) these data suggest that sma-miR-124a-3p may

have functions to regulate its target mRNAs outside the cell bodies.

Given our success in detecting sma-miR-124a-3p, we set out to determine the localization

of sma-miR-4989. By WISH, we failed to detect reproducible signal in female parasites. How-

ever, we strongly detected sma-miR-4989 in cells surrounding the male oesophagus (Fig 5C)

as well as cells throughout in the parenchyma. Since many of the sma-miR-4989-expressing

cells in the parenchyma appeared to be quite superficial, just beneath the parasites muscle

layer, we explored the possibility these cells comprise the schistosome syncytial epidermis,

a structure known as the tegument. To test this, we utilized a mix of probes targeting the

mRNAs of four well-characterized tegumental factors: calpain, npp-5, annexin and gtp-4 (ref.

[69–73]). By FISH we observed that the sma-miR-4989 RNA was broadly expressed in cells

that make up the schistosome tegument (Fig 5D).

Discussion

In this study, the contribution of miRNAs in shaping the transcriptional landscape of develop-

ing S.mansoni juveniles was evaluated by performing a Sylamer analysis [36]. This approach is

Fig 4. Sma-miR-4989 is significantly up-regulated duringmale and femalematuration. Fold change
expression of sma-miR-4989 during development of juvenile to adult worms in male (blue bars) and females
(red bars) as measured by RT-qPCR. Samples were collected at the time points (days post infection)
indicated in the x-axis frommurine hosts infected with pooled (mixed sex) cercariae. Each barplot represents
the mean of three biological replicates. T-tests were performed between 49 d.p.i. and 28 d.p.i. and were both
significant with p-value� 0.01. Error bars show the standard error of the mean, based on three biological
replicates.

https://doi.org/10.1371/journal.pntd.0005559.g004
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independent from any prior miRNA information available, i.e. miRNA-unaware. Using Syla-

mer we were able to show that transcripts containing a target site for members of the miR-277

family are highly enriched in early juvenile worms and their expression dramatically decreases

towards adulthood (Fig 1A). Remarkably, no other known miRNA seeds were found enriched

in this analysis, suggesting that members of the miR-277 family may be the primary miRNAs

exerting post-transcriptional regulation in the transition from juvenile to adult worm.

Sylamer results were then coupled with a stringent miRNA target prediction approach that

uses miRanda [54] and TargetScan with species conservation [55]. The latter algorithm allows

the inclusion of evolutionarily conserved miRNA targets from the three main schistosoma spe-

cies. The rather low overlap between the Sylamer miRNA-unaware approach and the miRNA-

driven TargetScan with conservation and miRanda (12+14+20 targets, Fig 1B) would not rep-

resent a disagreement between methods; on the contrary, they complement each other. While

the combination of TargetScan with conservation and miRanda provides a highly confident

list of miRNA targets, Sylamer provides a statistical approach to the identification of tran-

scripts potentially targeted by a given miRNA based on their co-regulated change in expres-

sion. This combined approach, which includes the aforementioned unaware miRNA-target

finder component, has never before been applied to schistosomes and our results provide solid

evidence for the role of miRNAs during the intra-mammalian development of this parasite.

We conclude that the overlap among these methods does identify a group of genes regulated

by members of the miR-277. Further in silico functional characterisation of the targets showed

Fig 5. Sma-miR-4989 is expressed in the cells surrounding the oesophagus and cells of the tegument in adult worms.Whole mount
in situ hybridisation for (A) cathepsin B, (B) sma-miR-124a-3p (124a), and (C) sma-miR-4989. (D) Fluorescence in situ hybridisation showing the
colocalization of sma-miR-4989 with four co-expressed tegument-specific mRNAs (calpain, npp-5, annexin and gtp-4). Nuclei are stained with DAPI
and shown in blue. Anterior of worms is to the left in A-C. Scale Bars: A-C 100 μm; D 10 μm.

https://doi.org/10.1371/journal.pntd.0005559.g005

Transcriptional regulation in S.mansoni

PLOSNeglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005559 May 23, 2017 15 / 24

https://doi.org/10.1371/journal.pntd.0005559.g005
https://doi.org/10.1371/journal.pntd.0005559


that the miR-277 family might be responsible for the down-regulation of important transcrip-

tion factors, transcription factors associated proteins and signalling molecules (Table 1), for

instance a TATA binding box protein associated factor, Tbox transcription factor, a homolog

of the S.mediterranea p53 protein known to regulate proliferation and self-renewal in stem-

cells [81] and a groucho domain-containing protein. The Drosophila Groucho (Gro) protein is

a corepressor whose action is required, among other processes, for sexual determination [82].

In schistosomes, the 3’-UTR of the gene encoding groucho (Smp_165280) has three miRNA

target recognition sites suggesting close regulation by sma-miR-277/4989 (Supplementary S6

Table). Interestingly, one of the three Argonaute proteins known to be encoded in the S.man-

soni genome [83] is found among the miR-277 targets. Argonaute is part of the RNA–induced

silencing complex (RISC), a key player in the RNA interference pathway [84] and the potential

targeting of Argonaute by a miRNAs could suggest a possible feedback loop between the

expression of miRNAs and the RNAi effector pathway.

Sixteen of the high confidence targets (potential miR-277 targets that are down-regulated

towards adulthood) are also differentially expressed in “virgin” unpaired females compared to

sexually active mature females, suggesting that miR-277 family members are involved in repro-

ductive development. Other miRNAs have recently been linked to reproductive development

in S. japonicum [32]. The post-transcriptional regulation of key players during the transition

between developmental stages is consistent with the role predicted for certain miRNAs in

other organisms (reviewed in [35]).

The miR-277 family is of particular interest in that, to date, it has only been found in proto-

stomes [85]. In Schmidtea mediterranea, a model free-living flatworm for the study of tissue

regeneration, Sasidharan et al. identified four members of the miR-277 family [86]. In three

cestodes (E. granulosus, E.multilocularis andHymenolepis microstoma), the gene loci encoding

miR-277 and miR-4989 (another member of the miR-277 family) are ~ 430 bases apart, com-

prising a miRNA cluster [87] with gene expression potentially co-regulated. In schistosomes,

sma-miR-277 has been detected in sera from experimentally-infected animals and humans

naturally infected with schistosomes [76] as well as in secreted vesicles of schistosomula larvae

[75]. A recent publication featuring miRNA profiling in developing S. japonicum worms iden-

tified both sja-miR-277 and sja-miR-277b [32], the latter being identical to our sma-miR-4989.

Our results suggest that sma-miR-4989 is the S.mansoni homolog of sja-miR-277b.

The high quality of the S.mansoni genome assembly allowed us to localise both sma-miR-

277 and sma-miR-4989 within a locus containing clustered miRNA genes (Fig 2A) in Chro-

mosome 4. Given the conserved architecture of this miRNA genomic locus when compared to

that of tapeworms, and the sequence conservation, we have therefore named novel255 as sma-

miR-4989. The miRNA precursor structure results for sma-miR-4989 and sma-miR-277 were

found to require longer flanking regions to achieve a thermodynamically stable stem-loop

structure (Fig 2B and Fig 2C). This structural difference found in these SchistosomamiRNA

precursors (Supplementary S4B Fig and Supplementary S4C Fig), when compared to canonical

structures (i.e. Supplementary S4A Fig) described for model organisms, could potentially

explain previous claims that flatworms might have lost many of the conserved miRNA families

[85]. In addition, the highly fragmented nature of the current S. japonicum [88] and previous

S.mansoni genome assemblies [89] may explain the difficulties previously encountered in

identifying these particular miRNAs.

Regarding miRNA expression, our results show that sma-miR-4989 displays the same pat-

tern of expression in male and female worms during development (Fig 4). These results are in

agreement with recently published work which showed that S. japonicum sja-miR-277 and sja-

miR-277b (homolog to sma-miR-4989) are both differentially expressed in the transition from

juvenile to adult as well as in between male and female S. japonicum worms [32]. Given that
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the expression pattern of sma-miR-277/4989 and their predicted targets show an inverse corre-

lation, we speculate that the post-transcriptional effect of these miRNAs might be exerted by

degradation of the target mRNA [34].

As part of our functional characterisation of sma-miR-4989, we performed whole-mount in

situ hybridisation (WISH) experiments to localise the site of expression of this miRNA in the

worms. Our results show that sma-miR-4898 is expressed in tegumental cells along the whole

of the male worm body but its expression is most pronounced in the cells surrounding oesoph-

agus in proximity to the oesophageal glands [90,91]. Detailed transmission electron micros-

copy of the oesophageal region has shown that the schistosome oesophagus has two distinct

regions [92]: the posterior region that is involved in initialling the blood meal while the cellular

structure of the anterior region has been described as similar to the tegument, with cell bodies

located beneath the muscle fibres and projecting cytoplasmatic extensions that end in the oeso-

phageal lumen. The discoid bodies and multilaminate vesicles that are exported to the oesoph-

agus lumen reveal the glandular nature of the anterior oesophagus and suggest that their

secretions might constitute the building blocks of the membranous lining of the oesophagus

[90,91,93]. At present, it is difficult to determine if sma-miR-4898 is expressed in these oeso-

phageal glands or in the tegument-like tissue that lines the oesophagus. Although RNA con-

tents of adult oesophagus gland secretions have yet to be analysed in detail, a study of the S.

mansoni schistosomula vesicles and exosomes [75] identified several known and novel miR-

NAs, including sma-miR-277. Given the localisation of sma-miR-4989 in the tegumental cells,

we speculate that these molecules could be reaching the exterior of the worm in vesicle-like

structures. Further work is needed to test this hypothesis.

In summary, the high quality nature of the S.mansoni genome and gene annotations

allowed us to query 3’-UTR regions for miRNAs target recognition sites that are conserved

across three Schistosoma species. By incorporating gene expression information, we were able

to conclude that that sma-miR-277 and sma-miR-4989 may be the primordial miRNAs driving

an effect on the transcriptional landscape regulating gene expression changes underlying the

development of juveniles and sexual maturation. Further, we showed that sma-miR-277 and

sma-miR-4989 expression is increased towards adulthood, this is consistent with evidence that

their targets are down-regulated during the same transition. Finally, we report the first use of a

standard WISH technique to the localisation of miRNAs in schistosomes, demonstrating that

sma-miR4989 is expressed in tegumental cells and raising many questions about the potential

roles of this miRNA.
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Error bars represent the standard error of the mean, based on three biological replicates.
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S4 Fig. Stem-loop structures predicted for known and novel small RNAs in Schistosoma

mansoni. (A) Examples of “canonical” hairpins. (B) and (C) Examples of hairpins that
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tion (FISH) in adult male worms using a Locked Nucleic Acid (LNA) probe to detect sma-

miR-124a-3p (instead of antisense mRNA probes) and prohormone convertase 2 (pc2), that is

expressed in the large number of cells in the schistosome nervous system. (A) shows detection

of the expression of sma-miR-124a-3p and pc2 in the schistosome cephalic ganglia and in the

nerve chords. (B) zoomed-in view of (A) showing the presence of sma-miR-124a-3p in the

neural projections that connect the two cephalic ganglia (indicated with arrows) while pc2 is

restricted to the cell bodies in the cephalic ganglia.
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