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The execution of apoptosis is critical for proper de-
velopment of the nervous system. However, it is equally
important that neurons strictly inhibit apoptosis after
development to ensure their survival throughout the
lifetime of the organism. Here we show that a micro-
RNA, miR-29b, is markedly induced with neuronal mat-
uration and functions as a novel inhibitor of neuronal
apoptosis. The prosurvival function of miR-29b is me-
diated by targeting genes in the proapoptotic BH3-only
family. Our results identify a unique strategy evolved by
maturing neurons that uses a single microRNA to inhibit
the multiple, redundant BH3-only proteins that are key
initiators of apoptosis.

Supplemental material is available for this article.

Received July 28, 2010; revised version accepted
December 1, 2010.

During normal development of the nervous system, a
period of massive neuronal apoptosis occurs to precisely
match neurons to their respective target cells (Oppenheim
1991). However, once appropriate neuronal connections
are in place, it is imperative that neurons strictly inhibit
their apoptotic program, since these cells do not divide,
have limited capability for regeneration, and must sur-
vive for the lifetime of the organism (Benn and Woolf
2004). In mammalian cells, apoptosis is triggered when
cells encounter cytotoxic stresses, such as nutrient with-
drawal, DNA damage, or endoplasmic reticulum (ER)
stress. These insults initiate signaling cascades that acti-
vate proapoptotic BH3-only members of the Bcl-2 family of
proteins and cause the release of cytochrome c from the
mitochondrial intermembrane space into the cytoplasm
(Wang 2001). The release of cytochrome c from mitochon-
dria is a key event that triggers the rapid activation of
caspases, the key cellular proteases that ultimately execute
cell death (Hengartner 2000). Although some changes in
apoptotic machinery have been identified during neuronal
maturation (Tsui-Pierchala and Ginty 1999; Putcha et al.

2000; Walsh et al. 2004; Wright et al. 2007), it is unclear
whether other mechanisms exist in mature neurons to
strictly disable apoptosis.

MicroRNAs (miRNAs) are small noncoding RNAs that
regulate gene expression (Bartel 2009). While misexpres-
sion of some miRNAs has been linked with apoptosis and
cancer (Kent and Mendell 2006), very little is known
about how miRNAs regulate cell death during normal
development. Here, we examined whether miRNAs func-
tion as critical regulators of survival in mature neurons.
We show that miR-29b becomes induced with neuronal
maturation and potently inhibits apoptosis in normal,
healthy neurons. Importantly, we report that miR-29b
mediates its function by targeting multiple members of
the BH3-only family of proapoptotic genes. Together,
these data identify miR-29b as the first mammalian
miRNA capable of inhibiting neuronal apoptosis.

Results and Discussion

In contrast to developing P5 (postnatal day 5) sympathetic
neurons, mature P28 neurons are strikingly resistant to
nerve growth factor (NGF) deprivation, DNA damage,
and ER stress (Fig. 1A; Easton et al. 1997; Wright et al.
2007). To determine whether miRNAs may have a role in
restricting apoptosis, we profiled their expression during
neuronal maturation and reasoned that miRNAs that are
most highly expressed in mature neurons would likely
function to prevent cell death. Sympathetic neurons were
obtained from the superior cervical ganglia (SCG) of mice
at four developmental stages: embryonic day 18 (E18), P5,
P13, and P28. Each of these stages occurs after post-
mitotic differentiation, thereby focusing our study on
a time period when increasing restriction of apoptosis is
a major known event occurring in these neurons (Glebova
and Ginty 2005). Using significance analysis of micro-
arrays (SAM) (Tusher et al. 2001) to compare young
neurons (E18 and P5) with mature neurons (P13 and
P28), we found that the expression of only one miRNA
family, miRNA-29 (miR-29), was significantly increased
in mature neurons (Fig. 1B; Supplemental Table S1).

The miR-29 family consists of three members (miR-
29a, miR-29b, and miR-29c) that map to two distinct
genomic loci in clusters. Since these miRNAs have
extensive sequence homology, especially at the 59 seed
region important for mRNA target recognition (Lewis
et al. 2003), we focused on miR-29b, as it was the most
highly expressed and is found at both genomic loci
(Supplemental Fig. S1A). To confirm our microarray data,
we performed quantitative RT–PCR (qRT–PCR) on iso-
lated ganglia from P5 and P28 mice and found the levels of
miR-29b to be increased dramatically in P28 ganglia
(Supplemental Fig. S1B). In addition, using pure neuronal
cultures, we found that miR-29 levels increased in P0
neurons cultured for 28 d in vitro versus neurons cultured
for 5 d (Fig. 1C), indicating that the increase in miR-29
occurs specifically in neurons. The increase in miR-29b
with neuronal maturation was not specific to sympa-
thetic neurons, as a similar increase in expression was
also observed during cerebellar and cortical maturation
(Supplemental Fig. S1C,D). Together, these data indicate
that miR-29b levels are induced at a time when neurons
become increasingly resistant to apoptosis.
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Since the marked increase in miR-29 expression during
maturation correlates with a time when strict restrictions
on neuronal apoptosis are engaged, we hypothesized that
introducing miR-29b in young P5 neurons may provide
enhanced resistance to apoptotic stimuli. miR-29b or
a control miRNA (nonconserved Caenorhabditis elegans
miRNA cel-miR-67) was microinjected into P3 neurons
and, after 48 h, neurons were subjected to NGF depriva-
tion. Remarkably, microinjection of miR-29b was suffi-
cient to protect neurons from apoptosis, while cells in-
jected with the control miRNA died at the expected rate
(Fig. 2A,B). Treatment of P5 neurons with NGF deprivation
alone did not have a significant effect on the endogenous
expression of miR-29b (Supplemental Fig. S2). The ability
of miR-29b to inhibit neuronal apoptosis was not specific
to NGF deprivation, as miR-29b expression also effectively
inhibited apoptosis in response to DNA damage (Fig. 2C,D)
and ER stress (Fig. 2E,F). These data indicate that miR-29b
is a potent inhibitor of neuronal apoptosis induced by
multiple stimuli.

To determine precisely how miR-29b functions to
inhibit apoptosis, we analyzed the effect of miR-29b
expression on key steps in the pathway activated by
NGF deprivation. Upon NGF withdrawal, neurons acti-
vate the transcription factor c-Jun by phosphorylation at
Ser 63, causing the induction of proapoptotic BH3-only
proteins in the Bcl-2 family (Eilers et al. 1998; Whitfield
et al. 2001), which results in cytochrome c release,
caspase activation, and cell death (Fig. 3A). We examined
the phosphorylation status of c-Jun in neurons injected
with miR-29b after NGF withdrawal. NGF deprivation
induced robust nuclear staining for phospho-Ser 63-c-Jun
in both control and miR-29b-expressing neurons, indicat-
ing that miR-29b expression did not affect c-Jun phos-
phorylation (Supplemental Fig. S3). Next, we tested the
effect of miR-29b on the release of cytochrome c from
mitochondria. Following NGF deprivation, while unin-
jected or control-injected neurons showed very faint
cytochrome c staining, consistent with its release to the
cytoplasm (Deshmukh and Johnson 1998), neurons injected
with miR-29b maintained cytochrome c at the mitochon-
dria (Fig. 3B,C; Supplemental Fig. S4). Thus, miR-29b
expression potently inhibited apoptosis in neurons down-

stream from c-Jun phosphorylation but upstream of cyto-
chrome c release. The identification that miR-29b acts at
this step in the apoptotic pathway is consistent with the

Figure 1. Neuronal maturation is associated with a marked increase in miR-29 and restriction of apoptosis. (A) P0 sympathetic neurons were cultured
for 5 d (P5) or 28 d (P28) in vitro and either maintained in NGF-containing media (+NGF), deprived of NGF (�NGF), treated with 20 mM etoposide to
induce DNA damage (Etop), or treated with 2.5 mM tunicamycin to induce ER stress (Tuni) for 72 h. Cell survival was quantified by cell morphology
and was expressed as a percentage of viable cells prior to cell treatment. (B) miRNA microarray expression data for sympathetic ganglia isolated from
E18, P5, P13, and P28 mice. Yellow denotes high expression and blue denotes low expression. Complete expression data is included in Supplemental
Table S1. (C) qRT–PCR for miR-29a, miR-29b, and miR-29c using RNA collected from P0 sympathetic neurons maintained in culture for 5 d (P5) or 28
d (P28). Expression of each miRNA is plotted relative to levels in P5 neurons. Data in A and C are mean 6 SD of three independent experiments.

Figure 2. miR-29b expression potently inhibits neuronal apoptosis
induced by multiple stimuli. P3 sympathetic neurons were micro-
injected with miR-29b or cel-miR-67 (ctrl miRNA, each 30 mM)
together with rhodamine to mark injected cells. (A,C,E) Forty-eight
hours following injection, neurons were subjected to NGF deprivation
(A), 20 mM etoposide (C), or 2.5 mM tunicamycin (E), and survival of
injected cells was assessed at various time points following cell
treatment. Survival was expressed as a percentage of viable cells prior
to treatment. (B,D,F) Representative phase-contrast images of the
exact field of sympathetic neurons before (untreated) or after 3 d of
NGF deprivation (B), etoposide (D), or tunicamycin (F). Rhodamine
marks cells injected with 30 mM miR-29b (arrows). Data in A, C, and E
are mean 6 SD of at least three independent experiments. Bar, 20 mm.
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fact that mature neurons, which we found to express
high levels of miR-29, also phosphorylate c-Jun but do not
release cytochrome c after NGF deprivation (Easton et al.
1997; Putcha et al. 2000).

The BH3-only proteins are a family of proapoptotic
regulators that are critical for inducing cytochrome c
release from mitochondria. This gene family comprises
at least eight members, many of which act redundantly
(Giam et al. 2008). For example, although Bim and Hrk
(also known as DP5) are transcriptionally induced and are
important for NGF deprivation-induced apoptosis, the
knockout of either gene has only a modest effect on
survival (Putcha et al. 2001; Imaizumi et al. 2004). Thus,
an effective block of apoptosis at this point would require
inhibition of multiple BH3-only proteins. To assess
whether miR-29b was capable of functioning in this
manner, we used miRNA target prediction programs
(TargetScan, MicroCosm Targets, and PicTar) to determine
whether any BH3-only mRNAs were putative targets of
miR-29b. To our surprise, we found that multiple BH3-
only mRNAs had predicted miR-29b-binding sites in their
39 untranslated regions (UTRs) (Fig. 4A,B).

To directly test whether miR-29b could target BH3-
only mRNAs, we used a luciferase reporter assay in
which the 39UTRs of BH3-only genes, with or without
the putative miR-29b-binding sites, were each fused
downstream from the firefly luciferase gene. Each lucif-
erase construct was cotransfected with either miR-29b
or a control miRNA into HEK293T cells and luciferase
activity was measured. Indeed, miR-29b was able to
effectively reduce luciferase activity in cells transfected
with constructs containing 39UTRs of wild-type, but not

mutant, Bim, Bmf, Hrk, and Puma
(Fig. 4C). Furthermore, miR-29b was
also able to target the 39UTR of
N-Bak, a BH3-only splice variant of
Bak that is expressed exclusively in
neurons (Fig. 4C; Ham et al. 2005).
Together, these data identify miR-29b
as a single molecule capable of target-
ing multiple BH3-only mRNAs.

The observation that miR-29b is
able to target the 39UTRs of the BH3-
only family of genes suggested to us
that apoptosis is blocked in mature
neurons due to the repression of BH3-
only protein induction. Thus, we ex-
amined the status of several BH3-only
proteins in P5 and mature P28 neurons
after NGF deprivation or etoposide and
tunicamycin treatment. Indeed, while
Bim and Puma are induced after NGF
deprivation in P5 neurons (Putcha et al.
2001), these proteins fail to be induced
in P28 neurons (Fig. 5A). Equally im-
portant, while etoposide and tuni-
camycin treatment each robustly in-
duced Bim and Puma in P5 neurons,
an induction of these proteins was not
seen in P28 neurons (Fig. 5B,C). In
addition, we found that Bmf, a BH3-
only protein whose function has not
been well characterized in neurons, is
also induced after all three treatments
in P5 neurons, but not significantly in

P28 neurons (Fig. 5A–C). miRNAs are known to suppress
gene expression through a combination of mRNA cleav-
age and translational repression (Bartel 2009). Inter-
estingly, although BH3-only mRNAs became induced in
P28 neurons after each treatment, the amount of BH3-
only mRNA that was detected in treated P28 neurons was
as low as that seen in healthy P5 neurons (Supplemental
Fig. S5). Taken together, our data show that, in mature
neurons (which have high endogenous levels of miR-29),
the induction of BH3-only proteins is effectively blocked
after multiple apoptotic insults.

A prediction of our model (Fig. 5F) is that expression of
miR-29b should directly block the expression of BH3-
only proteins in a situation where endogenous BH3-only
proteins are induced. We tested this hypothesis in young
P5 neurons and focused on Bim, since this is the best-
characterized BH3-only protein shown to be induced after
NGF deprivation. As expected, injection of the control
miRNA had no effect on the induction of Bim following
NGF deprivation in P5 neurons. Strikingly, however, P5
neurons expressing miR-29b showed a marked reduction
in Bim staining after NGF deprivation (Fig. 5D,E). To-
gether, these results show that miR-29b can block apo-
ptosis in neurons by directly inhibiting the critical step of
BH3-only protein induction.

While it is important for developing neurons to be
sensitive to apoptotic stimuli for proper formation of the
nervous system, the apoptotic pathway must be strictly
inhibited after development to ensure that mature neu-
rons can survive long-term. The observation that Bax
remains inactive in the cytoplasm after NGF deprivation
in mature neurons has been described, although the

Figure 3. Inhibition of apoptosis by miR-29b occurs upstream of cytochrome c release. (A)
Schematic representation of the apoptosis pathway activated after NGF deprivation in P5
neurons. (B,C) P3 sympathetic neurons were either uninjected (uninj) or microinjected with
a GFP-expressing plasmid and either miR-29b or cel-miR-67 (ctrl miRNA, each 30 mM). After
48 h, cells were left untreated (+NGF) or deprived of NGF (�NGF). Cells were fixed and
immunostained 48 h after cell treatment. (B) Fluorescence intensity of cells after cytochrome c
staining. (C) Representative photographs of cytochrome c staining in neurons; GFP expression
indicates injected cells (arrows). Data in B are mean 6 SEM of at least three independent
experiments. Bar, 10 mm.
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molecules responsible for this phenomenon were un-
known (Putcha et al. 2000). Here, we identified miR-29b
as a key molecule that is induced during neuronal
maturation and functions to repress translation of the
BH3-only family of proteins, thus preventing death in
response to apoptotic stimuli. These results are the first
to identify a mammalian miRNA that strictly inhibits
apoptosis in normal, healthy neurons.

A recent study found that expression of the miR-29
family is reduced in sporadic Alzheimer’s disease (AD)
patients’ brains (Hebert et al. 2008). This study identified
b site APP-cleaving enzyme 1 (BACE1), a critical mole-
cule in the release of b-amyloid peptides from APP, as
a target of miR-29. Thus, loss of miR-29 expression in
sporadic AD could lead to an increase in BACE1 expres-
sion and, ultimately, b-amyloid plaques, which are the
characteristic protein aggregates of AD. Our results
identifying miR-29b as an important inhibitor of apopto-
sis in neurons provide additional insight as to why loss of
miR-29 expression may leave neurons more vulnerable to
neurodegeneration, and emphasize the importance of
miR-29 for long-term neuronal survival.

After cytotoxic stress, proapoptotic BH3-only proteins
are crucial for triggering apoptosis by either inhibiting the
anti-apoptotic proteins Bcl-2, Mcl-1, and Bcl-xL, or di-
rectly activating proapoptotic Bax and Bak (Willis and
Adams 2005; Chipuk and Green 2008). In C. elegans,
only a single BH3-only protein, EGL-1, is necessary for
activating apoptosis during development (Conradt and

Horvitz 1998). In contrast, mammals contain at least
eight BH3-only proteins, distinct subsets of which are
activated after different apoptotic stimuli (Giam et al.
2008). While this large repertoire of BH3-only proteins
allows for increased regulation of apoptosis, it also leads
to a redundancy in their function. In fact, loss of either
Bim or Hrk alone in sympathetic neurons provides only
a modest survival advantage over wild-type neurons
(Putcha et al. 2001; Imaizumi et al. 2004). Thus, in order
to efficiently inhibit apoptosis at the level of BH3-only
activity, it is necessary to block multiple members of this
pathway simultaneously. Indeed, we found that miR-29b
is able to target at least five unique members of the BH3-
only family. Interestingly, while we were unable to find
predicted miR-29-binding sites in the 39UTRs of Bid, Bad,
or Noxa, evidence also shows that these BH3-only family
members do not play a major role in sympathetic neurons
(Putcha et al. 2002; Wyttenbach and Tolkovsky 2006).

Why would miR-29b evolve to inhibit apoptosis in
neurons by repressing several BH3-only genes when, for
example, targeting Bax alone would lead to similar, if
not greater, resistance to apoptosis by intrinsic stimuli
(Deckwerth et al. 1996)? One possibility is that targeting
Bax may have undesirable consequences because of its
nonapoptotic role in regulating mitochondrial fusion
(Karbowski et al. 2006). Also, by targeting the BH3-only
members of the Bcl-2 family, miR-29b may have evolved
to fine-tune apoptosis regulation, as opposed to com-
pletely disengaging apoptotic signaling.

Figure 4. miR-29b targets multiple members of the BH3-only family. (A) Schematic representation of predicted miR-29b-binding sites in the
39UTRs of multiple mouse BH3-only mRNAs. Nucleotides of the 39UTR containing miR-29b-binding sites are listed in parentheses. (B) Sequence
and alignment of the miR-29b-binding sites in the 39UTRs of multiple BH3-only mRNAs. The predicted base-pairing of miR-29b with target
recognition seed sequence is shown in bold. (C) Luciferase activity was measured 48 h after transfection of HEK293T cells with reporter plasmids in
which regions of either wild-type (wt) or mutant (mut) 39UTRs of genes listed in A were each fused downstream from the firefly luciferase gene.
Reporter plasmids were transfected either alone (vector), together with 20 nM miR-29b (miR-29b), or together with 20 nM cel-miR-67 (ctrl).
Expression was normalized by taking the ratio of firefly to renilla luciferase, and is plotted relative to vector alone. Data are mean 6 SEM of at least
three independent experiments.
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Intriguingly, miR-29 function in cancer cells appears to
be complex. While miR-29 expression is elevated in some
cancers where it appears to function as an oncogene
(Gebeshuber et al. 2009; Han et al. 2010), others have found
miR-29 to have tumor suppressor functions (Pekarsky et al.
2006; Wang et al. 2008), notably by indirectly activating
p53 or targeting the anti-apoptotic protein Mcl-1 (Mott
et al. 2007; Park et al. 2009). We examined levels of Mcl-1
in P5 versus P28 neurons and found that, paradoxically,
Mcl-1 levels were down-regulated upon neuronal matu-
ration, despite these neurons being strikingly resistant
to apoptosis (Supplemental Fig. S6). Thus, although the
consequence of miR-29 expression in various cancer cells
may depend on cellular context, its ability to inhibit the
BH3-only family proteins has a clear anti-apoptotic func-
tion in primary neurons.

miRNAs have been described to modulate a variety of
cellular processes—including differentiation, proliferation,

and apoptosis (Kent and Mendell 2006;
Stefani and Slack 2008)—and may reg-
ulate nearly two-thirds of the entire
mammalian genome (Friedman et al.
2009). Our results here identify miR-
29b as being induced during the phys-
iologically normal process of neuronal
maturation, and demonstrate the abil-
ity of a single miRNA to inhibit apo-
ptosis by targeting multiple members
of a key proapoptotic gene family.

Materials and methods

Cell culture conditions, primers, plasmids, anti-

bodies, and other standard methods are described

in detail in the Supplemental Material.

RNA extraction and microarray analysis

For miRNA microarray and qRT–PCR analysis,

total RNA was extracted using Trizol Reagent

(Invitrogen) or the miRNeasy kit (Qiagen). miRNA

microarray was performed essentially as described

previously (Thomson et al. 2004). Normalized log2

data were clustered hierarchically by sample and

gene and represented as a heat map using Cluster

3.0 and TreeView software programs, respectively

(Michael Eisen, Stanford University).

Microinjection and quantification

of cell survival

Cells were injected with 30 mM miR-29b or

a control C. elegans miRNA (cel-miR-67) that is

not conserved in mammalian cells (miRIDIAN

mimics; Dharmacon) along with rhodamine dex-

tran (8 mg/mL) and EGFP-expressing plasmid (50

ng/mL) in microinjection buffer containing 100

mM KCl and 10 mM KPi (pH 7.4) as described

previously (Potts et al. 2003). This concentration

of miR-29b was estimated to elevate miR-29b to

approximately the levels seen in P28 neurons (see

the Supplemental Material for more information).

The number of viable rhodamine-positive cells

with intact phase-bright cell bodies was counted

prior to treatment with NGF deprivation, etopo-

side, or tunicamycin and then counted at indi-

cated times after cell treatment. Cell survival was

expressed as a percentage of the number of cells

prior to treatment. This method of assessing

survival correlates well with other cell survival assays such as trypan blue

exclusion and calcein AM staining, and follows recent guidelines for

assessment of death in neuronal cells (Potts et al. 2003; Galluzzi et al. 2009).
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