
Oncotarget78433www.impactjournals.com/oncotarget

www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 48

MiR-99b-5p expression and response to tyrosine kinase inhibitor 
treatment in clear cell renal cell carcinoma patients

Magdalena Lukamowicz-Rajska1, Christiane Mittmann1, Michael Prummer2, Qing 
Zhong1, Jens Bedke3, Jörg Hennenlotter3, Arnulf Stenzl3 , Axel Mischo4, Svenja 
Bihr4, Manuela Schmidinger5, Ursula Vogl5, Iris Blume6, Christoph Karlo6, Peter 
Schraml1 and Holger Moch1

1 
Institute of Surgical Pathology, University Hospital Zürich, Zurich, Switzerland

2 
NEXUS Personalized Health Technologies, ETH Zürich, Zürich, Switzerland

3 
Department of Urology, University Tübingen, Tübingen, Germany

4 
Oncology Department, University Hospital Zürich, Zürich, Switzerland

5 
Department of Internal Medicine I, Division of Oncology & Comprehensive Cancer Center Vienna, Medical University of 

Vienna, Vienna, Austria

6 
Institute for diagnostic and interventional Radiology, University Hospital Zurich, Zürich, Switzerland

Correspondence to: Magdalena Lukamowicz-Rajska, email: Magdalena.Lukamowicz-Rajska@usz.ch

Keywords: renal cancer, ccRCC, miR, sunitinib, treatment response, microRNA, tyrosine kinase inhibitors

Received: July 14, 2016 Accepted: September 18, 2016 Published: October 12, 2016

ABSTRACT

A number of treatments targeting VEGF or mTOR pathways have been approved 

for metastatic clear cell Renal Cell Carcinoma (ccRCC), but the majority of patients 

show disease progression after first line therapy with a very low rate of complete 
or long-term responders. It has been shown that miRs may play a role in prediction 

of treatment response in various cancer types. The aim of our study was to identify 

a miR signature predictive for RCC patients’ response to antiangiogenic tyrosine 

kinase inhibitor (TKI) treatment in the first line therapy. Sequencing of 40 paired 
normal/tumor formalin fixed and paraffin embedded ccRCC tissues revealed separate 
clustering via unsupervised dendrograms. With supervised analysis, the strongest 

differential expression was obtained with miR-99b-5p, which was significantly lower 
in patients with short progression free survival (<8 months) and TKI non-responders 

(progressive disease patients according to RECIST) (p<0.0001, each). Validation using 
RTqPCR and a second patient cohort compiled from three different hospitals (n=65) 
showed higher expression of miR-99b-5p in complete responders, but this trend did 

not reach statistical significance. It is concluded that low miR-99b-5p expression 
analyzed with sequencing methodology may correlate with tumor progression in 
TKI-treated ccRCC patients.

INTRODUCTION

Renal cell carcinoma (RCC) accounts for 2% 

of all cancers. Up to 30% of patients present with 

metastases at diagnosis and have a poor prognosis with 

a 5-year survival rate of approximately 8% [1]. Most 

RCC are classified as clear cell subtype (ccRCC) that is 
characterized by frequent mutations of the von Hippel-
Lindau (VHL) tumor suppressor gene [2]. In the absence 
of VHL protein, Hypoxia-inducible factor 1α (HIF1α) and 
Hypoxia-inducible factor 2α (HIF2α) are stabilized and, 

as a consequence, modulate the transcription of various 
HIF target genes, such as Platelet-Derived Growth Factor 
(PDGF), Vascular Endothelial Growth Factor (VEGF) or 
mammalian Target Of Rapamycin (mTOR). 

A standard treatment procedure in metastatic RCC 

involves systemic therapy, but the majority of patients 
show disease progression after first line therapy [3]. Until 
2006, there were limited treatment options available and 
overall survival for patients was only 12 months [4]. 

Since 2006 novel treatments targeting PDGF and VEGF 
pathways (Sutent (sunitinib), Nexavar (sorafenib), Avastin 
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(bevacizumab)) as well as mTOR pathway (Everolimus 
(afinitor) and Temsirolimus (torisel)) have been approved 
for metastatic RCC treatment [5]. 

MiRs (miRNAs, microRNAs) belong to a group 
of short non-coding RNAs that bind to 3’ end of the 
messenger RNA (mRNA) mediating its translational 
repression and/or degradation. Therefore, they likely 
play a significant role in regulation of apoptosis, cell 
proliferation and differentiation. The “seed sequence” of 
the miR, a fragment of the miR sequence responsible for 
mRNA recognition, may bind to one or multiple mRNAs. 
Moreover, one mRNA may be a target of various miRs. 
The role of miR in the regulation of renal cancer biology 
has been intensively investigated [6-15]. Numerous 
miRs were reported to be significantly deregulated in 
various RCC subtypes [8-10, 12, 14, 16, 17]. MiR-
141 [9, 10, 14, 16, 17] and miR-200c [6, 8-10, 14, 16, 
17] were significantly down regulated in ccRCC, and 
were suggested to bind to the mRNA of VEGF [14, 18], 
whereas hypoxia related miRs miR-210 [8-10, 12, 14, 16, 
17, 19], miR-155 [8-10, 12, 14, 16, 17], and miR-21 [8, 
12, 16] were up-regulated in ccRCC.

The identification of predictive biomarkers is of 
utmost importance to improve the outcome of RCC 

patients [20]. Literature reports suggest that micro RNAs 
may play a role in prediction of tumor recurrence [21] 

and in resistance of RCC to chemotherapy or targeted 

therapies. Moreover miRs deregulation has been 
associated with the risk of metastasis after nephrectomy 
[22] or response to the RCC treatment therapies [11, 23-
25]. Nakada et al. [11] correlated increase of miR-210 to 
chemotherapy resistance using renal cancer cell lines. In 
contrast to sunitinib sensitive patients, a significant down-
regulation of miR-141 was observed in ccRCC patients 
that did not respond to sunitinib treatment [23]. Twenty 
eight miRs were differentially expressed in patients with 

poor response compared to patients with good response 

[24]. MiRs potentially predictive for sunitinib response 
were investigated in ccRCC metastases [25] and elevated 

miR-942 levels were linked to sunitinib resistance. 

However, no reports attempting to identify markers of 
sunitinib response tested on non-clinical trial patient 
cohorts using a comprehensive next generation sequencing 
approach, enabling analysis of all known miRs within one 
sample and in a single analysis, exist. 

Therefore, the goal of our study was to identify and 
validate miRs that identify patients resistant/susceptible 
to tyrosine kinase inhibitor (TKI) treatment by next 
generation sequencing. MiR candidates selected based 
on sequencing analysis were further validated using a 
different assay platform and tissue and serum samples of 

an independent RCC patient cohort.

RESULTS

miR expression and progression free survival 

(PFS)/ RECIST response classification correlation

In order to exclude any bias originating from the 
data normalization we applied 3 normalization techniques 
and selected the candidate miR that correlated with 

treatment response independent of the normalization 

method. Sequencing data of were normalized via sum 
of reads (SOR), quantile normalization (Q) and DESeq2 
normalization (DESeq2). All miRs with expression of 
five reads or lower (SOR and Q) or on average 1 read 
(DESeq2) were not considered adequate for further 
analysis (Supplementary Table 1). PFS data were 
correlated with each miR expression using Spearman’s 
rank correlation. MiRs that showed a statistically 
significant correlation (p< 0.05) in all three normalization 
approaches are presented in table 1. The strongest positive 
correlation in all normalization methods was shown for 

miR-99b-5p. For the extreme phenotype selection [26-
28] approach (patients with PFS lower than 8 months vs. 
patients with PFS higher than 24 months) the expression 
levels in the two groups were compared using Student’s 
t-test. The most significant difference was observed for 

Table 1: Spearman’s rank correlation of miR expression obtained with sequencing platform and progression free 
survival values that were statistically significant (p<0.05) with all three normalization methods: normalization via sum 
of reads (SOR), quantile normalization (Q) and DESeq2-normalization (DESeq2). 
 Spearmans rank correlation
 SOR Q DESeq2
 correlation p value correlation p value correlation p value

hsa-miR-301a-3p -0.6907 0.0008 -0.5824 0.0143 -0.5413 0.0291

hsa-miR-423-5p -0.6332 0.0016 -0.6230 0.0057 -0.5783 0.0169

hsa-miR-501-3p 0.4968 0.0187 0.5547 0.0193 0.5349 0.0318

hsa-miR-100-5p 0.5614 0.0082 0.5648 0.0181 0.5325 0.0318

hsa-miR-99b-5p 0.6465 0.0016 0.6836 0.0011 0.6431 0.0062

All presented miRs passed the filter of 5 reads (SOR and Q) or on average 1 read (DESseq2) for all samples. Values below 0 
indicate negative correlation (the higher PFS the lower miR expression), whereas correlation >0 prove that miR expression 
increases with PFS values (positive correlation). 
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miR-99b-5p (e.g.: SOR: p=1.1*10-4, Figure 1A). A higher 
miR expression was observed for longer PFS, whereas 
early progressive patients exhibited low miR-99b-5p 
expression. 

miR-99b-5p was further correlated with RECIST 

response to the treatment (Figure 1B-1C).: a statistically 
significant difference was noted if patients with CR 
(n=3) or PR (n=11) were compared with patients with 
PD (n=15) (e.g.: SOR: CR vs PD p=5.16*10-4, PR vs PD 
p=1.2*10-5). Since the CR group consisted only of three 

Figure 1: MiR-99b-5p expression in tumor tissue, measured with sequencing platform normalized with SOR. A: box 
plots of two groups (PFS<8 months; n=8 and PFS>24 months; n=9) showing the most extreme PFS values. On the X axis two groups of 
progression free survival (PFS) values expressed in months are presented, on the Y axis the miR expression values are scaled. Independent 
on the normalization (in the figure data of SOR normalization method are presented) method low miR-99b-5p expression successfully 
defined early progression patients (PFS<8 months) B: box plot of the RECIST scoring groups and C: responders vs non-responders. As the 
“n” the number of patients per group is presented, p value indicate the statistical significant difference between the groups. Independent on 
the normalization method (in the figure data of SOR normalization method are presented) low miR-99b-5p expression successfully defined 
patients with progressive disease. PFS – progression free survival, PR- progressive disease, SD- stable disease, PR- partial response, CR- 
complete response.
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patients and PR and CR defined the objective response, 
responders were combined and statistically compared 
with the non-responder group (PD). For miR-99b-5p a 
strong significance was obtained (e.g.: SOR: p=4*10-6) 

(Figure 1C). Higher miR expression correlated with tumor 
shrinkage after TKI treatment (responders).

MiR’s expression-based prediction of progression 
free survival and response classification

Next we used classification random forest analysis 
to investigate whether miR expression predicts the 

treatment outcome for individual patients. A clear 

separation of the two RECIST groups, PD and PR, was 
obtained. Classification of the whole data set of PD 
and PR patients (n=25), using all 541 informative miRs 
achieved an out-of-bag accuracy of 96%. One PR patient 
was erroneously predicted to be non-responsive. In order 
to define miRs most important for outcome prediction we 
performed the variable selection procedure. We found 17 
miRs to be important for prediction of the test set based 
on the sudden drop in importance (Supplementary Table 
2). A new random forest using only preselected important 

miRs was built to predict the test set. The out-of-bag 
accuracy exceeded 90%, limited only by the number of 
tested patients. All five PD and all five PR patients were 
classified correctly. Upon more in-depth exploration it 
turned out that two miRs were sufficient to achieve the 
same accuracy: miR-99b-5p and miR-100-5p.

We also investigated the association of the level 
of specific miR expression with progression free 

survival (PFS) by testing for a linear correlation. To 
avoid any influence of possible outliers, we decided 
to use Spearman’s rank correlation (Figure 2). After 
post hoc multiple testing corrections (False Discovery 
Rates<0.05) we obtained a list of 98 miRs with significant 
rank correlation with PFS (list of the top 20 is shown in 
Supplementary Table 3). 

A summary of the RECIST differential expression 
analysis and the PFS correlation analysis is shown in 
Supplementary Figure 1. Fifteen of 29 differentially 
expressed miRs in the RECIST analysis were also found 
as hits in the PFS correlation analysis: miR-99a-5p, 
miR-99b-5p, miR-100-5p, miR-145-3p, miR-151a-3p, 
miR-199a-5p, miR-199b-5p, miR-328-3p, miR-374a-
5p,miR-409-5p, miR-423-3p, miR-423-5p, miR-501-3p, 
miR-1271-5p, miR-3613-5p.

In the following step a classification random forest 
analysis with differently defined labels was performed. 
Two data labels were applied: PFS (group 1: PFS<8, group 
2: 8≤PFS≤24, group 3; PFS>24 months) and RECIST (PD, 
SD, PR, CR). Using a-priori defined patient clinical data 
allowed us to formulate a list of 10 top miR candidates 

that defined different patient groups. 
the following 10 miRs were identified in PFS 

analysis: miR-99b-5p, miR-100-5p, miR-21-3p, miR-
221-3p, miR-4508, miR-93-5p, miR-454-3p, miR-126-
3p, miR-423-3p, miR-660-5p listed from the strongest 
candidate (with the plotted top two miRs presented in 

Figure 3A). 
the following 10 miRs were identified for RECIST: 

miR-4454, miR-19b-3p, miR-423-3p, miR-151a-3p, miR-
532-5p, miR-183-5p, miR-423-5p, miR-328-3p, miR-221-

Figure 2: Rank correlation between miR expression and progression free survival (PFS). Shown are the 28 miRs with the 

lowest p-values with the green line illustrating the fitted Spearman’s linear rank correlation.
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3p, miR-99b-5p listed from the strongest candidate (with 
the top two miRs plotted in Figure 3B). 

MiR-99b-5p was the only miR among the top 
10 hits, which was identified independently of the 

criteria chosen (PFS or RECIST classification). These 
data strengthen the results obtained with unsupervised 
clustering or the random forest regression analysis in 

regards to miR-99b-5p to be the top candidate. 

Figure 3: Random forest analysis of miR data using the sequencing approach. A: The two top candidate miRs (hsa-miR-100-
5p, hsa-miR99b-5p) associating with PFS were evaluated. Group 1 (PFS≤8 months; n=8) Group 2 (8<PFS≤24; n=18) and 24<PFS (n=9) as 
a group 3. E.g.: X1T indicate patient 1 tumor sample and analogously for the other patients labels. Combination of the two top miRs selected 
based on the random forest analysis showed grouping of patients from group 1 (PFS<8 months) from group 2 and 3 (PFS ≥ 8 months). 
Such a marker/markers may potentially improve selection of the ccRCC patients for the TKI treatment. B: two top candidate miRs (hsa-
miR-19b-3p, hsa-miR-4454) evaluated using the RECIST labeling. PD patients presented as red dot, SD as blue dot, PR as green dot and 
CR as violet dot. E.g.: X1T indicate patient 1 tumor sample and analogously for the other patients labels. Presented top targets successfully 
showed distinct grouping of PD patients after TKI treatment was applied. ccRCC - clear cell renal cell carcinoma, PFS - progression free 
survival, PD- progressive disease, SD- stable disease, PR- partial response, CR- complete response, TKI - tyrosine kinase inhibitor.
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Differential miR expression as predictor of TKI 
response

Differential miR expression between partial 
responders (PR) and patients with progressive disease (PD) 
were compared separately in normal and tumor tissue to 

explore the possibility of using miR expression to predict 
TKI treatment response. Independent filtering excluded 
977 miRs with mean count <2 reads from the analysis (67 
% out of 1455 with non-zero total read count) in tumor 

and/or normal tissue. Univariate testing produced 49 hits 

at False Discovery Rates <0.05 after multiple testing 
correction (Figure 4A). The most significant candidate was 
miR-99b-5p, which was upregulated approximately 4-fold 
in partial responders (Figure 4B). The resulting p-value 
distribution was normal indicating a good correspondence 
between data and model requirements. 

Likewise, independent filtering excluded 755 miRs 
with a mean count <0.7 from the analysis (57% out of 
1325 with nonzero total read count) in tumor and/or 

normal tissue. We found 155 hits with False Discovery 
Rates <0.05 and miR-100-5p was the most significant 
candidate with a close to 10-fold overexpression in PR 
patients (Figure 4C and 4D). 

Validation of the sequencing results by RTqPCR

As additional control, the results of 10 of 40 
sequenced tissues of ccRCC patients were evaluated by 
RTqPCR using 5 control miRs. The RTqPCR results 
correlated well with sequencing data (R2

min
=0.80 to 

R2

max
=0.99) for all but two patients (Supplementary 

Table 4). MiR-155 and miR-210 showed a greater up 
regulation if analyzed with RTqPCR (294- and 214733-

Figure 4: Differential expression between PR and PD patients in tumor (A, B) and normal tissue (C, D) of sequencing 
cohort. Volcano plots (A, C) relating p-values to fold-changes show significant (PFS<8 months)  and strongly (> 2-fold) DE miRs in 
green. The corresponding p-value distributions (B, D) are highly regular confirming the validity of the analysis. Inset: raw counts of the top 
scorer miR-99b-5p (B) and miR-100-5p (D).PR- partial response, PD- progressive disease.
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fold respectively) than with sequencing (22- and 14-fold 
respectively) in patient 8. In contrast to the expected up 
regulation of miR-155, based on sequencing results (22-
fold) a minor downregulation was observed by RTqPCR 
(0.9-fold) in patient 12. 

MiR-99b-5p proved to be our top candidate 
identified by sequencing. Lower miR-99b-5p expression 
was observed in patients with short PFS and in PD patients 
compared to patients with long PFS and responders. 
Therefore, miR-99b-5p was selected for further validation 
using a Taqman RT-qPCR platform in 65 patients (already 
sequenced and non-sequenced patients) from Zurich 
(n=16), Vienna (n=33) and Tübingen (n=16). MiR-99b-
5p was detected in 61 of 65 patients. MiR-99b-5p was 
below the detection level in four patients. Spearman’s rank 
correlation analysis revealed no correlation between PFS 
and miR-99b-5p expression level (Figure 5A). The group 
with early progression (PFS<8 months, n=29) was further 
analyzed against the group with late progression (PFS>24 
months, n=19), but there was no different miR-99b-5p 
expression level (two-tailed student’s t-test, p=0.67). Also, 
no statistically significant difference of miR expression 
difference was found if different RECIST groups were 
analyzed (Figure 5B), however, higher miR-99b-5p 
expression was observed for CR patients if compared to 
all other groups. 

Serum analysis

We further investigated miR-99b-5p expression in 
nine healthy donors to determine presence of miR-99b-
5p in patient serum. The normalization assays have been 
evaluated experimentally based on the literature data (see 
supplements “Serum normalization method assessment”). 
MiR-99b-5p was detected in the serum of healthy donors 
with the Ct value below 38 cycles for all analyzed samples 
(Supplementary Figure 2). 

Our analysis included additional 15 serum 

samples of ccRCC patients from Tübingen. We found no 
correlation of PFS and circulating systemic miR-99b-5p 
levels (Figure 6) in tumors, suggesting that miR-99b-5p 
expression levels in patient serum is not useful to identify 

responders from non-responders to TKI.

Survival analysis of the candidate hsa-miR-99b-
5p

In order to confirm the result of the described 
correlation test, the association of hsa-miR-99b-5p 
expression in tumor tissue with PFS was further evaluated 
using the Cox proportional hazard model properly 

taking censoring into account. To this end, the patient 
population was optimally split into a high (21 patients) 

and a low expressing group (13 patients) according to 

the log-rank test. This yielded a significant association 

Figure 5: RTqPCR results for the miR-99b-5p expression analysis (n=61). Mean value of three control RNAs (RNU44, RNU 
48 and U6 snRNA) has been used as reference for normalization of miRs expression levels. A: The Spearman’s rank correlation analysis 
of progression free survival (PFS, X=axis) and the miR-99b-5p expression (Y axis) resulted in 0.21 (p=0.10), that indicate low statisticaly 
insignificant correlation, in contrast to high correlation observed for miR sequencing data. B: the analysis of RECIST classes and its 
correlation with miR-99b-5p expression. No statistically significant correlation observed (two tailed student’s t-test).
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of the risk of progression with miRNA expression in the 
UZH and Vienna cohort, as illustrated in Figure 7A. This 
observation could be confirmed by RTqPCR of the same 
tumor samples (Figure 7B). Neither tumor samples of the 

confirmation group (patients from Zürich, Vienna and 
Tübingen cohorts) (Figure 8A) nor serum samples (Figure 
8B) from patients of the Tübingen cohort did show an 
expression-dependent risk association. 

Figure 6: RTqPCR results for the miR-99b-5p expression analysis in 15 ccRCC patients‘ serum samples. No significant 
correlation was noted if miR expression (Y axis) was correlated with PFS values (X axis).

Figure 7: Kaplan-Meyer plots and survival analysis for miR-99b-5p of tumor tissue in the discovery group. Discovery 
group: patients from UHZ and Vienna that were sequenced. (A) miRNAseq: split point 0.12; sample size 13(low), 21(high); p-value 0.002; 
95% confidence interval [0.1; 0.5]. (B) RTqPCR: split point 0.42; sample size 15(low), 7(high); p-value 0.002; 95% confidence interval [0; 
0.7]. Censored observations are marked by crosses. Results of the likelyhood ratio test are given in the inset. Patients were distributed into 
low and high expressor groups according to a log-rank test.
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DISCUSSION 

In this study, we aimed to identify predictive miRs 
in tissue samples from ccRCC patients who were treated 

for their initial metastatic disease with sunitinib in a 
non-clinical trial approach. We observed that high miR-
99b-5p expression levels, measured with next generation 
sequencing, are associated with longer PFS (p<0.05, 
significant association of the PFS with miRNA expression 
– survival analysis). MiR-99b-5p was also the best 
candidate in predicting response to sunitinib treatment, 
defined according to RECIST criteria. A statistically 
significant difference was seen if CR or PR as well as 
responders (grouped CR and PR patients) were compared 
with PD patients (p<0.05 for all sets). Notably, sequencing 
data analysis of RCC patients treated with sunitinib 
showed association of PFS and/or RECIST response with 
additional members of the miR-99 family. MiR-99a-5p 
expression correlated with PFS in two out of three (Q 
and DESeq2) normalization method used. Moreover, 
stratification of miR expression and PFS correlation with 
supervised clustering of the sequencing results (random 
forest), listed miR-100-5p, together with miR-99b-5p, as 
one of the two top miR candidates. These results suggest 

a regulatory role of the miR-99 family in the tumor 

cell response to sunitinib and/or TKI. Interestingly, all 
mature miR-99 family members are highly conserved 
among 58 different species and have an identical seed 

region sequence [29], indicating highly universal targets 
among the family members. MiR-99b has been already 

implicated to predict treatment response in other cancer 

types including prostate [30] and pancreatic [31] cancer. 

MiR-99b is involved in tyrosine kinase related signaling 
pathways [14, 31-34], suggesting a major role in response 
to systemic TKI therapies. As mRNA of mammalian 
Target Of Rapamycin (mTOR) is one of the top targets of 

the miR-99 family [14, 32-34], higher levels of these miRs 
may down regulate mTOR expression, which in turn could 
inhibit tumor cell growth. 

Several studies have described different 
methodologic approaches and technical platforms to 

both, tumor classification of RCC and prediction of RCC 
treatment response based upon miR signatures. Available 
study results, however, are rather diverse and hard to 
compare. Gamez-Pozo et al. [24] analyzed the miR profile 
of 44 patients diagnosed with RCC describing 28 miRs 
that were differentially expressed in leukocytes isolated 
from patients with poor response (progression before 6 
months) in comparison to patients with good response (no 

disease progression until 18 month) to sunitinib treatment. 
This miR selection may rather be leucocyte- than tissue-
specific as we found no correlation between miR profile 
expression and response prediction in our data set. Another 

group [25] using RTqPCR and applying an extreme 
phenotype selection [26-28], which was more restrictive 
than our approach, subdivided RCC patients according 
to time to progression (>22 months and <5 months) and 
defined nine potentially predictive candidates for sunitinib 
efficacy. MiR-942 was the only candidate, which proved 
its superior value in prediction of sunitinib efficacy with 

Figure 8: Kaplan-Meyer plots and survival analysis for miR-99b-5p in the confirmation group. Discovery group: patients 
from UHZ, Vienna or Tübingen that were not sequenced. (A) RTqPCR of tumor tissue: split point 0.18; sample size 20(low), 12(high); 
p-value 0.457; 95% confidence interval [0.3; 1.6]. (B) RTqPCR of serum from 15 patients of the Tübingen cohort: split point 0.11; sample 
size 8(low), 7(high); p-value 0.401; 95% confidence interval [0.2; 1.9]. Censored observations are marked by crosses. Results of the 
likelyhood ratio test are given in the inset. Patents were distributed into low and high expressor groups according to a log-rank test.
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sensitivity of 92% and specificity of 50%. In our analysis, 
miR-942 was poorly expressed in ccRCC tissue and did 

not pass the five reads cut off value. Discrepant data was 
even obtained with miR-141 that was used as control miR 
in our study. We confirmed significant downregulation in 
ccRCC samples (FFPE) compared to adjacent non-tumor 
tissue that is consistent with literature reports [6, 8-10, 
12, 14, 16, 17, 19]. However miR-141 was not associated 
with PFS or RECIST classification that contrasts results 
of Berkers and colleagues [23] who analyzed fresh frozen 
tissue samples from RCC patients by RTqPCR and in situ 
hybridization. They showed a significant down-regulation 
of miR-141 in ccRCC patients that did not respond to 

sunitinib treatment compared to TKI sensitive patients 
[23].

We used RTqPCR to test whether our results yielded 
with next generation sequencing could be confirmed with 
a different technique. Although a higher miR-99b-5p 
expression was observed for CR patients when compared 
to other groups (PD, SD or PR), this difference did not 
reach statistical significance. Survival analysis of RTqPCR 
yielded a significant association of the PFS with miRNA 
expression in the same patients as selected for sequencing, 
providing a technical control, however the same analysis 
performed on non-sequenced patient samples did not 
confirm this dependence. This fact could suggest the cohort 
specific association of miR-99b-5p expression and PFS or 
response to TKI treatment and not the overall dependence. 
In addition, given the relatively high Ct values obtained 
for miR-99b-5p with RTqPCR, it is tempting to speculate 
that RTqPCR method has a generally lower sensitivity for 
miR detection than sequencing. 

Prediction of TKI treatment response in ccRCC with 
miR profiling is very complex since one miR may regulate 
expression of many mRNAs and one mRNA may be the 
target of multiple miRs. We have identified a large number 
of miRs potentially associated with treatment response or 

PFS based on sequencing data. The expression levels of 
miRs might thus indeed help to predict response to TKI 
treatment for each individual patient. Additionally, specific 
miR expression patterns have not only been detected in 
tissue but also in serum of patients with various diseases 
[13, 24, 35], suggesting that small non-coding RNAs 
represent potential biomarkers for disease monitoring. 
Although we observed detectable levels of miR-99b-5p 
in the serum of both healthy donors and ccRCC patients, 
there was no correlation with clinical or pathological data. 

This suggests that miR-99b-5p secretion is not higher 
in serum of patients with TKI treatment response or 
characterized with long PFS. 

As patient cohorts derived from three different 

clinical centers, treatment conditions chosen by the 
(uro)-oncologists for each patient may vary. It cannot be 
excluded that miR-based predictive values of RECIST 
class membership or PFS calculation depend on the 
composition of the selected patients. In contrast to clinical 

trials in which well-defined and large patient cohorts 
are analyzed, it is very difficult to extract appropriate 
data from retrospective oncology reports by focusing 
on equally treated patients. The limitation of clinical 
data assessment shifts the focus of attention to a general 

problem in translational clinical research, particularly, 
if the prognostic and predictive value of molecular 

signatures should be evaluated intensively [36].
In summary, comprehensive miR profiling by means 

of sequencing in TKI treated ccRCC patients revealed 
high miR-99b-5p expression levels that correlated with 
both long PFS and response according to RECIST criteria, 
however this trend did not reach statistical significance 
if analyzed with RTqPCR platform. Next generation 
sequencing platforms may be superior to conventional 
RTqPCR methods, particularly if low expressed miRs are 
investigated for clinical applications. 

MATERIALS AND METHODS

Patients’ samples

Formalin-fixed, paraffin-embedded (FFPE) and fresh 
frozen tumor and adjacent non-tumor tissue was obtained 
from 90 patients diagnosed with advanced metastatic 

clear cell RCC. Tissue samples collected from 1998 to 

2012 were provided by the Department of Pathology, 
University Hospital Zurich (Zurich, Switzerland) (n=22), 
Department of Pathology, University of Vienna (Vienna, 
Austria) (n=39) and University Department of Urology 
Tübingen (Tübingen, Germany) (n=29). All patients 
underwent full or partial nephrectomy as part of their 

standard treatment prior to any treatment. All patients 

were treated with antiangiogenic TKIs (sunitinib (n=76), 
sorafenib (n=7) or pazopanib (n=7)) post nephrectomy 
procedure at the time metastatic disease was diagnosed. 

Each patient was classified as complete responder (CR), 
partial responder (PR), stable disease (SD) or progressive 
disease (PD) according to the RECIST criteria [37, 38]. 
Progression free survival (PFS) was defined as the time 
from treatment initiation to disease progression [37, 38] 
and overall survival (OS) was defined as the time from the 
first day of treatment to the date of death or last follow-up. 
The study was approved by the local ethical committee 
(Ref. nr, EK: KEK-ZH-Nr 2011-0072/4). A summary of 
the patients’ characteristics is provided in Supplementary 
Table 5. 

Tissue samples of RCC patients were snap frozen in 

pre-cooled isopentane at −80°C (fresh frozen) or formalin 
fixed and paraffin embedded (FFPE) directly after surgery 
and stored at -80°C or at RT, respectively. Peripheral blood 
aliquots for serum samples were prospectively collected 
at the nephrectomy day and stored at -80°C. Hematoxylin 
and eosin (HE) stained sections of fresh frozen and 
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FFPE RCC tissues were classified by one specialized 
uropathologist according to the 2016 WHO classification 
[39]. Only ccRCC were selected for this study. Tumor and 

adjacent non-tumor FFPE tissues were punched [40] to 
obtain 4-8 tissue cylinders (diameter 0.6 mm) used for the 
RNA isolation. Frozen material was processed in sections.

RNA isolation

Total RNA was isolated using Qiagen FFPE 
miRNeasy Kit (Qiagen, Germany)/ miRNeasy Mini Kit 
(Qiagen, Germany) for the FFPE and frozen tissues, 
respectively, and Qiagen miRNeasy Serum/Plasma Kit 
for isolation of total RNA from serum following the 
manufacturer’s protocol [41, 42]. Concentration and purity 
of the RNA were examined by measuring RNA’s optical 
density using the NanoDrop ND-1000 Spectrophotometer 
(Thermo Scientific, Wilmington, DE, USA). 

RTqPCR assay

TaqMan RTqPCR assay was performed according to 
the manufacturer’s recommendation [43]. In brief, 5ng of 
total RNA was reverse transcribed using the miR specific 
stem loop primers (Life Technologies, USA). Obtained 
cDNA was amplified using ViiA™ 7 Real-Time PCR 
System (Life technologies, USA). MiR expression data 
were analyzed using SDS software (Life Technologies, 
CA, USA). 

Five miRs (miR-200c, miR-141, miR-21, miR-210, 
miR-155) known to be deregulated in ccRCC [6, 8-10, 12, 
14, 16, 17, 19] were used as control to validate the tissue.

Hybridization based miR Assay

Affimetrix QuantiGene miRNA Assay was applied 
to analyze 5 pre-selected miR (miR-200c, miR-141, miR-
21, miR-210, miR-155) in the “ccRCC tissue testing 
using control miRs” step. All procedures followed the 
recommendation of the manufacturer (supplementary 

figure 3) [44]. In brief, tissue was lysed and incubated 
with miR specific probe sets. The signal was amplified and 
detected by luminescence detector. 

Sequencing

In order to optimize the library preparation step 
samples selected for pilot sequencing studies were 
divided into two aliquots and proceeded with and without 
ribosomal depletion step. In the main sequencing step, 
library preparation was performed without ribosomal 
depletion step. 

Samples without ribosomal depletion step: All 
sequencing libraries were prepared with TrueSeq Small 

RNA kit (Illumina, USA) according to the producers’ 
protocol and recommendations [45]. Briefly, 1µg of total 
RNA was ligated with the 3’ and as follows 5’ adapters, 
reverse transcribed and amplified. cDNA product was 
purified in the gel purification step that selects the DNA 
between 160 and 145 base pairs corresponding to the 
22-30 nucleotides RNA fragments. DNA libraries were 
sequenced using the Illumina sequencer (Illumina, USA).

Samples with ribosomal depletion step:  Prior to the 
standard library preparation protocol,  described above, an 
additional ribosomal depletion step was introduced. For 
this purpose Ribo-Zero Magnetic Kit (Illumina, USA) was 
used according to manufacturer’s recommendation [46]. 

Data analysis

RTqPCR data analysis 

Analysis of the quantitative TaqMan RTqPCR data 
was performed using the SDS 2.4 software (Applied 
Biosystems). Mean value of three endogenous control 
RNAs (RNU44, RNU 48 and U6 snRNA) have been used 
as reference for normalization of miR’s expression levels 
in tissue [47]. A different set of reference control RNAs 
was recommended for the serum analysis [47]. RTqPCR 
results were normalized to miR-191 expression in serum 

analysis (detailed description of the control miR evaluation 

in a supplementary paragraph “Serum normalization 

method assessment”). The relative expression levels of 
target miRs were determined by the equation 2-ΔCT, in 
which ΔCT was calculated as follows: 

ΔCT=CT miR - CT control

Sequencing data normalization and analysis

The data obtained with the Illumina sequencer were 
analyzed with Vmatch system software in order to obtain 
the number of miR copies [32]. 

Normalization via sum of reads (SOR) 

The relative expression of the annotated miR was 

calculated by relating the number of reads of the miR 
to the sum of total miR reads obtained for the analyzed 
sample. 

Quintile normalization (Q)

In order to unify the miR expression distributions 
in statistical properties parameter a standard quintile 
normalization was applied to the total set of data. The 

normalization was performed in environment of statistical 
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language R [48]. The method was based upon the concept 
of a quantile-quantile plot extended to n dimensions. No 
special allowances were made for outliers.

DESeq2 normalization

The DESeq2 normalization (DESeq2) normalization 
of data was performed with R/bioconductor environment 
[49] using the DESeq2 package [50] following the 
described standard workflow. Briefly, raw count data were 
compared between groups by use of negative binomial 
generalized linear models. For this purpose, a sample 
specific library size factor, a gene specific dispersion 
parameter, and a gene-specific log2 fold change was 
estimated. Along the process, automatic independent 
filtering of low count data and automatic outlier handling 
was performed

Statistical analysis

MiR expression data were statistically evaluated 

in environment of statistical language R by use of 
Bioconductor and LIMMA package combined with 
unsupervised hierarchical clustering [51, 52]. To define the 
correlation of the miR expression and PFS a Spearman’s 
rank correlation and a p values were calculated.

MiR’s differential expression analysis

Differential expression (DE) of each miR for normal 
and tumor tissue was analyzed in the R/bioconductor 
environment [49] using the DESeq2 package [50] 
following the described standard workflow. Following 
the DESeq2 normalization unpaired testing was applied 
except for tumor versus normal DE analysis, where the 
paired nature of the data was considered.

Extreme phenotype selection and classification 
random forest feature selection

In order to define the most reliable miR candidates 
we used the extreme phenotype selection [26-28] 

approach, comparing patients with PFS lower than 8 
months (n=8) with patients for which PFS>24 months 
(n=9). The statistical significance of the difference 
between the analyzed groups was evaluated with a two 
tailed Student’s t-test.

In order to define the potential miR targets 
dependent on the defined labels (PFS or RECIST 
criteria) a random forest algorithm was performed. In 
this application, ensembles with 100 trees were grown. 
The feature importance was estimated by permuting the 
values of each feature for every observation in the data 
set. The extent to which the classification error alters after 

permutation was measured. The procedure was repeated 

for each feature and the result was summarized in a vector, 
in which important features exhibit large increase in mean 
squared error (MSE). We chose the top ten important 
features for each set of annotations. 

Prediction of treatment response – classification 
random forest analysis

Machine-learning-based supervised classification 
of PR and PD patients was performed using the random 
forest classification algorithm [53] as implemented in R 
[54]. The remaining two RECIST classes SD and CR were 
omitted because they were only sparsely populated. Only 
miRs with more than 1 count on average over all samples 

were included to build the prediction model (541 miRs 
in total). Performance of the random forest classifier is 
measured using the out-of-bag (OOB) error. 

For variable selection, the data set was split into a 
balanced test set of 5 patients in each of the 2 groups and 
a training set of the remaining 9 PD and 6 PR patients. 
Subsequently, the average importance of each miR from 
50 random forest classifications of the training set was 
computed and used as a guide to select those which are 

repeatedly found among the most important ones. For 
model validation, a new random forest with only the 
selected important miRs was built to predict the test set 
and to evaluate the out-of-bag prediction error. 

Correlation of miR expression with PFS

Association of miR expression with progression 

free survival (PFS) was tested using Spearman’s 
rank correlation. Multiple comparison correction was 
performed by detailed analysis of the p-value distribution 
[55, 56] and a false-discovery cut off of 5% was chosen.

Survival analysis of the candidate hsa-miR-99b-
5p

The association of expression of the candidate 

miRNA hsa-miR-99b-5p on PFS was confirmed using 
classical survival analysis. The optimal split of the patient 

population into a lower and a higher risk group was 
determined with the help of a log-rank test of a conditional 
survival tree, as implemented in the function tree of the R 
package party [57]. Significance of the group difference 
was determined using the Cox proportional hazard 

model including a test of the assumption using Schönfeld 

residuals [58].
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