
MIR IN MATLAB (II):

A TOOLBOX FOR MUSICAL FEATURE EXTRACTION FROM AUDIO

Olivier Lartillot, Petri Toiviainen

University of Jyväskylä

PL 35(M), 40014, Finland

ABSTRACT

We present the MIRtoolbox, an integrated set of functions

written in Matlab, dedicated to the extraction of musical

features from audio files. The design is based on a mod-

ular framework: the different algorithms are decomposed

into stages, formalized using a minimal set of elementary

mechanisms, and integrating different variants proposed

by alternative approaches – including new strategies we

have developed –, that users can select and parametrize.

This paper offers an overview of the set of features, re-

lated, among others, to timbre, tonality, rhythm or form,

that can be extracted with the MIRtoolbox. One particular

analysis is provided as an example. The toolbox also in-

cludes functions for statistical analysis, segmentation and

clustering. Particular attention has been paid to the design

of a syntax that offers both simplicity of use and transpar-

ent adaptiveness to a multiplicity of possible input types.

Each feature extraction method can accept as argument

an audio file, or any preliminary result from intermediary

stages of the chain of operations. Also the same syntax

can be used for analyses of single audio files, batches of

files, series of audio segments, multi-channel signals, etc.

For that purpose, the data and methods of the toolbox are

organised in an object-oriented architecture.

1 MOTIVATION AND APPROACH

MIRtoolbox is a Matlab toolbox dedicated to the extrac-

tion of musically-related features from audio recordings.

It has been designed in particular with the objective of en-

abling the computation of a large range of features from

databases of audio files, that can be subjected to statistical

analyses.

Few softwares have been proposed in this area. One

particularity of our own approach relies in the use of the

Matlab computing environment, which offers good visu-

alisation capabilities and gives access to a large variety of

other toolboxes. In particular, the MIRtoolbox makes use

of functions available in public-domain toolboxes such

as the Auditory Toolbox [6], NetLab [5] and SOMtoolbox

[10]. Other toolboxes, such as the Statistics toolbox or

the Neural Network toolbox from MathWorks, can be di-

rectly used for further analyses of the features extracted

c© 2007 Austrian Computer Society (OCG).

by MIRtoolbox without having to export the data from one

software to another.

Such computational framework, because of its general

objectives, could be useful to the research community in

Music Information Retrieval (MIR), but also for educa-

tional purposes. For that reason, particular attention has

been paid concerning the ease of use of the toolbox. In

particular, complex analytic processes can be designed us-

ing a very simple syntax, whose expressive power comes

from the use of an object-oriented paradigm.

The different musical features extracted from the au-

dio files are highly interdependent: in particular, as can be

seen in figure 1, some features are based on the same ini-

tial computations. In order to improve the computational

efficiency, it is important to avoid redundant computations

of these common components. Each of these intermediary

components, and the final musical features, are therefore

considered as building blocks that can been freely artic-

ulated one with each other. Besides, in keeping with the

objective of optimal ease of use of the toolbox, each build-

ing block has been conceived in a way that it can adapt to

the type of input data. For instance, the computation of

the MFCCs can be based on the waveform of the initial

audio signal, or on the intermediary representations such

as spectrum, or mel-scale spectrum (see Fig. 1). Similarly,

autocorrelation is computed for different range of delays

depending on the type of input data (audio waveform, en-

velope, spectrum). This decomposition of all feature ex-

traction algorithms into a common set of building blocks

has the advantage of offering a synthetic overview of the

different approaches studied in this domain of research.

2 FEATURE EXTRACTION

2.1 Feature overview

Figure 1 shows an overview of the main features imple-

mented in the toolbox. All the different processes start

from the audio signal (on the left) and form a chain of

operations proceeding to right. Each musical feature is

related to one of the musical dimensions traditionally de-

fined in music theory. Boldface characters highlight fea-

tures related to pitch and tonality. Bold italics indicate

features related to rhythm. Simple italics highlight a large

set of features that can be associated to timbre and dynam-

ics. Among them, all the operators in grey italics can be



Audiosignal
waveform

Zero-crossingrate

RMSenergy

Envelope

LowEnergyRate

AttackSlope
AttackTime

Envelope Autocorrelation Tempo

Onsets

Keystrength

KeySOM

Key
Mode

Pitch

Spectrum

TonalCentroid

PulseclaritySpectralflux Spectrum

Filterbank

Centroid,Kurtosis,Spread,Skewness
Flatness,Roll-off,Entropy

MFCC

Fluctuation

Brightness,Roughness,Inharmonicity,Irregularity
Flux

Mel-scalespectrum

Cepstrum

Chromagram

Autocorrelation

Figure 1. Overview of the musical features that can be extracted with MIRtoolbox.

in fact applied to many different representations. 1

More elaborate tools have also been implemented that

can carry out higher-level analyses and transformations.

In particular, audio files can be automatically segmented

into a series of homogeneous sections, through the estima-

tion of temporal discontinuities along diverse alternative

features such as timbre in particular [2, 3].

2.2 Example: Rhythm analysis

The estimation of rhythmic pulsation, for instance, can be

based on the modelling of auditory perception of sound

and music [8] (circled in Figure 1), as described in fig-

ure 2. The audio signal is first decomposed into auditory

channels using a bank of filters. Diverse types of filter-

banks have been implemented, and the number of chan-

nels can be specified, as can be seen in the syntax shown

below at code line (1). The envelope of each channel is

then extracted (2). As pulsation is generally related to

increase of energy only, the envelopes are differentiated,

half-wave rectified, before being finally summed together

again (3). This gives a precise description of the variation

of energy produced by each note event from the different

auditory channels.

After this onset detection, the periodicity is estimated

through autocorrelation (5) 2 . However, if the tempo varies

throughout the piece, an autocorrelation of the whole se-

quence will not show clear periodicities. In such cases it is

better to compute the autocorrelation for a frame decom-

position (4) 3 . This yields a periodogram that highlights

the different periodicities, as shown in figure 2. In order to

focus on the periodicities that are more perceptible, the pe-

riodogram is filtered using a resonance curve [7] (5), after

which the best tempos are estimated through peak picking

(6), and the results are converted into beats per minute (7).

1 For more details about the feature extraction algorithms, see [3].
2 For the sake of clarity, several options in the following functions

have been omitted.
3 This shows an example of MIRtoolbox function that can adapt to

the type of input (audio waveform, envelope, etc.). Here, the frame size

is 3 seconds and the hop factor .1.

Due to the difficulty of choosing among the possible mul-

tiples of the tempo, several candidates (three for instance)

may be selected for each frame, and a histogram of all the

candidates for all the frames, called periodicity histogram,

can be drawn (8).

fb = mirfilterbank(a,20) (1)

e = mirenvelope(fb,

’Diff’,’Halfwave’,’Center’) (2)

s = mirsum(e,’Center’) (3)

fr = mirframe(s,3,.1) (4)

ac = mirautocor(fr,’Resonance’) (5)

p = mirpeaks(ac,’Total’,1) (6)

t = mirtempo(p) (7)

h = mirhisto(t) (8)

The whole process can be executed in one single line by

calling directly the mirtempo function with the audio input

as argument:

mirtempo(a,’Frame’) (9)

2.3 Data analysis

The toolbox includes diverse tools for data analysis, such

as a peak extractor, and functions that compute histograms,

entropy, zero-crossing rates, irregularity or various statis-

tical descriptors (centroid, spread, skewness, kurtosis, flat-

ness) on data of various types, such as spectrum, envelope

or histogram.

The mirpeaks functions can accept any data returned

by any other function of the MIRtoolbox and can adapt to

the different kinds of data of any number of dimensions.

In the graphical representation of the results, the peaks

are automatically located on the corresponding curves (for

1D data) or bit-map images (for 2D data). We have de-

signed a new strategy of peak selection, based on a notion



Audio
waveform

Filter
bank

Auto
correlation

Filter Peaks

Resonance
curve

Envelopes
extraction

Diff HWR +

C
h

an
n

el
s

TempoPeriodo
gram

Onsets

TimeTime

D
el

ay
s

Figure 2. Successive steps for the estimation of tempo illustrated with the analysis of an audio excerpt. In the peri-

odogram, high autocorrelation values are represented by bright nuances.

of contrast, discarding peaks that are not sufficiently con-

trastive (based on a certain threshold) with the neighbour-

ing peaks. This adaptive filtering strategy hence adapts

to the local particularities of the curves. Its articulation

with other more conventional thresholding strategies leads

to an efficient peak picking module that can be applied

throughout the MIRtoolbox.

Supervised classification of musical samples can also

be performed, using techniques such as K-Nearest Neigh-

bours or Gaussian Mixture Models. One possible applica-

tion is the classification of audio recordings into musical

genres. The results of feature extraction processes can be

stored as text files of various format, such as the ARFF

format that can be exported in the Weka machine learning

environment [11].

3 DESIGN OF THE TOOLBOX

3.1 Data encapsulation

All the data returned by the functions in the toolbox are

encapsulated into typed objects. The default display method

associated to all these objects is a graphical display of the

corresponding curves. In this way, when the display of

the values of a given analysis is requested, what is printed

is not a listing of long vectors or matrices, but rather a

correctly formatted graphical representation.

The actual data matrices associated to those data can be

obtained by calling a method called mirgetdata, which

constructs the simplest possible data structure associated

to the data.

3.2 Adaptive syntax

As explained previously, the diverse functions of the tool-

box can accept alternative input. The name of a particular

audio file (either in wav or au format) can be directly spec-

ified as input:

mirspectrum(’myfile’) (10)

Alternatively, the audio file can be first loaded using the

miraudio function, which can perform diverse opera-

tions such as resampling, automated trimming of the si-

lence at the beginning and/or at the end of the sequence,

extraction of a given subsequence, centering, normaliza-

tion with respect to RMS energy, etc.

a = miraudio(’myfile’,’Sampling’,11025,

’Trim’,’Extract’,2,3,

’Center’,’Normal’) (11)

mirspectrum(a) (12)

Batch analyses of audio files can be carried out by sim-

ply replacing the name of the audio file by the keyword

’Folder’.

mirspectrum(’Folder’) (13)

Any feature extraction can be based on the result of a

previous computation. For instance, the autocorrelation of

a spectrum curve can be computed as follows:

s = mirspectrum(a) (14)

as = mirautocor(s) (15)

And product of curves can be performed easily:

mirautocor(a)*mirautocor(s) (16)

In this particular example, the waveform autocorrelation

mirautocor(a) is automatically converted to frequency

domain in order to be combined with the spectrum auto-

correlation mirautocor(s).

3.3 Memory optimization

The flexibility of the syntax requires a complex data repre-

sentation that can handle alternative configurations (frame

and/or channels decompositions, segmentation, batch anal-

ysis) [3]. This data structure could in theory become very

extensive in terms of memory usage, especially if entire

folders of audio files are loaded into the memory in one

go. To overcome this, we have designed new methods

allowing a better management of memory without dete-

rioration of the syntactical simplicity and power. Audio

files are loaded one after the other in the memory, and if

necessary, long audio files are also divided into a series

of successive blocks of frames that are loaded one after

the other. We plan to further optimise the computational

efficiency of the toolbox by proposing the possibility of

distributing the computational loads among a network of

computers, with the help of the Distributed Computing

Toolbox and Engine made available by Matlab.



3.4 Software Development Kit

The different feature extraction algorithms will be pro-

gressively refined and new features will be added in fu-

ture versions of the MIRtoolbox. Users are encouraged to

write their own functions, using the building blocks of-

fered by the current version. A set of meta-functions have

been designed that enable the writing of additional algo-

rithms using very simple function templates. As the meta-

functions take care of all the complex management of the

data structure and methods, the development of new algo-

rithms can concentrate simply on the purely mathematical

and DSP considerations. This may result in a computa-

tional environment where large-scale MIR systems could

be developed, articulated one with each other, and com-

pared.

4 RELATED WORKS

Few softwares have been proposed in this area. Marsyas

[9], is a framework for prototyping and experimentation

with computer audition applications. The architecture is

based on dataflow programming, where computation is

expressed as a network of processing nodes and compo-

nents. Users can build their own dataflow network us-

ing a scripting language at run-time. The advantage of an

object-oriented paradigm, as used in the MIRtoolbox, is

the possibility of a drastic reduction of the syntax com-

plexity 4 . Rather than a ready-to-use set of applications,

Marsyas is a framework for building applications, pro-

vided with a dozen of features restricted to low-level di-

mensions. Batch of files can be processed as long as the

sampling rate remains constant, as Marsyas does not, con-

trary to the MIRtoolbox, perform automatic sampling con-

version (except between 44100Hz and 22050Hz).

jAudio [4] is another framework for feature extraction

written in Java. One particularity of this approach is the

use of a GUI for the feature selection, and the design of a

mechanism for automated dependency handling to prevent

duplicate calculations.

MIRtoolbox includes most of the features (or variant of

them) available in the aforementioned frameworks, plus a

diverse collection of other lower and higher-level features

related to musical dimensions such as timbre, key, rhythm,

etc. The simplicity and power of its syntax enables easy

combinations of the various operators and feature extrac-

tors. Another specific advantage of MIRtoolbox concerns

its extended visualisation capabilities, benefiting from the

richness of Matlab computing environment.

5 AVAILABILITY OF THE MIRTOOLBOX

Following our first Matlab toolbox, called MIDItoolbox

[1], dedicated to the analysis of symbolic representations

4 For instance, the patching example proposed in Marsyas User Man-

ual, which required 20 lines in Marsyas Scripting Language, can be im-

plemented in four lines using the MIRtoolbox syntax.

of music, the MIRtoolbox is offered for free to the research

community. 5

6 ACKNOWLEDGMENTS

This work has been supported by the European Commis-

sion (NEST project “Tuning the Brain for Music”, code

028570). The development of the toolbox has benefit-

ted from productive collaborations with the other partners

of the project, in particular Tuomas Eerola, Jose Fornari,

Marco Fabiani, and students of our department.

7 REFERENCES

[1] Eerola, T. and P. Toiviainen. ”MIR in Matlab: The

Midi Toolbox”, Proceedings of 5th International Con-

ference on Music Information Retrieval, 22–27, 2004.

[2] Foote, J. and M. Cooper. ”Media Segmentation using

Self-Similarity Decomposition”, Proceedings of SPIE

Storage and Retrieval for Multimedia Databases,

5021, 167–175, 2003.

[3] Lartillot, O. and P. Toiviainen. ”A Matlab Toolbox for

Musical Feature Extraction from Audio”, Proceedings

of the International Conference on Digital Audio Ef-

fects, 2007.

[4] McEnnis, D., C. McKay, I. Fujinaga, and P. Depalle.

2005. ”jAudio: A feature extraction library”, Proceed-

ings of the International Symposium on Music Infor-

mation Retrieval, 600–3, 2005.

[5] Nabney, I. ”NETLAB: Algorithms for pattern recog-

nition”, Springer Advances In Pattern Recognition Se-

ries, 2002.

[6] Slaney, M. Auditory Toolbox Version 2, Technical Re-

port. Interval Research Corporation, 1998-010, 1998.

[7] Toiviainen, P. and J.S. Snyder. ”Tapping to Bach:

Resonance-based modeling of pulse”, Music Percep-

tion, 21-1, 43–80, 2003.

[8] Tzanetakis, G. and P. Cook. ”Multifeature Audio Seg-

mentation for Browsing and Annotation”, Proceed-

ings of the 1999 IEEE Workshop on Applications of

Signal Processing to Audio and Acoustics, 1999.

[9] Tzanetakis, G. and P. Cook. ”MARSYAS: A Frame-

work for Audio Analysis”, Organized Sound, 4-3,

2000.

[10] Vesanto, J. ”Self-Organizing Map in Matlab: the SOM

Toolbox”, Proceedings of the Matlab DSP Confer-

ence, 35–40, 1999.

[11] Witten, I. H. and E. Frank. Data Mining: Practical

machine learning tools and techniques, 2nd Edition,

Morgan Kaufmann, San Francisco, 2005.

5 It can be downloaded from the following URL: http://users.

jyu.fi/˜lartillo/mirtoolbox


