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ABSTRACT

microRNAs (miRNAs) are a large class of small non-

coding RNAs which post-transcriptionally regulate

the expression of a large fraction of all animal

genes and are important in a wide range of biologic-

al processes. Recent advances in high-throughput

sequencing allow miRNA detection at unprecedent-

ed sensitivity, but the computational task of accur-

ately identifying the miRNAs in the background of

sequenced RNAs remains challenging. For this

purpose, we have designed miRDeep2, a substan-

tially improved algorithm which identifies canonical

and non-canonical miRNAs such as those derived

from transposable elements and informs on high-

confidence candidates that are detected in multiple

independent samples. Analyzing data from seven

animal species representing the major animal

clades, miRDeep2 identified miRNAs with an accur-

acy of 98.6–99.9% and reported hundreds of novel

miRNAs. To test the accuracy of miRDeep2, we

knocked down the miRNA biogenesis pathway in a

human cell line and sequenced small RNAs before

and after. The vast majority of the >100 novel

miRNAs expressed in this cell line were indeed spe-

cifically downregulated, validating most miRDeep2

predictions. Last, a new miRNA expression profiling

routine, low time and memory usage and user-

friendly interactive graphic output can make

miRDeep2 useful to a wide range of researchers.

INTRODUCTION

microRNAs (miRNAs) are small non-coding RNAs that
post-transcriptionally regulate the expression of target

mRNAs. The majority of animal miRNAs are transcribed
as long primary transcripts from which one or more �70nt
long hairpin precursors (pre-miRNAs) are cleaved out by
the Drosha endonuclease (1). The pre-miRNAs are ex-
ported to the cytosol where they are cleaved by the
Dicer protein, releasing the loop of the hairpin and a
�22 nt duplex consisting of the mature miRNA and the
star miRNA. The duplex is unwound and the mature
miRNA is incorporated into the miRNA-induced sil-
encing complex (miRISC) which it can guide to target
sites in the 30 UTRs of mRNA transcripts. This effector
complex then either reduces the stability of the mRNA or
inhibits its translation (2). Since it is estimated that the
transcripts of between 30% and 60% of all human protein
coding genes are targeted by one or more miRNAs in one
or more cellular contexts (3,4) it is not surprising that
miRNAs are involved in almost all biological processes,
ranging from development to metabolic regulation and
cancer (5–7).
miRNAs must be detected and annotated before their

biological functions can be unraveled. While the first
miRNAs were detected by conventional cloning and
Sanger sequencing (8–10), recent advances in high-
throughput sequencing has allowed detection of more
lowly abundant miRNAs with unprecedented sensitivity.
The algorithms that mine the high-throughput sequencing
data for miRNAs use the same basic principles as the al-
gorithms first used to mine the Sanger data, specifically the
presence of multiple sequenced RNAs corresponding to
the mature miRNA and the presence of a hairpin struc-
ture. If the star miRNA or loop is also sequenced this
counts as additional evidence. However, the miRNAs
detected by the high-throughput platforms are often as
lowly abundant as sequenced degradation products of
annotated or un-annotated transcripts, making classifica-
tion much more difficult. Therefore algorithms that mine
high-throughput data use advanced post-filtering steps in
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addition to the basic principles. The miRDeep algorithm,
developed by our own lab, uses Bayesian statistics to score
the fit of sequenced RNAs to the biological model of
miRNA biogenesis (11). MIReNA uses combinatorial
rules to identify miRNAs (12). miRanalyzer uses a
support vector machine (SVM) trained on miRNA
features to classify miRNA transcripts from non-
miRNA transcripts (13,14). miRTRAP identifies gene
loci where many sequenced RNAs map to few defined
positions (15). Evaluation of these algorithms is however
difficult since they have each only been tested on a limited
number of data sets representing limited coverage of the
animal phylogenetic tree. Furthermore, validation of the
reported novel miRNAs has either been restricted to few
candidates (miRDeep, miRTRAP) or not performed
(miRanalyzer). To address this problem of evaluation, we
propose that a method to identify miRNAs in high-
throughput sequencing data should meet three demands.
Specifically we demand that the method:

(1) can accurately identify known and novel miRNAs in
all animal major clades;

(2) can distinguish miRNAs from other argonaute-
bound small RNAs;

(3) reports miRNAs that can stand up to high-
throughput validation.

Besides the method should ideally:

(4) be efficient in memory and time consumption;
(5) be user-friendly.

To meet these demands, we have completely overhauled
our original miRDeep algorithm and added extensive new
packages. In this article, we describe these changes and
extensions. miRDeep2 has internal statistical controls
that allow to estimate the accuracy and sensitivity of its
performance. To test miRDeep2 performance by an inde-
pendent method, we present experiments in which we
knocked down the miRNA pathway and monitored
changes in expression of known miRNAs, novel
miRDeep2 miRNAs and other small RNA classes.

MATERIALS AND METHODS

miRDeep2 module

This section describes the default work-flow of the
miRDeep2 module in detail. The first step tests the
format of input files (see online documentation for
format requirements).
After that a fast quantification of known miRNAs is

done if files with miRBase precursors and corresponding
mature miRNAs are given to the module. In a second step,
potential miRNA precursors are excised from the genome
using the read mappings as guidelines. The read mappings
are first parsed such that only perfect mappings (no
mismatches) of at least 18 nt are retained. Furthermore,
read mappings from reads that map perfectly more than
five times to the genome are discarded. Then the two
genome strands of each genome contig are scanned separ-
ately, from 50 to 30 end. Excision is initiated when a stack

of reads (height one or more) is encountered. If there is a
higher read stack within 70 nt downstream of the current
read stack, then this is chosen instead. This downstream
search is iterated until no higher read stack is found within
70 nt. In this way, the highest local read stack is identified.
Then the sequence covered by the highest local read stack
is excised twice, once including 70 nt upstream and 20 nt
downstream flanking sequence, and once including 20 nt
upstream and 70 nt downstream flanking sequence.
Subsequently, the genome scanning continues from the
position 1 nt downstream of the last excised sequence. If
the total number of potential precursor sequences excised
is less than 50 000 (two precursors per genomic locus),
then this set is output to the downstream analysis. If
there are more sequences, then the entire excision step is
repeated, with the height of the read stack necessary for
initiating excision increased by one. The third step of the
module is to prepare the signature file. The bowtie-build
tool is used with default options to build a
Burrows-Wheeler transform index of the excised potential
precursors. Then the set of sequencing reads is mapped to
the index, using bowtie (version 0.12.7) with the following
options: bowtie –f –v 1 –a –best –strata –norc. Option ‘-f’
designates a fasta file as input, option ‘-v 1’ reports read
mappings with up to one mismatch to the precursors,
option ‘-a’ leads to the report of all valid alignments,
options ‘–best –strata’ orders the mappings from best to
worse alignments according to the strata definition of
bowtie. If reads map perfectly to the precursors then
mappings of the same read with one mismatch are not
reported. Option ‘–norc’ advises bowtie not to map
reads to the reverse complement of the precursor se-
quences in the bowtie index. The set of known mature
miRNAs for the reference species is also mapped to the
index, with the following options: bowtie –f –v 0 –a –best
–strata –norc. Here we do not allow any mismatches for
the mappings because the mature miRNA sequence and
the potential precursor sequences have not been subject to
any source of noise.

The two mapping files are concatenated and all lines are
sorted according to the potential precursor ids. The fourth
step is to predict RNA secondary structures of the poten-
tial precursors. This is done with RNAfold with default
options. Optionally, the randfold P-values for a subset of
the potential precursors are calculated. This is done by
selecting the potential precursors that (i) fold into an
unbifurcated hairpin, (ii) can be partitioned into candidate
mature, loop and star part based on the reads mapping to
it, (iii) have minimum 60% of the nucleotides in the can-
didate mature part base paired. The randfold P-values are
calculated for the subset of potential precursors with these
options: randfold –s 99. In the fifth step the potential pre-
cursors are individually scored or discarded by the
miRDeep2 core algorithm. The core algorithm is identical
to the first version (11), except for: (i) all mappings to the
anti-sense strands of potential precursors are ignored
(ii) potential precursors are discarded if <60% of the nu-
cleotides in the candidate mature part are base paired.
This displaces the rule that potential precursors are dis-
carded if <14 nt in the candidate mature part are base
paired. The miRDeep2 core algorithm is run with these
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options: -s –v -50 –y. Option ‘-s’ designates the reference
mature miRNAs file in fasta format as input, option ‘-v
-50’ keeps all precursors that have a miRDeep2 score
above �50 and option ‘-y’ supplies an additional file
with randfold values. Furthermore, 100 rounds of
permuted controls are performed as previously described
(11), with same options as the genuine run. The sixth step
surveys the score distributions of the genuine run and the
control runs. The performance statistics are calculated for
all score cut-offs from �10 to 10. The number of known
miRNAs present in the data is estimated as the number of
known mature miRNAs that map perfectly to one or more
excised potential precursors. The number of known
miRNAs that are recovered is estimated as the number
of known mature miRNAs that map perfectly to one or
more hairpins that exceed the given score cut-off. The
sensitivity of the run is estimated as se=(known
miRNAs recovered)/(known miRNAs in data). The
number of false positives for a given score cut-off is
estimated by the permuted controls. The fraction of true
miRNAs reported is estimated by t=(novel miRNAs –
estimated false positive novel miRNAs)/novel miRNAs.
The signal-to-noise ratio is estimated as n = total
miRNAs/estimated total false positive novel miRNAs
(total miRNAs=novel miRNAs+known miRNAs).

Mapper module

This section describes the default work-flow of the
Mapper module in detail. The first step tests the format
of the input files. The second step parses the raw Solexa/
Illumina _seq.txt output file into fasta format. Raw solexa
output files are text files that contain one line per
sequenced read. These can be parsed and transformed to
other text file formats like fastq/fasta files. The third step
clips 30 adapters and collapses reads. The read sequence is
searched for matches to the first 6 nt in the adapter
sequence. This search starts at position 18 in the read. If
there are no matches to the first 6 nt, then matches to the
first 5 nt of the adapter are searched in the last five nt of
the read, then matches of the first fours to the last four
positions and so on. When a match is first found, the
match to the adapter sequence and all nucleotides down-
stream are clipped from the read, and the next read is
searched. Reads that have no matches are retained, but
not clipped. Next, all reads with identical sequence are
collapsed to remove redundancy. A digit in the new
fasta identifiers shows how many times the corresponding
sequence was present in the data set. The fifth step maps
the processed reads to the genome with bowtie, using these
options: bowtie –f –n 0 –e 80 –l 18 –a –m 5 –best –strata.
Option ‘-n 0’ keeps only alignments with 0 mismatches in
the seed region of a read mapped to the genome. The seed
region is defined by option ‘-l 18’ that corresponds to the
first 18 nt of a read sequence. When using option ‘-n’ it is
possible to allow mismatches occurring after the seed
region of a read in an alignment. This is determined by
option ‘-e 80’ and is the maximum sum of quality values at
each mismatch position. The default quality value for each
position in a fasta file is set to 40 which means that up to
two mismatches are allowed in the region of a read after

its seed region. Option ‘-m 5’ keeps only reads that do not
map more than five times to the genome. Option ‘–best
–strata’ orders the mappings from best to worse alignments
according to the strata definition of bowtie. If mappings
with zero mismatches occur then mappings with one or
two mismatches are not reported. Finally the processed
reads and the mappings to the genome are outputted.
Other mapping tools such as BWA (16) can be used, but
their output format needs to be converted into the .arf
format (see online documentation). However, the next
miRDeep2 update will support BWA as a mapping tool.

Quantifier module

This section describes the default work-flow of the
Quantifier module in detail. The first step tests the format
of the input files. The second step maps the sequencing
reads, the known mature miRNAs and optionally its star
sequences for the reference species against the known
precursor miRNAs for the reference species. The
bowtie-build tool is used with default options to build a
Burrows-Wheeler transform index of the known precur-
sors. The mapping of the reads is done with these options:
bowtie –f –v 1 –a –best –strata –norc. Option ‘-f’ desig-
nates a fasta file as input, option ‘-v 1’ reports read
mappings with up to one mismatch, option ‘-a’ leads to
the report of all valid alignments, options ‘–best –strata’
orders the mappings from best to worse alignments ac-
cording to the strata definition of bowtie and option
‘–norc’ advises bowtie not to map reads to the reverse
complement of the precursor sequences in the bowtie
index. The mapping of the known mature and star
miRNA sequences against the known precursor
miRNAs for the reference species is done with these
options: bowtie –f –v 0 –a –best –strata –norc. Here the
number of allowed mismatches is set to zero via option ‘-v’
because annotated mature and star sequences should be
contained in their annotated precursor sequences.
Mappings of mature miRNAs to unmatched precursors
are discarded (for instance, the only miR-9 mapping that
is retained is to the mir-9 precursor). The third step inter-
sects the two mapping files. A read is assumed to represent
a sequenced mature miRNA if it falls within the same
position on the precursor, plus 2 nt upstream and 5 nt
downstream. We allow a small window around the
annotated mature miRNA in its precursor because reads
originating from real miRNAs can be subject to
untemplated nucleotide addition and unprecise Dicer pro-
cessing. Reads that map equally well to the positions of
two or more mature miRNAs are added to the read counts
of all of those mature miRNAs.

miRDeep2 analysis of sequenced small RNAs from seven
animal species

The following sequencing data set series were downloaded
from the GEO database (17): human liver, GSE21279
(only the three healthy human liver samples were ana-
lyzed); human cell lines, GSE16579 (only the human
data from this series were analyzed); mouse, GSE20384
(only the mouse data from this series were analyzed); sea
squirt, GSE21078, GSE13625; fruit fly, GSE7448;
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nematode, GSE17153; planarians, GSE16159 (Illumina
data only); sea anemone, GSE12578 (from this series, only
the sea anemone data were analyzed). Furthermore, the
following data sets were retrieved from the SRA database
(18): nematode, SRR014966-73. For each of the seven spe-
cies, all of the available data was pooled (files con-
catenated) at the first point in the analysis when all the
data had the same format. The raw Illumina _seq.txt data
sets were processed and mapped against the reference gen-
omes with the Mapper module using these options: -a –h
–i –j –k TCGTAT –l 18 -m –p –s –t. Option ‘-a’ designates
that the reads file is in _seq.txt format, option ‘-h’ converts
the raw reads file to fasta format, option ‘-i’ converts
RNA to DNA alphabet in reads file, option ‘-j’ removes
all read-sequences that contain letters other then A, C, G,
T, U, N, option ‘-k’ specifies the sequencing adapter for
clipping reads, option ‘-l’ designates minimum read length
after adapter clipping, option ‘-m’ collapses reads, option
‘-p’ designates the bowtie index to which reads are
mapped, option ‘-s’ specifies the processed reads file
name and option ‘-t’ is the name of the mapping file
that contains the read mappings. The GEO tabular files
and the SRA fastq files were parsed into fasta format with
custom perl scripts and processed and mapped against the
reference genomes using the Mapper module with these
options: -c –i –j –l 18 -m –p –s –t. Option ‘-c’ designates
that the reads file is already in fasta format. For each
species, miRDeep2 was run on the data with default
options, taking the following input files: reads in fasta
format, genome in fasta format, read mappings in .arf
format, mature and precursor miRNAs from the reference
species in fasta format and mature miRNAs from related
species in fasta format. Known miRNAs input were all
from miRBase version 16. For the miRDeep2 analysis of
the human data, Pan troglodytes, Pan paniscus, Gorilla
gorilla and Pongo pygmaeus were designated as related
species for the purpose of input miRNAs. For the
mouse analysis, Rattus norvegicus and Homo sapiens
were considered related species. For the sea squirt
analysis, Danio rerio, Xenopus tropicalis, Mus musculus
and H. sapiens were considered. For the fruit fly
analysis, Anopheles gambiae, Anopheles mellifera,
Bombyx mori, Locusta migratoria, Triboleum castaneum
and all Drosophila species were considered related
species. For the nematode analysis, Caenorhabditis
briggsae and D. melanogaster were considered related
species. For the planarian analysis, Hydnum rufescens,
Schistosoma japonicum, Schistosoma mansoni,
D. melanogaster and C. elegans were considered related
species. For the sea anemone analysis, Amphimedon
queenslandica was considered a related species. Note that
the species chosen were not in all cases genuinely closely
related species. In some cases relatively distant species
were chosen because no genuinely closely related species
are represented in miRBase (e.g. sea anemone), in other
cases relatively distant species were chosen because they
have been have been carefully annotated in terms of
miRNA genes (e.g. human was designated as related
species for mouse). These genome versions were used:
human, NCBI hsa v36.3; mouse, UCSC mm9; sea
squirt, JGI version 1.0; fruit fly, flybase Dme r5.19;

nematode, wormbase ws205; planaria, Smed assembly
v31; sea anemone, Nemve1. For each analysis, the
lowest score cut-off that yielded a signal-to-noise ratio
of 10:1 or higher was used, except for the human liver
and sea squirt analyses, where a signal-to-noise ratio of
5:1, respectively, 3.5:1 was used. For a number of species
the set of reported miRNA precursors show substantial
sequence redundancy: sea squirt, fruit fly, planaria and
sea anemone. To be conservative, within each of these
sets we identified all precursors that have �90% identity
over 40 or more nucleotides. These precursors were dis-
carded from our analysis and are not reported in Figure 3.
Sensitivity was calculated as se=number of miRNA loci
above score cut-off/total number of miRNA loci. miRNA
loci were defined as the genome positions to which known
mature miRNAs present in the data map, counting
multiple miRNA loci with identical mature sequences
only once. Known miRNAs were defined as all miRBase
version 16 mature miRNAs for the species analyzed. Note
that this definition of sensitivity is equivalent to the defin-
ition in the ‘Materials and Methods’ section on the
miRDeep2 module. Specificity was calculated in the fol-
lowing way. Precursors were excised from the genome
using the mapped reads as guidelines as described in the
‘Materials and Methods’ section on the miRDeep2
module. The precursors that did not have any known
miRNAs mapping were for the purposes of this analysis
considered non-miRNA loci. The specificity was then
calculated as sp=number of non-miRNA loci below the
score cut-off/total number of non-miRNA loci. The
prevalence was calculated as p=known miRNA loci/
total number of precursors excised. Last, accuracy was
calculated as: a= se� p + sp(1 � p). The true positive
rate was calculated as described in the ‘Materials and
Methods’ section on the miRDeep2 module. The
positive predictive value was calculated as: ppv= tp/
(tp + fp) where tp=known miRNAs in data� sensitiv-
ity + novel miRNAs reported� estimated true positive
rate and fp=novel miRNAs reported� (1–estimated
true positive rate). Novel miRNAs were considered high-
confidence if both the putative mature and star miRNA
reported by miRDeep2 were detected in at least two inde-
pendent samples, having the exact same 50- and 30-ends
and allowing no mismatches.

Dicer silencing, qPCR measurements and sequencing of
small RNAs in MCF-7 cells

A total of 20 nM of siDicer duplex was transfected into
MCF-7 cells with Lipofectamine RNAiMax transfection
reagent (Invitrogen) according to the manufacturer’s in-
structions. Target sequence of siDicer is 50-UGCUUGAA
GCAGCUCUGGA-30. Nuclear and cytoplasmic extracts
were prepared using PARIS kit (Ambion). Briefly, to pre-
pare cytoplasmic extracts, cells were harvested by trypsini-
zation, washed and pelleted by centrifugation. The pellet
was resuspended in 1� PBS and pelleted again by
spinning. After removing PBS, the cell pellet was resus-
pended in ice-cold cell fractionation buffer by gentle
pipetting. The homogenate was centrifuged, and the super-
natant containing the cytoplasm was transferred to a fresh
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tube and subsequently used for RNA extraction and small
RNA sequencing. The remained pellet was washed with
ice-cold cell fractionation buffer and designated the
nucleus. Total RNA from cell pellets was extracted using
TRIZOL reagent (Invitrogen) and total RNA from cyto-
plasm was isolated using TRIZOL LS reagent (Invitrogen)
following the manufacturer’s protocol, respectively. Total
RNA was treated with DNase I (Ambion). Small RNA
fraction with size range of 10–40 nt was separated from
total RNA using flashPAGE Fractionator (Ambion) ac-
cording to the manufacturer’s instruction. mRNA and
miRNA RT-quantitative PCR studies were carried out
using SYBER Green assay and Taqman assay systems
(Applied Biosystems), respectively. mRNA expression
was normalized to GAPDH and miRNA expression was
normalized to RNU48. Small RNA libraries were prepared
for Illumina deep-sequencing. Briefly, the small RNA
fraction was ligated sequentially at the 30OH and 50phos-
phates with synthetic RNA adapters, reverse transcribed
and amplified using Illumina sequencing primers. Finally,
the adapter-ligated libraries were sequenced for 36 cycles
on the Illumina/GA II platform, according to the manu-
facturer’s instructions.

Calculation of small RNA expression fold-changes upon
Dicer silencing

The C/D box, H/ACA box and Cajal-body-specific
snoRNA sequences were obtained from snoRNABase at
http://www-snorna.biotoul.fr. The tRNA sequences were
obtained from tRNAdb at http://trnadb.bioinf.uni-leipzig
.de/ (19). The four consensus rRNA sequences (5S, 5.8S,
18S and 28S) were obtained from NCBI at http://www
.ncbi.nlm.nih.gov/. The initial set of 26 241 control se-
quences consisted of all potential precursors excised by
miRDeep2 but discarded before being assigned a
miRDeep2 score. The set of 940 known human miRNA
precursors were downloaded from miRBase version 16 at
http://www.mirbase.org/ (20). The miRDeep2 precursors
were produced by analyzing the human cell line data with
default options and a score cut-off of 4, considering only
perfectly mapping reads. The small RNA reads produced
by sequencing the four MCF-7 samples were clipped of
30 adapters using the clip_adapters.pl script from the
miRDeep2 package. The two data sets produced by se-
quencing the unperturbed cells were pooled, as were the
two data sets produced by sequencing the cells exposed to
Dicer silencing. These pooled sets were independently
mapped to the following sequences: snoRNAs, tRNAs,
rRNAs, control sequences, miRBase precursors and
miRDeep2 precursors using bowtie with the following
options: -f -v 2 -a –best –strata –norc. For each annotated
sequence, the sum of reads mapping from the unperturbed
and the Dicer silenced sample was calculated. If this sum
was <40, the sequence was not considered and is not
plotted in Figure 4D–I. If this sum was 40 or higher,
the log2 fold-change was calculated as follows: f=log2
(number of reads mapping from Dicer silenced sample/
number of reads mapping from unperturbed sample). To
perform a complementary analysis with genomic control
sequences that are independent of the miRDeep2 excision

procedure, the following was done. The reads from unper-
turbed and Dicer silenced samples were mapped to the
human genome assembly NCBI hsa v36.3 using bowtie
with the following options: -f -v 2 -a -m 1 –best –strata.
Then the human genome was divided into non-
overlapping regions of 100 nt. All the regions that har-
bored miRBase precursors were assigned as miRBase
regions, all regions that harbored miRDeep2 regions
were assigned as miRDeep2 regions and all remaining
regions were assigned as control regions. Then for each
region, the log2 fold-change of reads mapping was cal-
culated as above, only considering regions to which 40
or more reads mapped. This analysis yielded comparable
results to the analysis described above (Figure 4G–I), as
did a similar analysis where the reads were mapped with
options: -f -v 2 -a -m 100 –best –strata, and each read was
subsequently weighed inversely to the number of genome
mappings. To investigate how miRDeep2 compares with
competing methods, we used four programs to analyze the
same data, consisting of the human cell line data, con-
sidering only reads that map perfectly to the human
genome (hg19). miRDeep2 and MIReNA were run with
default options to produce 509 and 288 predictions, re-
spectively. For miRDeep2 these are all predictions with
a score of 0 or higher. miRTRAP was run with default
options and minLocus count of 15 and a minShift of 5 to
produce 195 predictions, while miRanalyzer was run with
default options and a score cut-off of 1 to yield 1590 pre-
dicted precursors. Then we created a set of predictions
that is exclusive to each program as well as a set that is
common to miRDeep2 and the competing method. These
sets were divided into subsets based on the number of
reads that support each precursor, summing over the
siDicer and control data. Specifically, subsets were
created of predictions that are supported by a minimum
of 1, 5, 10, 25, 50, 75 or 100 reads. Last, log2 fold-changes
were calculated for each subset as above.

Benchmarking on sampled subsets of human small RNAs

From the Gene Expression Omnibus (GEO) and Short
Reads Archive (SRA) databases, we compiled human
small RNA data from 13 studies, comprising altogether
94 distinct data sets from tissues, cell lines and cancers
(21–33). These data were parsed to fasta format and
adapters were clipped (where present) and reads <18 nt
were removed with the Mapper module using these op-
tions: -h -i -j -k -l -m. Then the data from each set were
pooled to generate what we refer to in the following as the
‘undiluted data set’. The 10 diluted data sets were
generated by sampling the undiluted data set separately
10 times. For each sampling, each read in the undiluted
data set was retained with a probability equal to the
dilution fraction (e.g. to generate the 0.1 dilution data
set, each read in the undiluted data set was retained with
10% probability and discarded with 90% probability).
Each of the ten data sets was processed and mapped
against the human hsa v36.3 genome using the Mapper
module with these options: –p –s –t. Then each set of data
was analyzed by the miRDeep2 module with default
options, taking the following input files: reads in fasta
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format, genome in fasta format, read mappings in .arf
format, mature miRNAs from the reference species in
fasta format and mature miRNAs from related species
in fasta format. miRNAs input were all from miRBase
version 16, and P. troglodytes, P. paniscus, G. gorilla and
P. pygmaeus were considered related species. For each ana-
lysis, the lowest score cut-off that yielded a signal-to-noise
ratio of five or higher was used.

RESULTS

Work flow of miRDeep2 modules

The miRDeep2 package consists of three modules
(Figure 1). The miRDeep2 module identifies known and
novel miRNAs in high-throughput sequencing data. The
Mapper module processes raw sequence output from
the Illumina platform and maps the processed reads to
the reference genome. The Quantifier module sums up

read counts for known miRNAs in a sequencing data
set. The modules work complementary, for instance the
output of Mapper can be directly input to the miRDeep2
module.

The miRDeep2 module identifies known and novel
miRNAs in the analyzed high-throughput sequencing
data and forms the core of the software package. The
input to miRDeep2 is the reference genome, a set of
high-throughput sequencing reads and a file with positions
of the reads mapped against the genome (Figure 1A).
Optionally, known mature, star and precursor miRNAs
from the species analyzed and/or mature miRNAs from
related species can be input (see below). The first step of
the work flow is to test the format of the input files, so that
any format problems are identified and can be corrected
by the user before the analysis begins. If known mature
and precursor miRNAs for the species analyzed are
specified, these are automatically input to the Quantifier
module (see below) to ensure that all known miRNAs in

A B

Figure 1. Flow charts of modules. Flow charts for (A) the miRDeep2 module (identifies known and novel miRNAs in high-throughput sequencing
data), (B) the Mapper module (processes Illumina output and maps it to the reference genome) and (C) the Quantifier module (sums up read counts
for known miRNAs in a sequencing data set). For each module the input, internal work flow (in black borders) and output is shown. Files are
presented in rectangular boxes; processes are presented in rounded boxes. Files and processes that are novel to miRDeep2 are in yellow. Files and
processes that have been modified are in green. Those that remain largely unchanged from the first version of miRDeep are in blue, while those that
are optional are in grey. The file formats are: .fa, fasta; .arf, arf mapping format; .str, RNAfold output; .rand, randfold output; .mrd, miRDeep2 text
output; .csv, csv spread-sheet; _seq.txt, raw sequence output from the Illumina platform; seq, sequence given on command line (see online docu-
mentation for description of formats). The ‘work flow of miRDeep2 modules’ results section contains detailed descriptions of all steps.
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the data are included in the output table, even if they are
not scored by miRDeep2. Second, potential miRNA pre-
cursor sequences are excised from the genome, using the
mapped reads as guidelines. The algorithm identifies
stacks of reads that could be sequenced mature miRNAs
and excises the genomic sequence covered by the stack and
some flanking sequence (see later section for details).
Third, the Bowtie mapping tool (34) is used to map the
sequencing reads against the excised miRNA potential pre-
cursors (see ‘Materials and Methods’ section). We refer to
the read mappings to a potential precursor as the read
‘signature’ of the precursor. Fourth, the RNAfold tool
(35) is used to predict if the RNA secondary structures
of each excised potential precursor resemble a typical
miRNA hairpin structure. Since it is known that
miRNA precursors are energetically stable given the nu-
cleotide compositions (36), the stability of potential pre-
cursors can optionally be predicted using the randfold
tool. Fifth, the miRDeep2 core algorithm evaluates the
structure and signature of each potential miRNA precur-
sor. If the structure resembles a miRNA hairpin and the
reads fall in the hairpin as would be expected from Dicer
processing, then the potential precursor is assigned a score
that reflects the likelihood of it being a genuine miRNA
(11). If not, the potential precursor is discarded. The input
to the core algorithm will likely contain a large number of
hairpins and a large number of read stacks that have no
connection to miRNA biology. The chance intersection
between these can produce false positives. The built-in
controls of miRDeep2 estimate how large this chance
intersection is by shuffling the observed combinations of
structures and signatures and re-inputting them to the
core algorithm (see ‘Materials and Methods’ section).
The difference in score distributions generated by the con-
trols and the genuine run is then used to estimate the num-
ber of true positive novel miRNAs reported by miRDeep2
for varying score cut-offs. The last step of the module
integrates all results into an easy to mine overview .html
table which contains detailed information on every
miRNA identified in the sequencing data (see later
section).

The Mapper module is designed as a flexible tool to
process and map small RNA sequencing data. The
default input is raw text output from the Illumina
platform, the 30 adapter sequence used in the library prep-
aration, and the reference genome (Figure 1B). First, reads
undergo processing steps selected by the user. These steps
include 30 adapter removal, length filtering and collapsing
of identical read sequences. Then the processed reads are
mapped against the reference genome with the Bowtie tool
(34). The output of Mapper is a file with the processed
sequencing reads and a file with the reads mapped against
the genome. These can be input to the miRDeep2 or the
Quantifier module or used for other purposes. With
default options the genome mapping is stringent compared
with the tolerant mapping used by the miRDeep2 module
to generate the precursor ‘signatures’. We choose the strin-
gent mapping because we do not want to consider loci to
which no reads can be traced with high confidence. On the
other hand, when generating the read signature of a given
locus we are tolerant, since a single miRNA star read with

a sequencing error can constitute strong evidence of
miRNA biogenesis.
The Quantifier module is designed as a fast and light-

weight tool to sum up read counts for known miRNAs in
sequencing data. It can be used as a stand-alone tool but is
also enacted as part of the miRDeep2 module analysis.
The input to the Quantifier module is a set of sequencing
reads and known mature and precursor miRNAs from the
reference species. Optionally, a file with known star se-
quences can be given (Figure 1C). First, the module
maps the reads and the miRNA strands (mature and
star) separately against the precursors. The mappings of
the reads and the miRNA strands are then intersected,
such that reads that map to the same positions as a
given strand add to the read count of that miRNA
strand (see ‘Materials and Methods’ section). The output
of Quantifier is a .html table similar to that produced by
the miRDeep2 module plus an easy to parse spread-sheet
with read counts of all known miRNAs in the data.

Improvements to the miRDeep algorithm

First, miRDeep2 offers a conceptual advance in identify-
ing high-confidence miRNA candidates. In most high-
throughput sequencing protocols, small RNA libraries
are amplified by PCR reaction before being sequencing.
This means that a single small RNA molecule in the sam-
ple can give rise to multiple sequencing reads. Thus the
fact that a given small RNA is detected multiple times in a
given sample does not necessarily constitute evidence that
it is prevalent. In contrast, when a small RNA is consist-
ently detected in distinct samples, it does constitute inde-
pendent evidence that it is prevalent and thus the likely
result of a specific biogenesis. According to our definition,
two samples are distinct if they underwent amplification in
separate PCR tubes. In the beginning of each miRDeep2
analysis, each read is computationally tagged to trace
from what sample it originates. During identification of
known and novel miRNAs, reads from all samples can be
pooled in order to give a more accurate prediction. When
the results are reported, the reads are again de-convoluted
so the user can see the sample origin of each read. Figure 2
shows a novel human miRNA reported by miRDeep2.
Both mature and star strands are detected in three inde-
pendent liver samples, showing that both strands are
prevalent in human liver and thus likely to result from
specific biogenesis.
miRDeep2 also offers increased robustness in identify-

ing non-canonical miRNAs that are prevalent in some
species. In some invertebrates like sea squirt (37), but also
to a lesser extent in mammals (38), particular miRNA pre-
cursor hairpins appear to undergo two rounds of Dicer
cleavage, resulting in two miRNA duplexes being pro-
duced from each hairpin. The miRNAs of the first,
non-canonical duplex produced are sometimes referred
to as ‘moRs’ (37). While sequenced miRNAs generally
map back to the genome locus in three piles, correspond-
ing to the mature, star and loop sequences, the addition of
moRs can thus result in four or five piles. In the first
version of miRDeep, excision of potential miRNA
hairpins is done by scanning the genome for clusters of
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mapped reads. We define a cluster as one or more reads
that separated from other clusters by minimum 30 nt. The
sequence covered by each cluster is excised, including some
bracketing sequence (11). In the cases where a single pile
of moRs are present, the miRNA precursor is sometimes
excised asymmetrically and does not fold into a hairpin
structure (not shown). miRDeep2 in contrast performs
excision by scanning the genome for stacks of reads. We
define a stack as one or more reads that map to the exact
same 50 and 30 positions in the genome. When a stack is
encountered, a search identifies the highest local stack (see
‘Materials and Methods’ section). This stack is assumed
to consist of reads from the sequenced mature miRNAs.

The sequence covered by the stack is then excised, including
some bracketing sequence. Since the excision is based only
on the stack of reads from the mature miRNA, the algo-
rithm does not risk an asymmetrical excision due to moRs.

Similarly, there is now solid evidence that functional
miRNAs can be transcribed from both genomic strands
of a given miRNA locus [e.g. the D. melanogaster mir-iab
locus, (39)]. The first version of miRDeep considered reads
that map anti-sense to a potential miRNA precursor as
being inconsistent with Dicer processing, meaning that the
reads derived from the genomic minus strand would count
against the precursor that is transcribed from the genomic
plus strand, and vice versa. In miRDeep2, the two genomic

Figure 2. Novel human miRNA detected in three independent liver samples. The upper left table gives the miRDeep2 score break-down for the
reported miRNA, along with read counts for the mature, loop and star sequence. The upper right figure shows the predicted RNA secondary
structure of the hairpin, partitioned according to miRNA biogenesis: red, mature; yellow, loop; purple, star. The middle density plot shows the
distribution of reads in the predicted precursor sequence. The sequences below indicate the positions of the mature, loop and star strand.
The positions of the star strand as expected from Drosha/Dicer processing is shown in light blue, while the star consensus positions as observed
from the sequencing data is shown in purple. The dotted lines below show the aligned reads. Mismatched nucleotides are presented in upper case.
mm, number of mismatches. Both mature and star miRNA strands of this particular miRNA are detected in each of three independent liver samples
(NL1-NL3).
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strands are analyzed separately, meaning that only reads
mapping sense to a potential miRNA precursor are con-
sidered. miRDeep2 correctly identifies both mir-iab-4 and
the mir-iab-8 (anti-sense) miRNAs when analyzing fly
data (see later section), giving proof-of-principle that
miRDeep2 can detect anti-sense miRNAs.

Last, next generation sequencing reads often contain nu-
cleotides that differ from those of the reference genomic
sequence. The reasons for this can be technical, like
sequencing errors, or biological, like untemplated nucleo-
tides added to the 30-end of small RNAs [e.g. (38,40)].
While the first version of miRDeep primarily supported
perfect mappings, miRDeep2 supports single or multiple
mismatches.

To make a direct comparison of miRDeep2 with the
first version of the algorithm, we have run it on the data
used in the initial publication, using the exact same input
files (genome assemblies, miRBase version etc.) to facili-
tate the comparison. We find that miRDeep2 performs
substantially better on the human data, reporting 186
known and 36 novel miRNAs (compared to 154 known
and 10 novel in the initial publication). The improvement
is largely due to more accurate detection of lowly abundant
miRNAs. We find that miRDeep2 performs slightly better
on the nematode data (104 known and 20 novel versus 102
and 13 novel) and about as well as the initial method on
the dog data (200 novel and three known versus 203 novel
and three known). However, consistent with the imple-
mented changes we find that the most notable improve-
ment in accuracy is in identification of non-canonical
miRNAs like the moRs or the anti-sense miRNAs.
When identifying miRNAs in data from sea squirts, known
to harbor large numbers of non-canonical miRNAs, the

first version of miRDeep only reports 46 known and 31
novel miRNAs. In contrast miRDeep2 reports 313 known
and 127 novel ones (see next section).

miRDeep2 identifies known and novel miRNAs with high
accuracy in seven animal clades

Since the first version of miRDeep was published, se-
quenced small RNA libraries from numerous model
systems have become available from public databases
(5,15,25,37,38,41–44). This has allowed us to re-test the
claim that miRDeep performs species-independent
miRNA discovery by scoring gene features that are
shared by animals. We obtained data from seven animal
species representing vertebrates, non-vertebrate deutero-
stomes, ecdysozoans, lophotrochozoans and non-
bilaterians (see Figure 3 and ‘Materials and Methods’
section). With the exception of human and mouse, these
species all diverged from each other more than 500 million
years ago. For each of the species, all available data were
pooled and then processed and mapped to the reference
genome with the Mapper module (see ‘Materials and
Methods’ section). Then for each of the seven species
the processed reads, mappings, reference genome and
miRBase version 16 known miRNAs were input to the
miRDeep2 module. The default options were used to
analyze data for all species.
The results of the seven runs are shown in Figure 3

(Supplementary Figures S1 and S2). The accuracy of the
predictions is excellent in all species (98.6–99.9%). We use
the common definition of accuracy as the number of
correct classifications divided by the total number of clas-
sifications. The classification problem here consists of

Figure 3. miRDeep2 performance on sequencing data from seven animal clades. miRDeep2 was run on Illumina sequencing data from seven animal
species, representing deuterostomes (human, mouse, sea squirts), ecdysozoans (fruit fly, nematode), lophotrochozoans (planaria) and non-bilaterians
(sea anemone). Accuracy is calculated as accuracy=sensitivity� prevalence+specificity (1-prevalence) and ranges from 98.6% to 99.9%. Sensitivity
is calculated as the fraction of correctly classified miRNA loci. Specificity is the fraction of correctly classified non-miRNA loci. Prevalence is the
fraction of analyzed loci which are miRNA loci. In the calculations, miRNA loci is set equivalent to miRBase miRNA loci, for a discussion of this
assumption, see the ‘Results’ section. The true positive rate of novel miRNAs is estimated from the miRDeep2 built-in controls. In five of the seven
species, both mature and star strand of novel miRDeep2 miRNAs were detected in at least two independent samples. No such independent detection
was possible in the sea anemone data, as data from a single sample was analyzed.
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distinguishing miRNA from non-miRNA genome loci. In
calculating the accuracy we make the assumption that all
miRNAs in miRBase represent genuine miRNA loci,
while all loci that are not in miRBase are non-miRNA
loci. While this assumption almost certainly does not hold
in all cases, the miRBase public database arguably sets the
best standard for which loci represent miRNA genes and
which do not. Thus falsely annotated miRNAs in
miRBase which are not reported by miRDeep2 will
cause the accuracy of the algorithm to be underestimated,
as will genuine novel miRDeep2 miRNAs which are not in
miRBase. Conversely, the presence of genuine miRNAs
which are not detected by miRDeep2 and are not in
miRBase will cause an overestimation of the accuracy.
We calculate accuracy from sensitivity, specificity and
prevalence using the equation: accuracy=sensitivity
�prevalence+specificity (1-prevalence). Sensitivity is the
fraction of miRNA loci that are correctly classified by
miRDeep2 and is high (71–90%) in all seven species.
Specificity is the fraction of non-miRNA loci that are cor-
rectly classified and is excellent (99.2–99.9%) in all seven
species. The prevalence is the fraction of loci analyzed by
miRDeep2 which are miRNA. miRDeep2 reports novel
miRNAs for all seven species, even though some of the
species have already been heavily mined for miRNAs
(human, mouse, nematode). The true positive rate as
calculated by miRDeep2 built-in-controls is at least
�50% in all species except fly. Since the fly data has
already been mined for miRNAs (44) we speculate that
few yet remain in the data to be detected. The positive pre-
dictive value indicates the number of reported miRNAs
which are genuine, summing over known and novel. We
find that it ranges from 84% (sea squirt) to 99% (planaria)
in the data analyzed here. In particular the positive pre-
dictive value is above 90% in all species except sea squirt,
demonstrating high specificity of miRDeep2 predictions.
Furthermore, in 5 of the 7 species miRDeep2 reported
high-confidence miRNAs where both the mature and the
star sequences were detected in at least two independent
samples.
In a recent study, 108 novel mouse miRNAs were manu-

ally curated from comprehensive high-throughput
sequencing data sets (38). These miRNAs are now included
in the public miRBase database. Performing a computa-
tional analysis of the same data, miRDeep2 recovered
72 (66%) of these miRNA candidates. In this previous
study, 17/25 (72%) novel miRNAs were validated by
ectopic expression of the predicted hairpin precursor,
followed by sequencing to detect the resulting Dicer pro-
cessing products. The miRDeep2 sequences that overlap
the tested miRNAs had a similar validation rate (79%) as
the manually curated set. On top of the 108 miRNAs pre-
sented in the earlier study, miRDeep2 reported another
104 novel miRNAs from the data, of which 23 are high-
confidence genes where both mature and star strands were
detected in at least two independent samples.
Consistent with earlier observations (41) we note that

many of the novel reported sea anemone miRNAs have
read signatures that are not typical of Drosha/Dicer pro-
cessing, including short loops and imprecise begin and end
positions of putative mature and star strands.

miRDeep2 distinguishes miRNAs from other
argonaute-bound small RNAs

The nematode data that we analyzed contains
�1.8 million 21U-RNAs, small RNAs that interact with
the Prg-1 protein of the argonaute family and are involved
in worm fertility. Although we did not in any of our
analyses discard reads because of annotation, and
although 21U-RNAs have similar length and sequence
features as miRNAs (40) they only overlapped with a
single miRNA candidate reported by miRDeep2 (out of
32 candidates) showing that their presence does not sub-
stantially affect the gene prediction. Similarly, the planar-
ian data contains overall 43% piRNAs (42), small RNAs
that interact with Piwi proteins of the argonaute family
and normally silence transposons in the animal germline.
None of the novel planarian miRNAs reported by
miRDeep2 overlap with annotated piRNA clusters.

High-throughput validation of novel human miRDeep2
miRNAs

To investigate if the novel miRNAs reported by
miRDeep2 are in fact dependent on the canonical biogen-
esis for expression, we used RNA interference to silence
Dicer in a MCF-7 breast cancer cell line (see ‘Materials
and Methods’ section). Small RNA libraries from unper-
turbed cells and from silenced cells were prepared and
sequenced on the Illumina platform. The small RNAs
were sampled from both cytoplasmic and total cellular
fractions, however these were pooled for the unperturbed
and for the silenced cells. qPCR measurements showed
that Dicer mRNA was downregulated by 54–84% (total
cellular and cytoplasmic, respectively). As negative
controls we first investigated transcripts that are believed
not to be frequently cleaved by Dicer. Specifically, we in-
vestigated how many sequencing reads map to snoRNA,
tRNA and rRNA transcripts in the unperturbed and
silenced cells (see ‘Materials and Methods’ section). For
the snoRNA transcripts, there was a median 1% increase
in the number of mapping reads following the Dicer
silencing, corresponding to a log2 fold-change of 0.02
(Figure 4D). For the tRNA and rRNA transcripts, there
was a 10% and 9% reduction, respectively (Figure 4E and
4F). For �6300 genomic control regions that give rise to
small RNAs but do not fold into hairpins, there was
median reduction of 10% reads following Dicer silencing
(Figure 4G). These results show that transcripts that are
not believed to undergo frequent Dicer processing are
largely unaffected by the silencing. We speculate that the
small RNAs produced from these transcripts may be
produced by Dicer independent pathways or degradation.
As positive controls we investigated how many reads map
to miRNAs from the public miRBase database. We found
a median reduction of 56% corresponding to a log2
fold-change of �1.2, showing as expected that miRNA
expression is substantially affected by Dicer silencing
(Figure 4H). Taqman measurements showed that the ma-
ture miR-16 transcript was downregulated by 68–74%
(total cellular and cytoplasmic fractions respectively).
According to the read count miR-16 is downregulated
by 40–53%, suggesting that our sequencing analysis may
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underestimate the downregulation upon Dicer silencing.
The miRNAs predicted by miRDeep2 had a log2 fold-
change of �1.3 which corresponds to a median reduc-
tion of 59% upon Dicer silencing similar to those in
the miRBase database (Figure 4I and Supplementary
Table S1). We also predicted novel miRNAs with the
competing programs miRanalyzer 0.2 (Figure 4J),
MIReNA (Figure 4K) and miRTRAP (Figure 4L)
taking care to use the same input data and running all
programs with their default options (see ‘Materials and
Methods’ section).

Novel miRNAs that are predicted by both miRDeep2
and the competing programs consistently show the
strongest response upon the knockdown in comparison
to predictions that are exclusive to miRDeep2 or the

competing programs. Predictions exclusive to miRDeep2
show a stronger response than predictions exclusive to
miRanalyzer or MIReNA. The miRTRAP-specific predic-
tions only respond weakly to the Dicer knockdown. These
results suggest that miRDeep2 performs better than
competing programs for miRNA prediction.
Nonetheless, the competing programs do predict
miRNAs that were missed by miRDeep2 but react to
the knockdown, indicating that the methods are to some
degree complementary.

miRDeep2 analysis of �30 million RNAs consumes less
than 5 h and 3 GB memory

The sequence data produced by high-throughput platforms
often map to millions of genomic loci. Investigating each of

A B

H IGFED

J K L

Figure 4. Effect of Dicer silencing on small RNA expression. RNA interference was used to silence Dicer in a MCF-7 cell line. (A) Schematic
representation of the experiment; levels of Dicer mRNA in total cells (B) or cytoplasm (C) before and after silencing. Fold-changes in small RNA
expression are noted for (D) snoRNAs, (E) tRNAs, (F) rRNAs, (G) genomic control sequences, (H) miRBase miRNAs, (I) novel miRNAs reported
by miRDeep2. The median fold-change is indicated above each plot. A comparison of predictions by miRDeep2 with (J) miRanalyzer, (K) MIReNA
and (L) miRTRAP was done. The predicted precursors are assigned to sets based on sequencing support, e.g. all the precursors in sets labeled ‘5’ are
supported by five or more sequencing reads (control+siDicer). Precursors reported only by miRDeep2 are in blue, precursors reported only by the
competing program are in orange. Precursors reported by both are in purple.
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these loci can be time consuming and also unnecessary,
since the vast majority have only one or two reads map-
ping, which in any case cannot provide solid evidence for
Dicer processing. To solve this problem, miRDeep2 can be
given an option to only analyze genome loci that harbor a
read stack of a designated minimum height. In the default
mode, miRDeep2 automatically estimates this minimum
height based of the depth of the data, thus ‘gearing’ the
analysis for the data (see ‘Materials and Methods’ section).
In addition we have identified bottlenecks in terms of
memory and time consumption and smoothed them,
either by rewriting source or by incorporating better
tools into the package. For instance, we have incorporated
the Bowtie (34) mapping tool into all modules. Performing
a full analysis on �30 million sequenced small RNAs from
human liver consumed <5 h and <3 GB memory, showing
performance in the typical use case. This analysis includes
mapping all reads to the human genome. In addition, we
have analyzed �100 human small RNA datasets from the
SRA and GEO public databases, comprising altogether
�0.7 billion reads after stringent filtering (see ‘Materials
and Methods’ section). miRDeep2 analyzed these data in
57 h, consuming �4.1 GB memory. The analysis of in-
creasingly small sampled subsets of the data suggests
that analysis time increases by a factor four for every
10-fold increase in input data, while memory consumption
stays nearly constant (see ‘Materials and Methods’ section
and Supplementary Table S2). While most known
miRNAs were recovered when just �0.15 billion reads
were analyzed, increasing numbers of novel miRNAs
were reported with higher confidence as more data were
analyzed (Supplementary Table S2).

Modularization and graphic output make miRDeep2
user friendly

In the first version of the miRDeep software package, a
number of scripts had to be called consecutively by the
user to run the entire analysis pipeline. In contrast,
the miRDeep2 software package comprises three
modules which are each run with a single command line.
This means, for instance, that a raw Illumina sequencing
data set can be processed, mapped to the genome (using
the Mapper module), and mined for known and novel
miRNAs (using the miRDeep2 module) in just two com-
mand lines. A progress report file summing up all pipeline
steps is automatically generated for each analysis.
The miRDeep2 module integrates all results in a .html
file as well as a corresponding tab-separated file which
contain detailed information on every known and
novel miRNA in the data (Figure 5). In the top of the
.html file is a survey of miRDeep2 performance for
varying score cut-offs. For each score cut-off the sensitiv-
ity and number of true positive novel miRNAs is
estimated, allowing the user to choose the sensitivity/spe-
cificity trade-off that is desirable for the particular
analysis. Below is a summary table listing all known
and novel miRNAs in the data. If mature and precursor
miRNAs for the species analyzed have been input, the
table also includes any known miRNAs that were not
detected by miRDeep2. For each miRNA all generated

results are given, including: miRDeep2 score, estimated
probability that the reported miRNA is genuine,
summary of sequences and read counts and a field that
indicates if the reported miRNA matches reference rRNA
and tRNA Rfam sequences. Furthermore, each miRNA is
linked to graphics that provide detailed information about
the secondary structure, sequencing reads aligned to the
miRNA precursor as well as a miRDeep2 score break-
down (Figure 2). The summary table also links to a
number of public databases, including miRBase, NCBI
blast search and the UCSC genome browser for the
species analyzed.

Numerous novel human miRNAs originate from diverged
transposons

Our analysis of sequenced small RNAs from human liver
samples yielded 124 novel miRNA candidates, while our
analysis of small RNAs from human cell lines yielded 147
novel candidates (Figure 3). There is an overlap of 13
hairpins between the two sets, so in total we report 258
novel human miRNA candidates. Given that the built-in
controls of miRDeep2 indicate that these are not all genu-
ine, we conservatively curated a set of high-confidence
miRNAs where both the mature and the star sequences
had been detected in minimum two independent samples.
This yielded a set of 42 non-redundant high-confidence
miRNA candidates. A subset of 16 high-confidence
miRNAs (�40%) locates to LINE, SINE or DNA trans-
posable elements (Table 1). These elements have however
all diverged from the consensus sequences (by 8–31%),
suggesting that they are no longer mobile instances.
While most searches for miRNA genes initially discard
all candidates that locate to repeats [e.g. (15)] our results
show that miRNA genes can originate from transcribed
inactive transposable elements, consistent with previ-
ous findings (45,46). Several of the miRNAs locating to
transposable elements were primarily supported by unam-
biguously mapping reads, showing that we have correctly
identified the source of the small RNAs (e.g.
Supplementary Figure S3). Two of the high-confidence
miRNAs locate to putative protein-coding genes. One is
contained in CDS and the other one overlaps with 50 UTR.
These may be false annotations or may be genuine protein-
coding genes that give rise to small RNAs similar to the
Dgcr8 transcript (47,48). Two miRNAs were found to be
anti-sense to the known miRNAs hsa-mir-219-2 and
hsa-mir-1295, and five other miRNAs locate to annotated
snoRNAs, consistent with previous reports that snoRNAs
can be processed into functional small RNAs [e.g. (49,50)].
The remaining 17 predicted novel miRNAs map either to
intergenic (5) or intronic (12) genomic locations.

DISCUSSION

We have tested miRDeep2 on high-throughput sequencing
data from all major animal clades, including vertebrates,
non-vertebrate deuterostomes, ecdysozoans, lophotro-
chozoans and non-bilaterians. miRDeep2 identifies
miRNA genes with high accuracy (98.6–99.9%) and sen-
sitivity (71–90%) in all clades. Furthermore, in all species
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except fly did miRDeep2 report numerous novel miRNAs,
many of which are high-confidence candidates, where both
mature and star sequence were both detected in at least
two independent samples. We speculate that the fly data
has already been completely mined for miRNAs.

The nematode and planarian data sets contain millions
of argonaute-bound 21U-RNAs and piRNAs respectively,
many of which have length and sequence features similar
to miRNAs. However, even though no sequences were dis-
carded because of annotation they did not cause signifi-
cant numbers of false positives, showing that miRDeep2
can confidently distinguish miRNAs from other
argonaute-bound small RNAs.

To perform high-throughput validation of our novel
human miRNAs, we silenced Dicer and used sequencing
to measure changes in small RNA expression upon the
perturbation. Since normalization of small RNA data
across samples is not trivial, we observed changes in nega-
tive controls (snoRNAs, rRNAs, tRNAs and non-hairpin

transcripts) and positive controls (miRNAs from the
miRBase public database). We observed that our novel
human miRNAs have almost exactly the same response
to Dicer silencing as do the miRNAs from the public data-
base. miRanalyzer and MIReNA candidates were less re-
sponsive to the knockdown. In contrast, only a small
subset of the miRNAs predicted by the miRTRAP algo-
rithm responds to downregulation, indicating that many
may be false positives.
We have shown that miRDeep2 can perform a full ana-

lysis of �30 million sequenced human RNAs consuming
less than 5 h and 3 GB memory. Our benchmarking shows
that time consumption scales better than linear with
the number of reads input, suggesting that miRDeep2
will still be efficient if output from high-throughput
sequencing platforms increases by another order of mag-
nitude. For the dataset with 740 million reads the memory
consumption was �4.1 GB which is still well within the
capacities of scientific computers.

Figure 5. Example miRDeep2 output: performance survey and novel human miRNAs. For each analysis, miRDeep2 outputs a single .html page that
links to all results generated by the module. In the top of the .html file is a survey of miRDeep2 performance for varying score cut-offs, providing
estimates of sensitivity and number of true positive novel miRNAs. Below is a table of novel miRNAs discovered in the sequencing data. Each line
includes the following information on one novel miRNA candidate: the miRDeep2 score, the probability that the miRNA candidate is genuine given
the evidence from the sequencing data, sequence and read count summaries, a link to a graphic representation of structure and read signature
(example seen in Figure 2), a link to the UCSC genome browser for the species analyzed, and a link to NCBI blast results for the candidate precursor
sequence.
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We hope that the improved interface of miRDeep2 will
make the algorithm useful to a wider range of biologists
who do not have extensive computational experience. The
graphic output will also benefit experienced users,
allowing easy manual inspection of the results and fast
links to relevant databases.
In analyzing the human sequence data, we noticed

that between the 124 novel miRNAs detected in liver
and the 147 detected in cell lines there was only a
limited overlap of 13 genes. These tendencies also hold
when we limit the analysis to high-confidence miRNAs
where both mature and star sequences were both
detected in at least two independent samples. This
suggests that human miRNA annotation is still far from
saturation, consistent with the fact that novel human
miRNAs are submitted to miRBase at a non-diminishing
pace. However, while the number of miRNA genes
steadily grows, these novel sequences account for increas-
ingly small fractions of the cellular small RNAs. This
raises the question if these very lowly abundant Drosha/
Dicer products have cellular functions that are under
positive selection or if they are rather under neutral selec-
tion because they are too lowly abundant to have any real
effect on protein output (51). Resolving this question by
looking at conservation patterns of miRNA genes and
their target sites may be difficult, since lowly abundant
miRNAs also tend to be less conserved. However,
saturated sequencing of many closely related species
combined with ‘phylogenetic shadowing’ (52) might
reveal positive selection working on miRNAs that are
only present in single animal clades. Similarly, novel
high-throughput technologies like CLIP-seq (53,54)
might reveal miRNA target sites that are preferentially
bound by argonaute proteins, thus bypassing the need
for conservation analysis. Still, in the years to come it
might be much more difficult to determine if a small
RNA has a function than to determine if it is a product
of miRNA biogenesis.
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