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Abstract

Background: MicroRNAs (miRNAs) are recognized as one of the most important families of non-

coding RNAs that serve as important sequence-specific post-transcriptional regulators of gene

expression. Identification of miRNAs is an important requirement for understanding the

mechanisms of post-transcriptional regulation. Hundreds of miRNAs have been identified by direct

cloning and computational approaches in several species. However, there are still many miRNAs

that remain to be identified due to lack of either sequence features or robust algorithms to

efficiently identify them.

Results: We have evaluated features valuable for pre-miRNA prediction, such as the local

secondary structure differences of the stem region of miRNA and non-miRNA hairpins. We have

also established correlations between different types of mutations and the secondary structures of

pre-miRNAs. Utilizing these features and combining some improvements of the current pre-

miRNA prediction methods, we implemented a computational learning method SVM (support

vector machine) to build a high throughput and good performance computational pre-miRNA

prediction tool called MiRFinder. The tool was designed for genome-wise, pair-wise sequences

from two related species. The method built into the tool consisted of two major steps: 1) genome

wide search for hairpin candidates and 2) exclusion of the non-robust structures based on analysis

of 18 parameters by the SVM method. Results from applying the tool for chicken/human and D.

melanogaster/D. pseudoobscura pair-wise genome alignments showed that the tool can be used

for genome wide pre-miRNA predictions.

Conclusion: The MiRFinder can be a good alternative to current miRNA discovery software. This

tool is available at http://www.bioinformatics.org/mirfinder/.
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Background
An overview of miRNA

MicroRNA (miRNA) is a special class of endogenic RNA
molecules that can down-regulate the expression of pro-
tein coding genes at the post-transcriptional level by
means of incomplete complementary interactions. The
biogenesis of miRNA involves several steps: 1) The major-
ity of long primary transcripts of the miRNA genes are
transcribed by RNA polymerase II [1,2]; 2) The 7-methyl-
guanosine capped and poly(A) tailed transcripts are
cleaved by the nuclear RNase III Drosha to release the pre-
cursors of miRNA (pre-miRNA) in the nucleus [3]; 3) The
precursors of miRNA that possess a thermodynamic sta-
bile hairpin structure are exported into the cytoplasm by
Exportin-5 or HASTY [4-7] and 4) An additional cleavage
in the cytoplasm yields 18–23 nt mature miRNA [8-10].
The first two miRNAs, lin-4 and let-7, were discovered as
important post-transcriptional regulators for the develop-
ment of Caenorhabditis elegans in the early larval stage
[11]. Since then, considerable effort has been devoted to
finding miRNA genes, and to date, numerous miRNAs
have been identified. Recent experiments, aimed at eluci-
dation of the function of miRNAs, have confirmed that
many miRNAs are involved in potentially many develop-
mental and physiological processes [summarized in addi-
tional file 1 table 1].

Existing approaches for miRNA identification

Systematic miRNA identification was first made by the
cloning and sequencing of cDNAs prepared from the
approximately 22-nuleotide (NT) fraction of total RNA
[12-14]. A number of miRNAs from various species have
been cloned by this method. However, the expression lev-
els of miRNAs are quite different in different tissues and at
different developmental stages [12]. The expression levels
of some miRNAs are too low for easy detection. Moreover,
in many cases not all of the tissues and developmental
stages were sampled. The majority of miRNAs cloned by
this method are abundantly/ubiquitously expressed ones
that dominate the extracted RNA products due to techni-
cal difficulties.

Computational methods, using newly acquired genome
sequences from a variety of species, represent another use-
ful way to avoid these problems in miRNA identification
[summarized in additional file 1 table 2]. The conserved
structure, phylogenetic shadowing and other features of
miRNAs suggest that a computational approach may com-
plement well the direct cloning method. A homology
search, which can detect homologues of known miRNAs,
was first successfully implemented in miRAlign [15]. With
a primary focus on pair-wise genome sequences, com-
bined with some sequence features to distinguish miRNA
and non-miRNA hairpins, a number of tools have success-

fully predicted miRNA genes that display close homology
in two species [16-18].

Furthermore, some machine-learning methods, including
the SVM method, have been introduced into miRNA pre-
diction and have been used with some success [19-24].
The SVM method was first introduced by Pfeffer et al. [22].
The features they used are simple and straightforward: the
free energy of folding, the length of the longest symmetri-
cal stem, the count of A, C, G and U nucleotides in the
symmetrical stem, and the number of A-U, G-C and G-U
pairs in the predicted minimal energy structure. After
training they obtained a model that assigned a positive
score to 71% of the true positives and to only 3% of false
positives. Another set of novel secondary structure
description syntaxes were developed by Xue et al. [21]
who used triplet elements to represent the local contigu-
ous structure-sequence information and proposed a set of
new parameters. After training with positive and negative
datasets, they achieved a level of about 90% accuracy with
human data.

In three recent studies, RNAmicro, miRNA SVM and
miPred extended the usage of SVM in miRNA prediction
[23-25]. Utilizing multiple sequence alignments, Hertel et
al. developed a SVM based program, RNAmicro, to predict
miRNAs in various organisms [23]. Descriptors intro-
duced into the program include the properties of the hair-
pin, Z-score related properties and entropy related
properties. The tool can be used to recognize microRNA
precursors in multiple sequence alignments and has been
successfully applied to recent genome-wide surveys of
mammals, urochordates and nematodes. The miRNA
SVM program introduced by Helvik et al. was based on
prediction of 5' Drosha processing sites in hairpins, which
are essential for pre-miRNA discovery [24]. The classifier
can correctly predict the processing site for 50% of the
known human 5' miRNAs. The miRNA SVM program
used 18 features including the composition properties of
the hairpin and a set of processing site related properties.
A definitive effort to compile 29 global intrinsic hairpin
folding attributes from the pre-miRNA sequences without
relying on the comparative genomic information was per-
formed by Kwang et al. [25]. They characterized a pre-
miRNA at the dinucleotide sequence, hairpin folding,
non-linear statistical thermodynamics and topological
levels. The SVM classifier model was trained on 200
human pre-miRNAs and 400 non-miRNA hairpins, and
achieved 93.50% accuracy.

Motivation of our study

It is commonly recognized that the small miRNA family is
quite large. To date, 474 human and 78 fly miRNAs have
been discovered, and more are likely to be identified [26].
A major concern in miRNA identification now is the need
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to improve existing prediction methods and develop new
methods for better performance and efficiency.

In a large genome, there are many sequence segments that
can fold into hairpin secondary structures similar to pre-
miRNA. However, pre-miRNAs are only a very small pro-
portion of these sequence segments. Therefore, distin-
guishing between miRNA and non-miRNA hairpins is
crucial in the computational identification of miRNAs.
The hairpin structure of pre-miRNA is a good feature for
miRNA prediction, but hairpin structures are not unique
to miRNAs. The short length of pre-miRNA sequences,
with low specificity relative to the overwhelming number
of genome background sequences, makes genome-wide
miRNA prediction complicated. The majority of the non-
miRNA hairpins residing in a genome can be removed by
genome comparisons. The drawback of this method is
that multiple genome alignment is computationally
intensive. In addition, the existing packages using multi-
ple alignments that detect pre-miRNA candidates may
lose real pre-miRNAs that are less conserved or conserved
only between two species. On the other hand, the pair-
wise genome alignments are relatively easy to implement.

Combining previously published work, our analyses of
the pre-miRNA sequences indicated that the current
knowledge of the secondary structure and the mutation
characteristics of the pre-miRNAs are incomplete. Com-
parative analyses and computer simulation revealed a set
of mutation-related features valuable for pre-miRNA pre-

diction. Based on the evaluation of the features discovered
so far, we have improved the syntax to describe the stem-
loop structure for effective miRNA prediction and devel-
oped a new tool, miRFinder, which uses a comprehensive
combination of many well-selected parameter measure-
ments for improved miRNA prediction. Here we report
our successful in silicon prediction of pre-miRNA candi-
dates using miRFinder.

Implementation
Vectors representing the features of pre-miRNA

The miRFinder tool improves the ability to distinguish
between miRNA and non-miRNA hairpins by improving
the representation of the sequence and structure features
of pre-miRNA. Our investigation showed that the rela-
tionship between mutation patterns and the secondary
structures of pre-miRNA are significantly distinct from
that of non-miRNA hairpins. According to most literature,
the pre-miRNA coding arm suffers the highest selective
pressure, followed by the non-coding arm, stem region,
loop region, and flanking sequence. A mutation on the
stem region containing the mature miRNA seldom hap-
pens [16,27]. Our analysis revealed that 23 out of the 72
conserved pre-miRNAs between D. melanogaster and D.
pseudoobscura have mutations in the stem region. We
also found a large number of similar pre-miRNAs that
have mutations in the stem region in the human, the
mouse and other organisms. Further analysis showed that
all of these mutations have only slight changes in the sec-
ondary structure of pre-miRNA (Figure 1). We call them

Mutation profile of miRNAFigure 1
Mutation profile of miRNA. There are three types of mutations that cause slight disturbance of the secondary structure of pre-
miRNA: (1) mutations in the loop region; (2) mutations between A and G, U and C in the stem region; (3) mutations in the 
interrelated region of both arms that do not break the base-pairing. The three types of mutations are marked by the numbers 
1, 2 and 3, respectively, under the alignments. The conserved nucleotides are marked as "*".
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neutral mutations. Theoretically, mutations between A
and G, and U and C suffer relatively lower selective pres-
sure due to the compatibility of G-U base-pairing in pre-
miRNA during evolution, which may increase their muta-
tion frequency (Table 1, pMutFeq). Unfortunately the
mutation frequencies between A and G, and U and C are
not sufficiently different to distinguish the miRNA and
non-miRNA hairpins. This is due mainly to the relatively
short length of pre-miRNA and the masking effect of the
inherent high mutation frequency between A and G, and
U and C. However, in non-miRNA hairpins the distur-
bance of the secondary structure and MFE resulting from
mutations is much higher than that of real pre-miRNAs
(Table 1, pVStrc and pVMFE). The mutation types of pre-
miRNAs and their influence on the secondary structure
are valuable features for pre-miRNA prediction but have
been seldom used for prediction.

Recent reports have shown that local sequence features,
such as the distribution of the loops, are distinctly differ-
ent between that of miRNA and non-miRNA hairpins. We
improved the syntaxes proposed by Xue et al. [21] to fur-
ther elucidate the information of the local secondary
structure [see additional file 1 for details of the syntax].
We introduced five symbols "=", ":", ".", "-" and "^" (indi-
cating states of paired, unpaired, insertion, deletion and
bulge, respectively) to mark the states of each nucleotide
in secondary structure prediction. The new syntax focused

on the information of every two adjacent symbols. The
frequency of each combination defines a set of novel and
useful features (Table 1, Parameters 9–18). As an example,
Figure 2 illustrates how a hairpin is represented using the
new syntax.

A selection criterion, which has been used by Dror et al. is
used to show the discriminative power of these parame-
ters [28] (Table 1). The results show that these parameters
represent important features for pre-miRNA prediction.

Dataset preparation for SVM model training and testing

Construction of the training datasets involved several
steps. 1) Construction of positive training subsets. The
positive training subsets contained about 4,000 pre-
miRNA pairs. The pre-miRNA sequences of human,
mouse, pig, cattle, dog and sheep collected from the miR-
Base (release 8.2) [29] were compared with each other to
find the conserved pairs between any two species. The
pairs of secondary structure containing multiple loops
were eliminated from the datasets. 2) Construction of
negative training subsets. The negative training subsets
were constructed by the sequence segments extracted from
UCSC genome pair-wise alignments (human, mouse)
[30]. We used a program that implemented the SW-like
algorithm [see the algorithm in additional file 1] to scan
the sequence segments that can fold to form hairpin sec-
ondary structures. About 10% of the sequence segments

Table 1: Test results of the 18 parameters implemented in miRFinder

Parameters Pre-miRNA Non-miRNA Hairpins Parameter Test

ID Symbol Mean Std. Deviation Mean Std. Deviation F value T test

01 pMFE -0.444 0.072 -0.218 0.086 1.44 0.000

02 pVMFE 0.455 0.936 0.506 0.632 0.03 0.014

03 pVStrc 0.903 1.812 3.635 4.703 0.41 0.000

04 pMatch 0.892 0.063 0.639 0.176 1.06 0.000

05 pDI 0.050 0.058 0.088 0.126 0.21 0.000

06 pMismatch 0.097 0.060 0.196 0.119 0.55 0.000

07 pBulge 0.014 0.036 0.169 0.209 0.64 0.000

08 pMutFreq 0.018 0.024 0.136 0.126 0.78 0.000

09 "=-" 0.043 0.029 0.035 0.031 0.13 0.000

10 "==" 0.649 0.081 0.466 0.089 1.08 0.000

11 "=:" 0.090 0.041 0.093 0.037 0.04 0.001

12 "--" 0.023 0.041 0.043 0.076 0.17 0.000

13 "-=" 0.043 0.029 0.035 0.031 0.13 0.000

14 "^^" 0.008 0.021 0.090 0.130 0.54 0.000

15 "^=" 0.014 0.018 0.044 0.026 0.69 0.000

16 "::" 0.044 0.044 0.102 0.086 0.45 0.000

17 ":^" 0.014 0.018 0.044 0.026 0.69 0.000

18 ":=" 0.076 0.041 0.048 0.037 0.36 0.000

Note: T tests are 2-tailed. The F value represents the discriminative power of the parameters. The 18 parameters were coded as. 1: Minimum Free 
Energy; 2: The difference of the MFE of the sequence pair; 3: The difference of the structure of the sequence pair; 4–7: Base pairing and other 
properties of the 22 mer hypothesized mature miRNA; 8: The mutation frequency of the sequence segment pair; 9–18: The frequency of the 10 
possible secondary structure elements (combinations of 2 adjacent characters) in the pseudo code of stem region (represented by the new syntax). 
[See details in additional file 1].
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were extracted by a stratified selection to generate a subset.
The sequences that contained experimentally confirmed
pre-miRNAs were eliminated manually. The negative
training subsets were constructed by randomly selecting
about 4,000 sequence segments from the subset. [See the
datasets in additional file 2].

We also created test datasets containing a negative subset
simulating the background of the genome sequence and a
positive subset containing homolog pre-miRNA pairs. The
construction of the negative subset was based on earlier
methods for computational problems described in the lit-
erature, co-mingling a set of non-miRNA genomic
sequences from different species with a set of shuffling
sequences [31]. We tried to avoid an unbalanced case
study by using a combination of each sequence type
(6,193 chicken non-miRNA genomic sequences and
5,000 shuffling sequences). The positive subset (contain-
ing 500 homolog pre-miRNA pairs) was generated by a
comparison of pre-miRNAs between different species.
[See the datasets in additional file 2].

Development of new tool for pre-miRNA prediction

Utilizing the 18 parameters (Table 1), we developed a
tool, called MiRFinder, to predict pre-miRNAs that are
conserved in two genomes. There are three major steps
built into the program (Figure 3). An algorithm based on
the Smith-Waterman algorithm [32] was developed to

quickly scan the genome pair-wise sequence to get the
regions that have high potential to form a hairpin [see
additional file 1 for details]. The criteria for the selection
were: a) a minimum length of the hairpin of 18 nucle-
otides (lowest number of base pairings of mature miRNA)
and b) no multiple loops. The good loops were folded by
a modified version of the Vienna RNA package [33] to get
all of the possible secondary structures. Hairpin loops
were picked up, and the relevant punish scores corre-
sponding to the 18 parameters were calculated based on
the sequence information, MFE and secondary structure.
The final classification of pre-mirRNAs from non-mirRNA
hairpins was based on excluding non-robust structures by
SVM scoring.

The punish scores of 18 proposed parameters of the train-
ing datasets (see "dataset preparation for SVM model
training and testing" section) were calculated to generate
score datasets. The score datasets were split into two sub-
sets (TS1, TS2), one for training and one for cross valida-
tion. Each subset included 1,500 positive samples and
1,500 negative samples selected from the score dataset by
a random procedure. For each dataset, all parameters were
scaled linearly from -1 to 1. The TS1 was used for the SVM
model training. A SVM classification program, LIBSVM
[34], was trained to generate a model to classify the loops
as pre-miRNA or other sequences. A cross validation (CV)

An example of how a hairpin is represented using the new syntaxFigure 2
An example of how a hairpin is represented using the new syntax. Symbols of "=", ":", ".", "-"and "^" indicate states of paired, 
unpaired, insertion, deletion and bulge, respectively. The frequency of each element (combinations of every two adjacent sym-
bols) of the pseudo code of the structure will be used as input vectors for SVM.
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The pipeline of the miRFinderFigure 3
The pipeline of the miRFinder. It consists of 5 steps: (1) Smith-Waterman like algorithm searches the genome of short hairpins; 
(2) The sequence is folded by RNALfold (Hofacker et al., 2004) to get the local structure; (3) the extended good loops is 
picked out by schLoop; (4) the good loops are re-folded by RNAfold (Zuker & Stiegler, 1981) to get the MFE and secondary 
structure; (5) the Punish program calculates the punish score of each paired sequence segments; (6) the sequence is then pre-
dicted to be miRNAs or non-miRNA hairpins using the SVM (support vector machine) classifier.
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technique was used for the selection of the most suitable
parameters for training.

Results and discussion
MirFinder can accurately distinguish miRNA and non-

miRNA hairpins

The training of the model yielded an accuracy rate of
99.6% (radial basis function-kernel, g-0.125 c-32, five
folds cross validation). The TS2 subset was subsequently
used to test the model. The results show that the model
could correctly assign 99.4% of the samples in TS2. The
ROC cure analysis of the model showed that the AUC is
approximately equal to 1 (Figure 4). The results show that
our method had good performance distinguishing
between miRNA and non-miRNA hairpins.

An actual example: testing of the tool with aligned genome 

data from chicken/human and D. melanogaster/D. 

pseudoobscura comparisons

To test the performance of the tool in actual prediction,
miRFinder was used to predict pre-miRNAs from chicken/
human pair-wise genome alignments. The alignments
were downloaded from the UCSC bioinformatics site
[30]. The program was run on a desktop computer (1.8
GHZ CPU, WindowsXP and 256 M RAM). A total of 222
good candidates were obtained [score>0.9, see additional

file 1 figure 3A]. These candidates were aligned to the pre-
miRNAs collected from miRBase [29]. A total of 60
matched experimentally confirmed chicken pre-miRNAs
were identified [with 86 experimentally confirmed pre-
miRNAs that are highly conserved between the chicken
and human genomes; the prediction match rate is 70%
(60/86), see additional file 1 figure 1A and additional file
3 table 1]. In total, 159 sequence segments with high
potential to be pre-miRNAs were detected by miRFinder
[see additional file 1 figure 1B and additional file 3 table
1]. The prediction results of the chicken/human genome
alignments showed that the tool has good performance.
In our experience the tool is easy to operate and does not
demand much computing power, thus it may be used for
high throughput prediction.

To test whether the miRFinder was suitable for organisms
other than vertebrates, it was used to predict pre-miRNAs
in D. melanogaster/D. pseudoobscura genome align-
ments. We obtained 188 good candidates [score>0.9, see
additional file 1 figure 3B], of which 34 matched experi-
mentally confirmed miRNAs [see additional file 4 table
2]. With about 73 pre-miRNAs highly conserved between
the D. melanogaster and D. pseudoobscura genomes, the
prediction results showed that the detection rate was 47%
(34/73). Our results suggest that the tool can be imple-

The ROC-curveFigure 4
The ROC-curve. The solid line shows the ROC-curve for the miRFinder that was trained on miRNAs versus non-miRNA hair-
pins. The points for Sewer, ProMir, Triplet-SVM, miRNA-SVM, miPred, and RNAmicro are the sensitivities and specificities 
reported by Sewer et al. (2005), Nam et al. (2005), Xue et al. (2005), Hertel et al. (2006), Helvik et al. (2007) and Kwang Loong 
et al. (2007). The sensitivity and specificity of miRScan are 0.5 and 0.7, respectively, and are not included in the figure. Panel (A) 
is a detailed excerpt of Panel (B).
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mented in the fly genome, but the performance was
apparently worse than in the chicken genome.

Assessing the tool

In this study, we assessed the miRFinder along with other
similar miRNA prediction tools, miRscan and triplet-SVM
[21,35]. The miRscan is one of the most well-known and
widely used miRNA prediction software designed for
miRNA prediction in the C. elegans/C. briggsae genomes
[35]. The triplet-SVM classifier is well regarded for distin-
guishing between miRNA and non-miRNA hairpins in
animals, plants and other genomes, and was optimized
for the human genome [21]. These tools have relatively
good performance. Some other tools also reported good
performance, but they are methodologically different or
not supported to scan genomes, such as ProMiR, and thus
not included in this assessment.

In assessing the tool, two major aspects were taken into
consideration: 1) the false discriminative rates (the false
positive rate) and 2) the detectable rate (the sensitivity).
Each program was run with the test datasets on the default
configuration settings.

We used relatively small test datasets (see "dataset prepa-
ration for SVM model training and testing" section) to
examine the performance of miRFinder and miRscan. The
results of the miRFinder and miRscan trials are similar, to
some extent. For the negative datasets the false discrimina-
tive rates of miRFinder and miRscan were 0.70% (79/
11,193) and 0.23% (26/11,193), respectively. Interest-
ingly, 11 sequences were recognized as good candidates
by both of the software programs. However, for the posi-
tive datasets only 158 (158/500) sequences were recog-
nized as good pre-miRNA candidates by miRScan, while
over 99% of these pre-miRNAs were detected by miR-
Finder. These results are similar to the reports that the
application of MiRscan for the C. elegans/C. briggsae
genome analysis can detect only half of the 58 previously
known miRNAs [35].

For the 11,193 hairpin-like sequences derived from the
partial sequences of the chicken genome, over 1,000 were
recognized as good candidates by triplet-SVM. This result
is similar to the evaluations of triplet-SVM classifier
reported by Helvik et al. [24]. Compared with triplet-SVM,
miRFinder reduced the number of the candidates to about
10%. Nevertheless, miRFinder was focused on the con-
served pre-miRNAs and thus possibly missed the non-
conserved pre-miRNAs.

Noticeably, processing a large vertebrate genome for pre-
miRNA prediction is time consuming. Test results
revealed that miRFinder is faster than miRscan (hundreds
of mega-bases per CPU hour compared to several mega-

bases per CPU hour, respectively). For example, to process
530 sequences, miRFinder took only 40 seconds while
miRscan took 215 seconds [see additional file 1 figure
1E].

Conclusion
MirFinder can accurately distinguish between miRNA and
non-miRNA hairpins. Compared to similar methods, our
method has better performance. At sensitivity levels, mir-
Finder is comparable to methods, such as RNAmicro, that
rely on sequence or structure conservation [23]. Further-
more, our method reduces the number of candidates,
which makes it more practical than others. A down side
might be that the species specific pre-miRNAs could be
lost since these miRNAs would be left out in the sequence
alignment step before starting the prediction.
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