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Abstract 
MicroRNAs (miRNAs) are an important class of gene regulators, acting on several aspects of 
cellular function such as differentiation, cell cycle control and stemness. These master regulators 
constitute an invaluable source of biomarkers, and several miRNA signatures correlating with 
patient diagnosis, prognosis and response to treatment have been identified. Within this exciting 
field of research, whole-genome RT-qPCR based miRNA profiling in combination with a global 
mean normalization strategy has proven to be the most sensitive and accurate approach for high-
throughput miRNA profiling (Mestdagh et al., Genome Biology, 2009).  
In this chapter, we summarize the power of the previously described global mean normalization 
method in comparison to the multiple reference gene normalization method using the most 
stably expressed small RNA controls. In addition, we compare the original global mean method to 
a modified global mean normalization strategy based on the attribution of equal weight to each 
individual miRNA during normalization. This modified algorithm is implemented in Biogazelle’s 
qbasePLUS software and is presented here for the first time. 
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Introduction 
Accurate quantification of micoRNA (miRNA) gene expression is a major challenge in the field 
and largely depends on two factors, i.e. the technology used to measure miRNA expression and 
the choice of a proper normalization strategy. Several methods have been developed to quantify 
miRNA expression such as microarrays1-4 bead-based flow-cytometry5 and small-RNA 
sequencing6-9. While these methods enable genome-wide miRNA expression profiling, they 
typically require substantial amounts of input RNA which precludes the use of single cells, small 
biopsies or body fluids such as serum, plasma, urine or sputum. While reverse transcription 
quantitative PCR (RT-qPCR) intrinsically has a much higher specificity and sensitivity, down to a 
single molecule, it requires some adjustments to enable quantification of small RNA molecules 
such as miRNAs. Mature miRNAs consist of 21-25 nucleotides and are too short to serve as 
templates in a RT-qPCR reaction. Therefore, different modifications of the classical RT-qPCR 
workflow have been developed in order to allow RT-qPCR-based miRNA expression profiling. 
One approach relies on the use of a miRNA specific stem-loop primer that hybridizes to the 3’ end 
of the mature miRNA10. The loop unfolds upon denaturation, providing an elongated template 
that can be used in a subsequent qPCR-reaction. Alternatively, the mature miRNA is 
polyadenylated and a poly-T primer is used to initiate the RT-reaction11. Next to sensitivity, RT-
qPCR based approaches have a superior specificity, linear dynamic range of quantification and a 
high level of flexibility making RT-qPCR the gold standard for small RNA expression profiling. 
Importantly, the accuracy of the results obtained through RT-qPCR miRNA expression profiling is 
largely dependent on a proper normalization strategy12, 13. Different variables, inherent to the 
RT-qPCR workflow need to be controlled for in order to distinguish true biological changes from 
technical variation. These include the amount of starting material, enzymatic efficiencies, and 
overall transcriptional activity14. The use of multiple stable reference genes is generally accepted 
as the method of choice for RT-qPCR data normalization14. These stable reference genes can be 
identified from a set of candidate reference genes in a pilot experiment on a selection of samples 
that are representative for the experimental conditions under investigation. Different algorithms, 
such as geNorm, allow to rank the candidate reference genes according to their stability and 
indicate the optimal number of reference genes required for accurate normalization of gene 
expression. In the case of miRNA expression profiling, only few candidate reference miRNAs have 
been identified15. Typically, other small endogenous non-coding RNAs such as small nuclear (U6) 
and small nucleolar (U24, U26) RNAs have been used. 
 
In 2009, Mestdagh et al.13 introduced the global mean normalization method to normalize data 
from RT-qPCR miRNA profiling studies in which a large number of miRNAs are tested per sample 
(e.g. whole miRNome). This method outperformed other normalization strategies commonly 
used at the time (e.g. multiple target reference normalization using endogenous small RNA 
controls) and it has been considered the gold standard method since.    
 
 
  



Normalizing genome-wide miRNA expression data – the global mean 
 
The global mean normalization method consists of three successive steps. First, all Cq values 
above a certain threshold are considered noise and are discarded from further analysis (based on 
an 14-cycle sample pre-amplification procedure following mageplex reverse transcription, we 
routinely use 32 as cut-off value). The arithmetic average Cq value is then calculated for each 
individual sample and subsequently subtracted from each individual Cq value for that sample. 
The procedure results in normalized expression values in logE scale (E being the base of the 
exponential amplification function, with 2 being a good estimate); the more negative, the higher a 
particular miRNA is expressed (Table 1).   
 
Table 1 
Normalized expression values of a particular miRNA in 2 samples (log scale, global mean 
normalization) 
 

 Sample 1 Sample 2 

hsa-let-7a -1.50 -2.32 

 
 

 Sample 1: the fold difference of let-7a compared to the mean Cq = 2-(-1.50) = 2.83* 
o Sample1: Let-7a is 2.83 times higher expressed than the mean. 

 Fold change for let-7a of sample 1 relative to sample 2 = 2-[-1.507-(-2.32)] = 0.57 
 Fold change for let-7a of sample 2 relative to sample 1= 2-[-2.32-(-1.50)] = 1.76 
* Assuming equal Cq values for equal transcript numbers 

 
In this chapter, we summarize the power of the previously described global mean normalization 
method in comparison to the multiple reference gene normalization method using the most 
stably expressed small RNA controls (Table 2). In addition, we compare the original global mean 
method to a modified global mean normalization strategy based on the attribution of equal 
weight to each individual miRNA during normalization. This modified algorithm is implemented 
in Biogazelle’s qbasePLUS software as of version 2.0 (http://www.qbaseplus.com) and is 
presented here for the first time. 
 
The modified global mean normalization strategy conveniently generates normalized relative 
quantities (NRQ values) in a linear scale. These values can be obtained using four simple steps in 
qbasePLUS: (1) auto-exclusion of miRNAs below a certain expression level, (2) conversion of Cq 
values into relative quantities (RQs), (3) calculation of sample specific normalization factor (NF) 
as the geometric mean of the RQs of all expressed targets per sample, and (4) conversion of RQs 
into normalized RQs (NRQs) by dividing the RQs by the sample specific NF. Steps 2-4 are 
simultaneously performed if the user selects one of the two available global mean normalization 
strategies. The NF can be calculated based on the RQs of all expressed targets in the sample for 
which the normalization is determined without taking into account the other samples (‘modified 
global mean normalization’). Alternatively, the normalization factor is calculated based on the 
RQs of the targets that are expressed in all samples (‘modified global mean normalization on 
common targets’).  
 
The different strategies to normalize large scale RT-qPCR miRNA profiling data are compared in 
a comprehensive manner by reanalysis of published datasets13, 16. These datasets include 
expression profiles for 430 miRNAs and 18 controls in 61 neuroblastoma (NB) tumor samples, 
366 miRNAs and 18 controls in 49 T-cell acute lymphoblastic leukemia (T-ALL) samples and 636 
miRNAs and 19 controls in 32 cell-free sputum samples from never smokers, smokers with COPD 
and smokers without airflow limitation. 
The performance of the different normalization strategies is assessed by: (1) evaluating their 
ability to reduce the overall variation, (2) determining their power to extract true biological 
variation, and (3) estimating the ability to reduce the number of false positive and false negative 
calls.  
 
 
 

http://www.qbaseplus.com/


Table 2. Stably expressed small RNA controls used as reference genes 
 

Neuroblastoma T-ALL Sputum (non-)smokers 

RNU24 RNU24 U6* 

RNU44 RNU44  
RNU58A RNU48  
RNU6B RNU58A  
 U18  
 Z30  
* 

Only U6 was found to be expressed in all sputum samples 
 
 
(1) Evaluation of the ability to reduce the overall experimental variation 
 
Any variation in gene expression levels is composed of both true biological and experimentally 
induced (technical) variation. The purpose of normalization is to reduce the technical variation 
within a dataset, enabling a better appreciation of the biological variation.  
 
To measure normalization performance, we calculated the standard deviation (SD) for each 
individual miRNA across all samples within a given dataset upon applying different 
normalization procedures. Lower standard deviations denote better removal of experimentally 
induced noise. Cumulative distributions of the SDs for not normalized and normalized data using 
different methods allows comparison of different normalization methods (Figure 1). 
 
 
 
Figure 1. Cumulative distribution of the SD values 
 
A) Neuroblastoma 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



B) T-cell acute lymphoblastic leukemia (T-ALL) 

 

 
 
 
C) Sputum (smokers and non-smokers) 

 
 
 
Standard deviations (SDs) for each individual miRNA were calculated on log2 transformed relative 
expression levels normalized with either (1) the original global mean normalization approach, (2) the 
modified global mean normalization, (3) the modified global mean normalization based on common targets, 
(4) the multiple reference gene normalization using stably expressed small RNA controls. Standard 
deviations are also presented for not normalized expression data. 

 
 
A shift to the left is discernable for all four normalization methods compared to not-normalized 
data, pointing at the intended reduction of the overall variation. The decrease in variation is least 
pronounced for multiple reference gene normalization using stable small RNA controls. The 
latter approach results in a small decrease of the SD values in the NB sample set for the 80% least 
variable miRNAs. In the T-ALL sample set, it results in a pronounced decrease of the SD values for 
the 80% most variable miRNAs. These observations indicate that elimination of technical 
variation is not effective for all miRNAs. Normalization using a single small RNA control (U6) in 
the sputum sample set even results in an increase of overall variability. In contrast, all three 
global mean normalization methods result in an overall decrease in variation that is (1) more 
pronounced compared to stable small RNA control normalization and (2) effective for all miRNAs 
that are measured.  
 
 
In conclusion, all three global mean normalization based methods are equally well suited to 
reduce the technical variation and outperform multiple reference gene normalization using 
stable small RNA controls. 
 



(2) Determination of the power to extract true biological variation 
 
Good normalization approaches should not only reduce the technical variation as much as 
possible, they should also accentuate true-biological differences.  
 
To assess the impact on appreciation of true biological differences, we evaluated the differential 
expression of the miRNAs belonging to the oncogenic mir-17-92 cluster in the NB data set. This 
cluster contains six miRNAs (miR-17, miR-18a, miR-19a, miR-20a, miR-19b and miR-92) that are 
known to be upregulated in NB tumors with MYCN amplification (MNA) in comparison to 
samples with a normal MYCN copy number (MYCN single copy, MNSC). 
 
The average fold change of the mir-17-92 cluster elements in MNA (n=22) compared to MNSC 
(n=39) samples was calculated upon normalization using either (1) the original global mean 
normalization approach, (2) the modified global mean normalization, (3) the modified global 
mean normalization based on common targets, (4) the multiple reference gene normalization 
using stable small RNA controls (Figure 2). Normalized results were first log transformed, 
followed by calculation of the difference between the mean MNA and MNSC group values and 
exponentiation (anti-log) of the difference. 
 
Figure 2. miR-17-92 upregulation in MYCN amplified neuroblastoma 
 

 
 
Average fold change expression (linear scale) difference of six miRNAs residing within the miR-17-92 
cluster in MYCN amplified neuroblastoma samples compared to MYCN single copy neuroblastoma samples. 
Fold changes were calculated upon data normalization with (1) the original global mean normalization 
approach, (2) the modified global mean normalization, (3) the modified global mean normalization based 
on common targets, (4) the multiple reference gene normalization using small RNA controls. 
 

 
When the data are normalized using the small RNA controls, only one out of eight miRNA genes 
within the miR-17-92 cluster reaches a 1.5-fold expression difference. In contrast, when the data 
are normalized using one of the global mean normalization methods seven out of eight miRNA 
transcripts reach at least a 1.5-fold expression difference. Both modified global mean 
normalization approaches result in true expression differences that are more pronounced in 
comparison to the original global mean normalization method; three out of eight miRNA 
transcripts reach a 2-fold expression difference as opposed to one out of eight, respectively. 
 

In conclusion, both the modified global mean normalization and the modified global mean 
normalization based on common targets perform slightly better than the original global mean 
normalization and clearly outperform the multiple reference gene normalization strategy using 
small RNA controls in appreciating true biological differences.  
 
 
(3) Balancing up and down regulated genes 
 
A fair assumption in most transcriptome-wide gene expression studies is that the number of up- 
and downregulated genes is approximately equal. To date, there is no biological evidence that the 
number of downregulated miRNAs is different from the number of upregulated miRNAs in MYCN 



amplified neuroblastoma samples compared to MYCN single copy neuroblastoma samples and 
vice versa. It is hence acceptable to assume the existence of a balanced situation with an equal 
number of up- and downregulated miRNAs. 
 
The overall differential miRNA expression in the two NB tumor sample subsets may give us an 
estimate of the ability of the normalization methods to reduce the number of false positives and 
negatives (Figure 3, Table 3).  
 
Figure 3. Average fold change expression difference of each miRNA in neuroblastoma with 
respect to the MYCN amplification status 
 

 
 
Average fold change expression difference (log2 scale) of each miRNA with a Cq value below 32 cycles in 
MYCN amplified neuroblastoma samples compared to MYCN single copy neuroblastoma samples 
(differences calculated as explained for the miR-17-92 cluster in Figure 2). 
Fold changes were calculated upon small RNA control normalization (orange) or modified global mean 
normalization (green). Fold changes are plotted in a log2 scale and sorted from positive (upregulated in 
MYCN amplified tumor samples) to negative (downregulated in MYCN amplified tumor samples).  

 
 
Table 3. Number of up and down regulated miRNAs in neuroblastoma with respect to the 
MYCN amplification status 
 

Normalization  # up regulated # down regulated 

Small RNA controls 80 285 
Original global mean 165 200 
Modified global mean 180 185 
Modified global mean common targets 181 184 

 
 
 
 
 
 



Table 4. Number of up and down regulated miRNAs in sputum sample set (smokers and 
non-smokers) with respect to the smoker status 
 

Normalization  # up regulated # down regulated 

Small RNA controls (U6) 75 85 
Original global mean 41 119 
Modified global mean 70 90 
Modified global mean common targets 72 88 

 
 
 
Normalization with small RNA controls suggests that most miRNAs are downregulated in MYCN 
amplified neuroblastoma samples. The global mean normalization based methods result in a 
more balanced situation with an approximately equal number of up and down regulated miRNAs. 
 
Normalization with the original global mean normalization methods suggests that most miRNAs 
are downregulated in sputum samples from smokers (Table 4). The modified global mean 
normalization based methods result in a more balanced situation with an approximately equal 
number of up and down regulated miRNAs. 
 
In conclusion, the modified global mean normalization based methods result in a more balanced 
situation in which the number of down regulated miRNAs equals the number of up regulated 
miRNAs in neuroblastoma with respect to the MYCN amplification status. This clearly suggests 
that they have more power to reduce the number of false positives and false negatives in 
comparison to the multiple reference gene normalization using small RNA controls.  
 
Considering all the results, it is fair to state that the modified global mean normalization methods 
are slightly better in terms of better appreciation of true biological changes. As biologically 
relevant miRNA expression differences can be quite small, we highly recommend applying the 
modified normalization method to obtain more accurate results for RT-qPCR miRNA profiling 
studies. The impact of non-random missing data on calculating a global mean is reduced by 
removing the effect of differential expression between genes when calculating the modified 
global mean on relative quantities. 
 

 
 
Multiple reference gene normalization using small RNAs that resemble the 
global mean 
 
The global mean normalization methods are only valid for miRNA profiling studies in which a 
large number and unbiased set of genes are measured. This is because these methods are based 
on two assumptions: (1) only a minority of miRNAs is differentially expressed, and (2) the 
number of down regulated miRNAs is balanced against the number of up regulated miRNAs. 
 
Whole miRNome studies (using RT-qPCR, microarrays, or next-generation sequencing) often 
serve as a starting point in a pilot screen to identify differentially expressed miRNAs in certain 
subsets of samples. Subsequent studies on much larger sample groups are required to validate 
the statistical significance and to assess the biological relevance of the regulated miRNAs. In such 
RT-qPCR validation studies in which the expression of only a handful of miRNAs is measured, it is 
not valid to use a global mean normalization method.  

 
To overcome this problem, Mestdagh et al.13 proposed to use multiple stably expressed miRNAs 
or small RNA controls, identified by an expression pattern similar to the global mean level, 
referred to as genes resembling the mean expression value. 
Such reference genes can be identified from prior whole miRNome expression profiling studies 
or from a pilot experiment specifically performed to identify stably expressed genes resembling 
the mean. The results from Mestdagh et al.13 indicate that a normalization factor based on the 



selection of miRNAs/small RNA controls resembling the mean expression value performs equally 
well compared to the mean expression value itself. 
 
Identification of such stably expressed reference miRNA/small RNA genes consists of two steps. 
First, candidate miRNAs/small RNA controls that resemble the mean expression value are 
identified, followed by selection of the most stably expressed reference from this group in a 
second step. In brief, the standard deviation (SD) for each individual miRNA across all samples is 
calculated after global mean normalization. The optimal set and number of miRNAs/small RNA 
controls for normalization is then determined through genormPLUS analysis of the ten best ranked 
candidate reference genes, being miRNAs or small RNA controls with the smallest standard 
deviation. To avoid the possibility of including co-regulated miRNAs in the genormPLUS analysis, 
miRNAs residing within the same gene cluster should be excluded, hereby retaining only one 
miRNA per cluster. 
 
For publically available RT-qPCR data, the miRNA body map enables selection of stably 
expressed miRNAs/small RNAs reference genes using the strategy outlined above 
(http://www.mirnabodymap.org).  
 
 
 
Multiple reference gene normalization using stably expressed small RNAs  
 
If no prior whole miRNome expression profiling can be performed to identify genes whose 
expression pattern resembles the mean expression value, then a careful selection of the most 
stable small RNA controls should be performed in a typical geNorm pilot experiment14.  
Such a pilot experiment involves the analysis of a set of candidate reference small RNAs 
(preferentially more than 8, each belonging to a different family (e.g. RNU X is not a good choice if 
RNU Y is already selected as candidate reference RNA) on a representative sample set (at least 10 
independent samples). A geNorm analysis determines the expression stability value for each 
gene (M value) and it calculates normalization factor V values. Both values are subsequently used 
to determine the optimal number and set of reference RNAs to be used in further studies.  
A useful tool is the genormPLUS module incorporated into qbasePLUS, a substantial improvement 
over the old geNorm version running in Microsoft Excel, in terms of handling missing data, 
subranking of the best reference gene pair, fully automating the calculations and providing 
interpretation of the results. The genormPLUS expert report enables straightforward 
interpretation as it provides recommendations on the number and nature of genes to be used for 
optimal normalization. In addition, it compares the stability of the proposed reference genes 
against empirically determined reference gene values17. 
Of note, Peltier and Latham15 reported 2 miRNAs, miR-103 and miR-191, that were stably 
expressed in different normal and cancer tissues, suggesting that they may serve as universal 
reference miRNAs. In contrast, the reference miRNAs identified by Mestdagh et al.13 varied 
substantially between different datasets. While miRNAs that are stably expressed across 
different tissues may exist, it is highly recommended to evaluate their stability in a selection of 
samples, representative for the entire sample set in the study. 
 
 
Please note that results obtained through normalization with small RNAs should be interpreted 
with care. The side-by-side comparison of small RNA normalization with global mean 
normalization indicated that small RNAs are less efficient in reducing the technical variation and 
do not result in balanced expression differences. As biologically relevant miRNA expression 
differences can be quite small, it is not unconceivable that interesting expression differences will 
be missed.  
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