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ABSTRACT

Synergistic regulations among multiple microRNAs

(miRNAs) are important to understand the mech-

anisms of complex post-transcriptional regulations

in humans. Complex diseases are affected by

several miRNAs rather than a single miRNA. So, it

is a challenge to identify miRNA synergism and

thereby further determine miRNA functions at a

system-wide level and investigate disease miRNA

features in the miRNA–miRNA synergistic network

from a new view. Here, we constructed a miRNA–

miRNA functional synergistic network (MFSN) via

co-regulating functional modules that have three

features: common targets of corresponding miRNA

pairs, enriched in the same gene ontology category

and close proximity in the protein interaction

network. Predicted miRNA synergism is validated

by significantly high co-expression of functional

modules and significantly negative regulation to

functional modules. We found that the MFSN

exhibits a scale free, small world and modular

architecture. Furthermore, the topological features

of disease miRNAs in the MFSN are distinct

from non-disease miRNAs. They have more

synergism, indicating their higher complexity of

functions and are the global central cores of the

MFSN. In addition, miRNAs associated with the

same disease are close to each other. The structure

of the MFSN and the features of disease miRNAs

are validated to be robust using different miRNA

target data sets.

INTRODUCTION

MiRNAs are endogenous �22 nt small non-coding RNAs
that repress gene expression by binding 30-untranslated
regions (UTRs) of mRNA target transcripts, causing
translational repression or mRNA degradation. They
guide many key biological processes and are involved in
many diseases (1–3).
Some researchers claimed that the human genome

might encode more than 1100 miRNAs (4,5) and it was
recently demonstrated that they potentially regulate the
majority of all human genes (6), which can therefore be
used to improve our understanding of the mode of action
of miRNAs and their functions (7). The limited miRNAs
are thought to be able to control the larger set of genes
through synergism, in which multiple miRNAs work syn-
ergistically to control individual genes. For example, lin-4
and let-7 are cooperative in Drosophila (8) and are the
earliest miRNA pair to be experimentally verified. Krek
et al. (9) also showed that miR-375, miR-124 and let-7b
jointly regulate Mtpn, providing evidence for coordinate
miRNA control in mammals. Interestingly, Wu et al. (10)
recently found that 28 miRNAs can substantially inhibit
p21Cip1/Waf1 expression, which ushers in a new era of
miRNA research that focuses on networks more than on
individual connections between miRNAs and strongly
predicted targets. Studying the synergism of miRNAs is
an important step for further determining miRNA func-
tions at a system-wide level.
With the availability of large data sets derived from

high-throughput experiments and computer algorithms,
we could investigate the complex synergistic relationships
between miRNAs. Our understanding of the synergistic
regulation of miRNAs is increasing, and new methods
are being developed to understand miRNA synergism
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(11–15). Zhou et al. (13) used statistical measures to
quantify the regulatory associations between the sets of
predicted targets of miRNA pairs. A
randomization-based test devised by Shalgi et al. (11)
was used to identify miRNA pairs that exhibit significant
co-occurrence in 30-UTRs of the same target genes, while
Boross et al. (12) constructed a miRNA co-regulation
network by computing the correlations between the
gene silencing scores of individual miRNAs. An et al.
(14) used the signal-to-noise ratio to get high accurate
regulating miRNAs for every gene and described a pro-
cedure to identify highly probable co-regulating miRNAs
and the corresponding co-regulated gene groups,
involving a sequence of statistical tests.
DIANA-mirPath was developed to consider the com-
binatorial effect of co-expressed miRNAs in the modu-
lation of a given pathway (15). All these studies have
demonstrated the importance of miRNA synergism and
also indicated that integrating predicted targets and func-
tional information could identify synergistic miRNA
pairs and simultaneously reveal their underlying
functions.
In addition, the protein–protein interactions involve

functional similarities between proteins. It has been
found that interacting proteins are regulated by similar
miRNA types (16), and clustered miRNAs also jointly
regulate proteins that are close in the protein interaction
network and the number of co-regulations between
proteins is negatively correlated with their distance in
the network (17). In addition, miRNAs can target gene
batteries that are functionally related effector genes (18)
and the target genes of miRNA clusters are enriched
in communities in the protein interaction networks repre-
senting distinct cellular processes (17). Furthermore,
integrating various types of data is one solution to
decrease the false positives of high-throughput data.
Another benefit is that it may enable us to consider
many biological perspectives.
Based on the above observations, we developed a

computational method to identify significantly functional
synergistic miRNA pairs via functional modules that they
jointly regulate by integrating predicted miRNA targets,
their corresponding functional information and protein
interaction data; these pairs are used to construct the
miRNA–miRNA functional synergistic network (MFSN;
our strategy is illustrated in Figure 1A). A functional
module is a subset of genes that could independently im-
plement a specific function as a whole. Here, it is defined
as a subset of targets that satisfy three restrictions:
co-regulated by miRNA pairs, enriched in the same gene
ontology (GO) category and share close proximity in
the protein interaction network. We also validated the
predicted miRNA–miRNA synergism by co-expression
of functional modules and their significant negative regu-
lation to functional modules. Then, we analyzed the struc-
tural features of the MFSN using graph theoretical
methods and found that it is a scale free, modular and
small-world network. So, the network is a type of graph
distinct from both regular and random networks, and can
be used to further our understanding of miRNA functions

from a system-wide level. The structure of the MFSN is
robust by using different miRNA target datasets.

In most conditions, miRNAs are synergistic in complex
diseases and regulate genes with the same or similar func-
tions. It is a challenge to understand the mechanism of
diseases. For example, cardiac arrhymogenesis is linked
to miR-1 and miR-133, both of which act through the
regulation of essential ion channel proteins (19). Wu
et al. also found that many of these 28 p21-regulating
miRNAs are upregulated in cancers (10). These studies
indicate that the synergism among miRNAs is important
to understand the mechanisms of complex diseases. The
increase in disease miRNA data also allows us to analyze
their specific features at the system level. Here, we found
that the topological features of disease miRNAs in the
MFSN are significantly distinct from non-disease
miRNAs. Disease miRNAs have more synergism than
non-disease miRNAs, indicating that they have more
complex functions. They are also the global central cores
of the MFSN, indicating their greater centrality in the
network. In addition, miRNAs associated with the same
disease are located close to each other to allow regulation
of the same or similar functions. We also validated that
the features of disease miRNAs are accordant in different
MFSNs using different microRNA target prediction
algorithms.

MATERIALS AND METHODS

Data

Three types of human miRNA target data sets are
analyzed. For our analyses, we used data from
TargetScan and, as a control, from miRBase or integrated
target data (detailed description about the two controls
can be found in the Supplementary data). Targets pre-
dicted by TargetScan 5.1 (5) with a total context score
of �0.30 or less are ignored, where the score can quanti-
tatively measure the overall target efficacy (20,21). As
controls, the highly efficient miRNA target data consisting
of miRNA–target interactions that occur in at least two of
seven considered sources and all the predicted human
targets from miRBase (version v5) (22) are considered.
The seven data sources are TargetScan 5.1 (5), miRBase
(version v5) (22), DIANA-microT (version 3.0) (23),
PicTar (four-way) (9), miRanda (24), RNA22 (25) and
RNAhybrid (26). Protein interaction data are assembled
from HPRD (HPRD_Release_8_070609) (27); here we
only considered the maximum component of the whole
protein interaction network, which contains 33 762 inter-
actions between 8556 proteins. The GO file on Biological
Processes is downloaded from the GO consortium (28),
which is available at http://www.geneontology.org, as of
November 2009. As in previous studies, process categories
from GO are restricted to below the fourth level of the
hierarchy to avoid analyzing very general non-descriptive
terms (29,30). Finally, we used Entrez Gene IDs to
represent corresponding genes or proteins.

The mRNA and miRNA microarray data of the
NCI-60 are downloaded from the CellMiner database
(31), which involves a panel of 60 human cancer cell
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lines from nine distinct tissues. The mRNA expression
profiles are measured using the Affymetrix GeneChip
HG-U133A platform, and we directly downloaded the
normalized data set from the CellMiner database, where
we selected the GCRMA algorithm and log2 transform-
ation (32). GCRMA is a procedure of pre-processing
oligonucleotide expression arrays using the robust multi-
array average (RMA) with the help of probe sequence
and with GC-content background correction (33). The
miRNA data are collected using a miRNA OSU V3 chip
and we downloaded data after log2 transformation. The
miRBase database is then used to map miRNA probes to
mature miRNAs (34). A total of 59 NCI samples are
applied because we did not consider the NCI-H23 cell
line that lacks mRNA data.

Information on disease miRNAs is obtained from
the miR2Disease database (release 19 April 2009), which
is a manually curated database that aims to provide a
comprehensive record of miRNA deregulation involved
in various human diseases (35). Based on the detection
method of differential expression for miRNAs in
diseases, we obtained two classes of disease data with
different confidence levels. One is all the information
that we could obtain from the database, defined as
‘all disease data’, whereas the other is the subset of data
that is yielded by low-throughput methods such as
northern blot and qRT–PCR approaches, and is termed
the ‘high confidence disease data’. The results for disease
miRNAs discussed below are generated using the
‘high confidence disease data’, except where otherwise
specified.

Methods

Identify miRNA pairs and construct miRNA–miRNA
functional synergistic network

Overview the processes of identifying synergistic miRNA
pairs. Figure 1A indicates the methodology used in
this study. After we obtained miRNA target data sets

from databases, the resulting data are preprocessed as
described in the ‘Data’ section and the Supplementary

data. First, for each miRNA pair, we identified their
co-regulating targets as a target subset and identified can-

didate functional modules in the target subset by perform-
ing functional enrichment in each biological process

category. When there is at least one candidate functional
module, we used two topological features in the protein

interaction network to filter functional modules in the
candidate module set generated by functional enrichment.

In this study, if a pair of miRNAs significantly
co-regulates at least one functional module, we defined

them as synergistic. Finally, the miRNA functional syner-
gistic network is constructed by assembling all miRNA

synergistic pairs, where nodes represent miRNAs and
edges represent their functional synergism. In addition,

the pseudocode of the algorithm is described in the

Supplementary data.
For a given miRNA pair of miRNA A and B, we

identified the target subset they co-regulate (A \ B). The
subset is required to have at least Omin genes. First,
biological processes where the target subset is enriched
are identified by hypergeometric distribution. The
probability PGi for A \ B in the GO term i is calculated

Figure 1. The workflow to construct the MFSN and two examples of synergism among miRNA with their co-regulating functional modules.
(A) Workflow to construct the miRNA–miRNA functional synergistic network (MFSN) via co-regulating functional modules. The process
involves two main steps. First, we identified an miRNA pair that synergistically regulates at least one functional module. Second, we repeated
the first step for any miRNA pairs, and assembled all the significant miRNA pairs to construct the MFSN. (B) Two examples of miRNA pairs
that synergistically regulate functional modules; these co-regulations are associated with diseases. Non-direct dashed line represents the miRNA
synergistic action; direct line represents the miRNA regulation to the functional module.
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according to

PGi ¼ 1� Fðx N,Ki,Mj Þ ¼ 1�
X

x

t¼0

Ki

t

� �

N� Ki

M� t

� �

N

M

� �

ði ¼ 1; 2; . . . ; IÞ

where N is the number of all targets (default background
distribution), Ki is the total number of genes that are
annotated in the GO term i and targeted by miRNAs,
M is the size of A \ B, x is the number of targets in
A \ B that are also annotated to term i and I is the total
number of GO terms we considered. At the given signifi-
cance level, we not only obtained the set with enriched
function terms but also captured the set GAB with the
subsets in A \ B that are annotated to each term in the
previous set. Namely, GAB is the set of candidate function-
al modules. Second, we further identified the functional
modules in GAB. We stipulated that a functional module
must contain no fewer than Omin targets and simultan-
eously satisfy two topological restrictions in the protein
interaction network: (i) the minimum distance from
every target to others in the subset is no larger than the
threshold D1; (ii) the characteristic path length is shorter
than the threshold D2 and significantly shorter than
random (the computing method of the characteristic
path length is outlined in the next section). The significant
P-value (PC) for the characteristic path length of modules
in (ii) is calculated by using the edge-switching method
and is defined as the fraction of characteristic path
lengths of the same subset in random protein interaction
networks that is shorter than that in the real network.
Here, we generated 1000 random networks. As stringent
controls, random networks are constructed by preserving
the number of direct neighbors for each protein in the
original protein interaction network using the edge
switching method (36). Mfinder is used to generate
random networks by selecting the options of the switching
method to generate random networks and output all
random networks (available at http://www.weizmann.ac.
il/mcb/UriAlon/).
After performing the function enrichment and two topo-

logical restrictions in the protein interaction network,
miRNA A and miRNA B are considered to be synergistic
if they co-regulate at least one functional module. Here, the
value of Omin is set to 3, and D1 is set to 2. To make the
communication among nodes in a functional module
quicker than under general conditions, we required that
characteristic path lengths of modules are smaller than
the diameter of the protein interaction network; this is
because small diameter is a characteristic feature of
small-world networks (37). Here, the threshold D2 is set
to 4, smaller than the diameter of the protein interaction
network (4.2327), making it a small-world biological
network.
After assembling all significant miRNA pairs identified

above, we generated the MFSN. A node represents a
miRNA, and two nodes are connected if the corresponding
miRNA pair has a synergistic action, otherwise no edge.

Topological measurements of the MFSN. In this study, we
discussed several topological features at different levels.
For the whole network, we identified its maximum com-
ponent and calculated the diameter, which is defined as
the average distance between any two nodes in the
network. The distance between two nodes is the number
of edges on a shortest path between them. We analyzed
the degrees and clustering coefficients of nodes. For a
given subset of nodes, we defined its characteristic path
length as the average distance between the subset, and
the same procedure is used to calculate the average
distance of target subsets in the protein interaction
network. To determine if the MFSN is a small-world
network, we used the duplication model to construct
random graphs; this is a well-known model having
power-law degree distributions and providing small-world
networks. We generated 10 000 instances and computed
the average clustering coefficient and average diameter.
The topological measurements and random networks
are obtained using the ‘RandomNetworks’ plugin (beta
version) of Cytoscape (38) and the matlab_bgl package
(available from http://www.stanford.edu/�dgleich/
programs/matlab_bgl/).

Next, we used the clique percolation clustering method
(39) to identify miRNA functional synergistic modules,
which are defined as cliques. Cliques are all of complete
subgraphs that are not parts of larger complete subgraphs
(39). The algorithm identifies maximal complete
subgraphs (cliques) in the network and then identifies
‘communities’ by performing standard component
analysis of the clique–clique overlap. Thus, the resulting
communities are allowed to have a degree of overlap,
which is particularly advantageous because such
methods have been demonstrated to be more suitable for
identifying central nodes in networks compared with
non-overlapping clustering algorithms. This procedure is
performed using CFinder (40), which is a fast program for
locating and visualizing overlapping.

Randomization test. We evaluated the significance of
co-expression of functional modules or negative regula-
tions from miRNA to functional modules by randomly
selecting genes as functional modules. For each functional
module, we randomly selected the same number genes
and calculated correlation values of the gene set or
between the gene set and miRNAs that regulate the func-
tional module; the procedure is repeated 10 000 times.
Then, we calculated the average of correlations in each
random condition. The significant P-value is the fraction
of the average correlations in random conditions, which is
greater than the value in the real condition.

To determine the statistical significance of the close
proximity of miRNAs involved in the same disease, we
calculated the characteristic path length between them
in the MFSN. We then randomly selected the same
number of miRNAs from the miRNA background set
and computed the characteristic path length as described
above. We repeated this procedure 100 000 times. Diseases
that contain at least two miRNAs are all analyzed. The
P-value is the fraction of average characteristic path
lengths for all diseases in random networks, which is
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shorter than that in the real MFSN. Here, we discussed
two classes of miRNA background sets: all miRNAs
included in the maximum component of the network,
the intersection set comprising miRNAs of the first
group that are also disease miRNAs.

RESULTS

Evaluation of miRNA pairs that synergistically regulate
functional modules

We obtained 185 773 regulations between 676 miRNAs
and 15 829 target genes from the TargetScan database
using a high threshold of context score. Theoretically,
888 416 100 probabilities are computed between all pair
combinations of the miRNAs (676*675/2) and all process
categories considered (3894). Given the significant level
of functional enrichment, PGi < 0:05, we detected
472 573 regulations between miRNA pairs and candi-
date functional modules and a total of 1071 920 different
probabilities are computed. After two topological
restrictions in the protein interaction network and the
significance level of characteristic path length set to
PC<0:001, 13 687 functional modules are regulated
by 2937 non-redundant synergistic patterns among
473 miRNAs, where a miRNA pair might regulate
several distinct functional modules.

First, we performed co-expression of functional
modules to assess the validity of our miRNA synergism
predictions. Our working hypothesis is that the expression
profiles of functional modules controlled by correspond-
ing miRNA pairs are more likely to be correlated and
behave more similarly than those of randomly selected
gene sets. So, if we observed significant co-expression of
targets in functional modules, we inferred that miRNA
pairs co-regulate these functional modules. We used the
average of correlations of functional modules as the
measure of similarity. The correlation of a functional
module is defined as the average correlation coefficients
between each gene pair in the modules. In addition, the
background correlation is the average correlation coeffi-
cient of any gene pair in the entire genome. We collected
expression profiles of the NCI-60, derived from cancers
of nine tissue origins, and then calculated the correlation
of functional modules. The average of correlations is
0.3028, which is significantly higher than that expected
under random conditions (the value at random is
0.192 39, P< 0.0001, see ‘Methods’ section) or for the
general background (0.1923). Thus, we concluded that
functional modules are highly co-expressed.

As a second independent evaluation of our miRNA
synergism predictions, we used negative regulations of
miRNA synergistic pairs to functional modules. Our
hypothesis is that if functional modules are regulated by
miRNA pairs, the regulations should be stronger than
those of randomly selected genes and of other common
targets of the corresponding miRNA pairs. We calculated
the average of correlations (RAvgUnit) between miRNAs
and functional modules using the miRNA and mRNA
expression profiles of the NCI-60. The correlation
between miRNA and its regulating functional module is

defined as the average correlation coefficients between
miRNAs and each gene in the module. As a result, the
average of correlations is significantly greater than
random (RAvgUnit ¼ �0:1225, the value at random is
�0.102 37, P< 0.0001, see the ‘Methods’ section),
indicating stronger negative regulation to functional
modules. We also computed the correlations (RAvgOther)
between miRNAs and other common targets than func-
tional modules and found that the correlations between
miRNAs and functional modules are also significantly
lower than the correlations between other common
targets (RAvgOther ¼ �0:1165, Pt�test < 10�32 computed
by the t-test).
These results indicate that miRNA pairs identified by

our method simultaneously regulate targets in functional
modules and cause co-expression of these targets. For
example, hsa-miR-101 and hsa-miR-511 synergistically
regulate four functional modules, all of which are
involved in signal transduction (left panel of Figure 1B).
The average correlation coefficient between hsa-miR-101
(or hsa-miR-511) and four functional modules is �0.2453
(or �0.1577), indicating that these functional modules are
under strong negative regulation of the two miRNAs.
Meanwhile, the average co-expression of four functional
modules is 0.3155. We further analyzed the functional
concordance of hsa-miR-101 and hsa-miR-511 using the
‘meet/min’ score, which is the number of functional
modules they regulate together divided by the smaller
number of function modules of these two miRNAs. The
score reaches 0.5357, suggesting high functional concord-
ance. Previous studies have shown that these two miRNAs
are both involved in Alzheimer’s disease (41). Similarly,
hsa-miR-1, hsa-miR-30b and hsa-miR-30c synergis-
tically regulate vesicle-mediated transport (right panel of
Figure 1B), and they are synergistic. These regulations are
also strongly negative (data not shown). The functional
concordance score between hsa-miR-1 and hsa-miR-30b
(or hsa-miR-30c) is 0.75, and the score of hsa-miR-30b
and hsa-miR-30c is much higher, which are in the same
miRNA family. Down-regulations of the three miRNAs
have also been found in cardiac hypertrophy (42), and the
biological process of vesicle-mediated transport they
regulate is associated with this disease.
These results indicate the feasibility of our methods in

identifying miRNA pairs through their synergistically
regulating functional modules. Therefore, we constructed
the MFSN based on the results above.

Properties of the MFSN

On the basis of miRNA pairs regulating at least one
functional module, we constructed the MFSN containing
473 nodes and 2937 edges (Figure 2A). The MFSN is
an objective representation of all synergistic associ-
ations between miRNAs. The number of miRNAs in the
network is four times more than previous studies. Next,
we discussed the structure and organization of this
network. From Figure 2B, we could see that a few
miRNAs interact with a relatively large number of
miRNA partners, whereas many miRNAs have few
miRNA partners. The examination of the degree
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distribution of the MFSN reveals a power law with a slope
of �0.7902 and R2=�0.9264, showing that the MFSN is
scale free and extending the result of Reut Shalgi et al.
(14), who identified miRNA cooperation among 64
miRNAs. In addition, we found that nearly all miRNAs
are connected together and the MFSN has a short
diameter of 2.8691, which is similar to that of random

graphs generated by the duplication model
(2.8722±0.1332), as expected for a small-world network
(43,44). The topology of the MFSN also exhibits dense
local neighborhoods with an average clustering coefficient
of 0.2747, which is much higher than for random networks
(0.0684±0.0151). This is because the immediate neigh-
bors of a miRNA, its functional synergistic partners,

Figure 2. The layout of the MFSN and its structural features. (A) The MFSN generated by the procedure is described in the ‘Materials and
Methods’ section. This network consists of 473 miRNAs and 2937 co-regulatory links. A node represents a miRNA, and an edge represents a
synergistic action. An diamond marks the location of miRNAs associated with epithelial ovarian cancer, and a triangle marks the location of those
associated with type 2 diabetes in Figure 3B. Pentacles mark the location of communities in Figure 4 with three k-values. (B) Degree distribution of
the MFSN. (C) Number of cliques at different k-values and cumulative ratios of miRNAs in cliques with k-values are not bigger than k. The left y-
axis represents number of cliques under different k-values, corresponding to the solid line. The right y-axis represents cumulative ratios of miRNAs
in cliques, corresponding to the dashed line.
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tend to be synergistic. The dense neighborhood feature of
small-world networks is particularly interesting, because it
can be exploited to predict synergism, as has been shown
previously for protein–protein interactions (45).

To investigate the expression pattern of connecting
miRNA pairs, we calculated their correlation coefficients
and found that 76.80% of miRNA pairs have positive
co-expression values (Supplementary Figure S1).
Therefore, we proposed that most miRNA pairs with syn-
ergistic regulations tend to be co-expressed in all or most
tissues studied, indicating that synergism is possible under
most conditions. Meanwhile, only a small part of miRNA
pairs co-expresses in tissue-restricted patterns, implying
that their synergism might be under specific conditions.
We concluded that the same expression tendency might
ensure that miRNAs can promptly implement regulation
under specific conditions to allow organisms to quickly
adapt to a new environment.

Next, we analyzed the modular and community struc-
ture of the MFSN. Here, we defined a miRNA functional
synergistic module as a clique that is a maximal complete
subgraph. All modules and communities in the MFSN are
identified using Cfinder (40). Each module (or community)
has a unique composition of miRNAs, allowing the same
miRNAs or the same pairs to occur in more than one
module. Figure 2C shows the number of modules corres-
ponding to every k-value, and the cumulative fraction of
miRNAs found in modules. With an increase in the value
of k, there is a sharp decrease in the number of modules.
In total, 77.51% miRNAs are involved in at least one
module. We interpreted this feature as a consequence
that miRNAs implement specific regulation as small
clusters rather than as individual or big modules.
Because miRNAs from the same family tend to have
similar functions or be involved in the same disease, we
further investigated whether miRNAs of the same miRNA
family occur in at least one module or community. Of the
70 miRNA families, 60% containing not fewer than two
miRNAs are completely contained in at least one module,
and the score for communities is larger (65.71%).
Therefore, miRNAs from the same family do tend to be
functional synergistic.

In all, the MFSN shows some generic properties:
most miRNAs are connected and comprise a large sub
network, and the network is scale free, modularity
and small world.

MiRNAs for the same disease are close proximity in
the MFSN

From the miR2Disease database, we obtained a total of
236 miRNAs involved in 108 diseases using the ‘all disease
data’, and a total of 164 miRNAs correlated to 94 diseases
are found using the ‘high confidence disease data’. We
further found that 75.93% diseases identified in the ‘all
disease data’ involve at least two miRNAs; the value is
69.15% diseases in the ‘high confidence disease data’.
Because miRNAs associated with the same disease
regulate similar or the same functional genes, they have
synergistic actions. Next, we discussed whether they are
close in the MFSN. The measure of characteristic path

length among miRNAs for the same disease is used to
assess the communication efficiency in the MFSN, which
represents closeness and consequently how quickly infor-
mation can spread in a network. The lower this measure
is, the quicker the communication in the miRNA subsets
is. Comparing the two classes of control-miRNA sets, we
found that the characteristic path length of the same
disease miRNAs is significantly lower (two P-values
<0.000 01, see ‘Methods’ section), indicating that
miRNAs for the same disease are closer to each other in
the MFSN. This tendency also exists in ‘all disease data’
(Supplementary Figure S2). So, we determined that
miRNAs for the same disease tend to have direct or
indirect, but not distant, functional synergy. For
example, 8 of 14 miRNAs involved in epithelial ovarian
cancer testified by low-throughput methods (46–49) have
at least one synergistic partner and the characteristic path
length among them is 2.3929, indicating that most
miRNAs have direct functional synergism or share some
partners (upper part of Figure 3B). Another example is the
miR-29abc family, which contains hsa-miR-29a,
hsa-miR-29b and hsa-miR-29c. A miRNA family incorp-
orates similar mature miRNA sequences and complete
identical seed regions, which are widely accepted as the
‘key’ regions for miRNA target identification (50).
Therefore, their members are expected to have functional
similarity and similar impacts. The three miRNAs are
shown to have direct functional synergistic regulations
(lower part of Figure 3B), and their expression levels
have been found to be upregulated in type 2 diabetes,
leading to insulin resistance in 3T3-L1 adipocytes (51).
As discussed above, miRNAs for the same disease are in

close proximity in the MFSN to allow them to influence
the same or similar functions by synergistic regulation of
targets. It also indicates that miRNAs involved in the
same disease have functional synergism, which is the
basis of predicting new disease miRNAs.

Disease miRNA have more functional synergism

Degree is one of the most important topological measure-
ments of a network and indicates local centrality of nodes
in the network. Generally, the greater the degree, the more
important is the node for the stabilization of the network.
Therefore, we investigated whether disease miRNAs have
a specific degree pattern in the MFSN. We divided
miRNAs into two groups: disease miRNAs and
non-disease miRNAs. Then we calculated the significance
of the difference between the two groups and found that
disease miRNAs have significantly higher degrees in the
MFSN than non-disease miRNAs (Figure 3C); the
median degree of disease miRNAs is 12 and that of
non-disease miRNAs is 6. We obtained the same result
using the ‘all disease data’. Interestingly, we also found
that the clustering coefficient of disease miRNAs is signifi-
cantly larger than non-disease miRNAs (Supplementary
Table S1). We proposed that it might be due to the
features of miRNA family, the dysregulation of that
would cause a similar phenotype (52).
The discovery of the difference in the number of syner-

gistic partners between disease miRNAs and non-disease
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miRNAs could suggest a difference in the functional com-
plexity of these two groups. We measured the miRNA
functional complexity by calculating the number of syner-
gistically regulating function modules. As a result, the cor-
relation between degree and functional complexity are
found to be significantly strong positive (R=0.9055,
P=1.657e-177), indicating that the more functional syn-
ergism miRNAs participate in, the more biological
processes they regulate. Therefore, the dysregulation of
miRNAs with more synergism would cause diseases. We
also found that the trend is clearer in the ‘high confidence
disease data’ than in the ‘all disease data’, suggesting that
the false positive information incorporated in the ‘all
disease data’ leads to a lower positive correlation (data
not shown). We determined that the tendency would be
stronger along with the increasing reliability and coverage
of disease data.

Disease miRNAs are located at the interface of
communities with high k-value

As discussed above, we knew that most miRNAs imple-
ment regulations as small modules and that miRNAs
involved in the same disease are located in close proximity.
Therefore, we investigated the modular features of disease
miRNAs without distinguishing classes of diseases. As
indicated in the Methods, a k-community comprises
adjacent k-cliques, so a low k-value generates a large
number of extensive communities of less tightly connected
miRNA communities, showing a high degree of overlap,
whereas increasing the k-value leads to fewer and more
distinct miRNA communities that have a high degree of
interconnection (Table 1). Interestingly, although cluster
sizes decrease with increasing k-value, the proportion of
disease miRNAs identified in the miRNA communities

Figure 3. Distinct topological features of disease miRNAs and two examples of diseases. (A) The mean characteristic path length among miRNAs
for the same disease is shorter than both kinds of randomization tests. The arrow represents the mean characteristic path length in the real network,
the line of light color is fitted using random selecting miRNAs from disease miRNAs and the line of dark color presents all miRNAs in the MFSN.
(B) Two examples of characteristic path lengths (Chpath) of diseases. In the upper panel, nodes of dark color represent epithelial ovarian
cancer-associated miRNAs; the inset panel shows location of the diamond in Figure 2A. The lower panel shows miRNAs associated with type 2
diabetes, and nodes of dark color represent associated miRNAs; the inset panel is located at the triangle in Figure 2A. (C) The difference in degrees
between disease miRNAs and non-disease miRNAs with two types of data. Boxes of light color represent the distribution of disease miRNA degrees,
and the black boxes correspond to non-disease miRNAs. P-values are calculated using the Wilcoxon rank-sum test.
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increases, indicating the enrichment of disease miRNAs in
the most tightly connected communities (Table 1). We
could get the same tendency using the ‘all disease data’.
Here, we defined functions of a community using the func-
tions that most miRNAs in the community synergistically
regulate; for example, in the case of communities (k=11),
we found that the communities participate in different or
similar biological processes (Supplementary Table S2 and
Figure S3).

We further proposed that miRNAs as members of more
than one community are of particular interest and more
important, because miRNAs in multiple communities can
be considered to be at the ‘interface’ of adjacent biological
processes. Comparing the disease miRNA set against the
non-disease miRNA set reveals that disease miRNAs
reside at community interfaces to a much greater extent
than their non-disease counterparts, as shown in Table 2.
When the k-value is 10, there are seven communities and
37.04% of disease miRNAs associated with these
communities are located at the interface of communities
(middle panel of Figure 4), which is 1.7284 times the ratio
of non-disease miRNAs. In addition, five communities are
identified when the k-value is 11, and 32% disease
miRNAs are located at the interface, which is 2.1333
times more than with non-disease miRNAs (right panel
of Figure 4). Therefore, disease miRNAs tend to be
located at the interface, which can be considered as the
interface of multiple functions. The locality can further
classify the topological roles of miRNAs. Communities
allow a degree of overlap, so we could distinguish the
central importance of miRNAs, and a clear difference
has been found between cancer protein and non-cancer
protein (53). So, miRNAs in overlapping communities
can be classified as global central cores and non-
overlapping ones as local central cores. In all, most

disease miRNAs are located in the overlap region of
most tightly connected communities. The above results
thus highlight the key roles of disease miRNAs, which
are reflected in their topological features in the MFSN.

DISCUSSION

In this study, we constructed the MFSN via co-regulating
functional modules, which allows for an in-depth analysis
of individual miRNAs in the context of their synergistic
surroundings. As general biological networks, the MFSN
is scale free, modular and has a small-world property.
Watts and Strogatz (54) analyzed how fast disturbances
spread through small-world networks and revealed that
the time wasted for spreading of a disturbance in a
small-world network is close to the theoretically possible
minimum for any graph with the same number of nodes
and edges. Therefore, small-worldness may allow the syn-
ergism of miRNAs to respond quickly to disturbances.
Most synergistic miRNA pairs also have the same expres-
sion tendency, which allows for a rapid response to
disturbances.
We not only identified miRNA synergism but also

revealed their underlying functional patterns. Functional
modules have three features at different levels, including
common targets of miRNA pairs, significantly enriched
GO categories and close proximity in the protein inter-
action network. In this study, a two-stage design is
adopted to detect miRNA pairs with significant functional
synergism, which are recently proposed to stepwise
control the overall false discoveries (55,56). In the
designs, a subset of miRNA pairs and their functional
modules that pass functional enrichment significance
threshold are chosen in the first stage, and in the second
stage two topological restrictions in the protein interaction

Figure 4. Communities with k-values of 9, 10 and 11 show the tendency of location of disease miRNAs that are located at the pentacles in Figure
2A. Nodes of dark color represent disease miRNAs; miRNAs on the background occur in at least two communities.
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network are performed on this ‘filtered’ subset. In
addition, when we controlled the false discovery rate
(FDR< 0.12) (57,58) at the step of functional enrichment
and kept other processes the same, we found that miRNA
synergism identified by the two-stage design are included
in the results using corrections of multiple testing.
Therefore, these miRNA synergies are reliable.
The close proximity of miRNAs involved in the same

disease is a further indication of their functional synergism
and the complexity of disease. We have also shown that
miRNAs involved in the disease exhibit a network
topology different from that of miRNAs not yet identified
as associated with a disease. The most striking property of
disease miRNAs is their increased frequency of synergism.
This observation indicates an underlying functional com-
plexity to disease miRNAs. The k-clique clustering algo-
rithm allows us to investigate miRNA synergism in a more
informative way than just by looking at the interaction
frequency of each miRNA. Its feature of overlapping
communities allows us to distinguish between central
and peripheral roles of miRNAs. The fact that we
observed an enrichment of disease miRNAs at the

interface indicates their central roles. These results
bridge the gap between the mechanism of disease
miRNAs and the synergism among them.

In the text, we only analyzed the predicted highly effi-
cient miRNA targets from TargetScan. To determine the
effects of different target prediction algorithms, we further
constructed another two MFSNs using miRNA targets
from the highly efficient integrated data and miRBase
database, respectively. These two MFSNs also provide
similar power-law distributions, have small-world
properties and most miRNAs also tend to work together
as small clusters. More importantly, topological features
of disease miRNAs are distinct from those of non-disease
miRNAs; these results are accordant with those obtained
using TargetScan. MiRNAs associated with the same
disease are closely located in the MFSNs. Meanwhile,
disease miRNAs have significantly more synergistic
partners than non-disease miRNAs, reside in communities
with high k values and tend to be located at the interface
of communities. The detailed results obtained with the
integrated data and miRBase are shown in the
Supplementary Data and further evidence that the struc-
tures of the MFSNs and the topological features of disease
miRNAs are robust.

The results present here provide a new insight into
the global topological properties of disease miRNAs
in the comprehensive microRNA synergistic network.
Although limitations exist in the current data, the results
uncovered here are important for understanding the key
roles of miRNAs in diseases.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Table 1. Number of communities and miRNAs at different k-values

k- value comm_N High confidence data All disease data

Non_D_miRNA D_miRNA D_miRNA_ratio (%) Non_D_miRNA D_miRNA D_miRNA_ratio (%)

3 9 231 124 34.93 203 152 42.82
4 17 170 112 39.72 150 132 46.81
5 21 127 92 42.01 112 107 48.86
6 22 91 75 45.18 78 88 53.01
7 19 67 63 48.46 57 73 56.15
8 9 50 43 46.24 42 51 54.84
9 7 34 35 50.72 27 42 60.87
10 7 28 27 49.09 21 34 61.82
11 5 20 25 55.56 16 29 64.44
12 2 5 19 79.17 4 20 83.33

The number of miRNA communities in the entire MFSN, identified by k-clique analysis at different k-values. Non_D_miRNA
represents the number of non-disease miRNAs, D_miRNA is the number of disease miRNAs, D_miRNA_ratio is the fraction of
disease miRNAs at different k-values.

Table 2. Multiple community membership distribution

k-value High confidence disease data All disease data

Observed
(%)

Expected
(%)

Fold
differ

Observed
(%)

Expected
(%)

Fold
differ

3 1.61 5.63 0.2866 2.63 5.42 0.4856
4 14.29 15.88 0.8995 15.91 14.67 1.0847
5 19.57 32.28 0.6060 20.56 33.04 0.6224
6 24.00 42.86 0.5600 25.00 44.87 0.5571
7 30.16 47.76 0.6314 34.25 45.61 0.7508
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9 25.71 8.82 2.9143 23.81 7.41 3.2143
10 37.04 21.43 1.7284 41.18 9.52 4.3235
11 32.00 15.00 2.1333 37.93 0 Inf
12 0 0 0 0

Percentage of disease miRNAs belonging to more than one community
(based on miRNAs identified by clustering as belonging to a community).
Expected value is based on non-disease miRNAs.
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