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miRnALoc: predicting miRnA 
subcellular localizations based 
on principal component scores 
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and pseudo compositions 
of di‑nucleotides
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MicroRnAs (miRnAs) are one kind of non‑coding RnA, play vital role in regulating several 

physiological and developmental processes. Subcellular localization of miRnAs and their abundance 

in the native cell are central for maintaining physiological homeostasis. Besides, RnA silencing 

activity of miRNAs is also influenced by their localization and stability. Thus, development of 
computational method for subcellular localization prediction of miRnAs is desired. in this work, we 

have proposed a computational method for predicting subcellular localizations of miRnAs based on 

principal component scores of thermodynamic, structural properties and pseudo compositions of 

di-nucleotides. Prediction accuracy was analyzed following fivefold cross validation, where ~ 63–71% 
of AUC-ROC and ~ 69–76% of AUC-PR were observed. While evaluated with independent test set, 
> 50% localizations were found to be correctly predicted. Besides, the developed computational model 
achieved higher accuracy than the existing methods. A user‑friendly prediction server “miRnALoc” is 

freely accessible at http ://cabgr id.res.in:8080/mirna loc/, by which the user can predict localizations of 

miRnAs.

It has been established that the non-coding RNAs (ncRNAs) are important regulator rather than the junk 
 sequences1. For variety of diseases, these are veri�ed to be important  biomarkers2. MicroRNAs (miRNAs) are 
one type of  ncRNA3 that are ~ 20–22 nucleotides  long4, contribute to a variety of cellular processes through 
their involvement in the regulation of gene  expression5–7. In association with the Argonaute (AGO) proteins, 
miRNAs form the core component of the miRISC (miRNA-induced silencing complex) that regulates a wide 
range of intracellular processes. Although miRNAs are known to function as a component of RISC in the 
 cytoplasm8, they have also been discovered in other cellular compartments including  nucleus9–11,  nucleolus12, 
 mitochondria11,13,  exosome14,15, extracellular  vesicle16 and  circulation17–20. As reported by  Leung21, subcellular 
localization of miRNAs is critical to its function, particularly the discoveries of miRNAs in the  nucleus22 and 
their ability to guide RNA target  cleavage23. Besides, information on subcellular localizations would help in 
designing and interpreting miRNA pro�ling experiments, distortions of which are reported to be associated 
with various diseases including  cancer24–26.

From the above studies, the importance of subcellular localization of miRNAs can be deduced. Although 
the biological experiments such as immuno�uorescence confocal microscopy, subcellular fractionation and 
immunoprecipitation are reliable in locating the subcellular localizations, they are resource intensive. Com-
putational methods can be good alternative to supplement the biochemical experiments. However, this has 
been done mostly for protein subcellular localization  prediction27–30. In addition, few attempts have also been 
made towards RNA molecules. Speci�cally, Feng et al.31 established a computational approach for prediction of 
organelle location of ncRNAs. Further, Cao et al.32 established a computational tool “lncLocator” to predict the 
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subcellular localizations of lncRNAs (long non-coding RNAs). In another study, iLoc-lncRNA was developed 
by Su et al.33 for subcellular localization prediction of lncRNAs. As far as predicting subcellular localization of 
miRNAs is concerned, only two approaches i.e., MiRGOFS-based  predictor34 and  miRLocator35 are available in 
literature, to the best of our knowledge. �ough these approaches have achieved an acceptable level of accuracy, 
still there is room for improvement. Further, no computational tools or prediction servers are available for both 
the existing approaches. �us, an attempt has been made in this study to establish an alternative computational 
method along with a computational tool for predicting multiple subcellular localizations of miRNAs. �e pseudo-
dinucleotide compositions along with the physico-chemical and thermodynamic properties of miRNAs were 
utilized as features, where the support vector machine (SVM)36 along with other machine learning methods 
were employed as predictor. �e developed computational tool or prediction server is believed to supplement 
the research related to RNA biology.

Methods
collection and processing of dataset. Construction of benchmark datasets is essential to develop any 
machine learning-based predictor. We downloaded the sub cellular localization details of miRNA sequences 
from RNALocate  database37 available at https ://www.rna-socie ty.org/rnalo cate/. A total of 9,456 miRNA 
sequences with curated subcellular locations information were retrieved. A�er removing redundancy, a total of 
2,525 unique miRNA sequences were retained. Further exclusion of hairpin miRNA sequences resulted in 2,202 
unique mature miRNA sequences distributed over 16 subcellular localizations (Supplementary Table S1). Out 
of 2,202, 1,292 were con�ned to unique (single) localization only while 910 were found to be present in more 
than one localization. A�er analyzing the sequences con�ned to single location, < 10 sequences were found for 
cell body, chloroplast, dendrite, endoplasmic reticulum, nucleolus, nucleoplasm, ribosome and synapse. Hence, 
we considered the miRNA sequences belonging to the remaining 8 subcellular localizations, where 1,270 were 
found to be present in single location and 691 sequences in more than one location.

positive and negative datasets. For each subcellular localization, both positive and negative datasets 
were prepared. For a given localization, the positive set constitutes the sequences belonging to that localiza-
tion only and the negative set constitutes the remaining unique localization sequences (called as ND-I). We 
used another negative dataset (i.e., ND-II) that contains randomly drawn 1,000 miRNA sequences from miR-
Base database (https ://www.mirba se.org/) whose localizations are not known. Hence, we assumed here that the 
sequences are from other localizations than the considered eight localizations. Further, to avoid homologous 
bias, 80% identical sequences were removed from both the positive and negative sets using CDHIT  program38 
with sequence identity cut-o� 0.8. �e 80% cuto� was employed based on the earlier studies involving nucleo-
tide sequence data. Besides, employing a more stringent cuto� will further reduce the size of the dataset. Positive 
and negative datasets for each of the 8 localizations are summarized in Table 1.

independent test dataset. �e independent dataset was built with 691 miRNA sequences, where each 
sequence belonged to more than one localization. In other words, accuracy was evaluated with regard to the pre-
diction of more than one subcellular localization of miRNAs. Among 691 sequences, more than 50% were pre-
sent in 2 localizations, where the sequences were seen to be present in a maximum of six localizations (Fig. 1A). 
Less number of sequences were observed for axon and extracellular vesicle, whereas a large number of sequences 
(> 200) for other six localizations (Fig. 1B). Among all the localizations, larger number of sequences was found 
for the exosome. Further, most of the sequences present in other locations were also seen to be present in the 
exosome (Fig. 1C).

feature generation. Generation of discriminative features is crucial for achieving higher prediction accu-
racy in machine learning algorithm (MLA)-based prediction. Since miRNA sequences are shorter in size (20–22 
nucleotides), generation of discriminative sequence-based features is challenging. Here, we utilized two types 
of features i.e., pseudo dinucleotide compositions (PseDNC)39 and di-nucleotide properties (DiPro) for RNA 

Table 1.  Summary of the positive and negative datasets. Last column represents the negative dataset collected 
from miRBase database. Number of sequences presented are obtained a�er removing redundancy with 
sequence identity cut-o� 0.8 using CD-HIT program.

Localization type Positive ND-I ND-II

Axon 16 830

951

Circulating 69 775

Cytoplasm 67 808

Exosome 524 415

Extracellular vesicle 25 829

Microvesicle 21 818

Mitochondrion 191 659

Nucleus 42 799

https://www.rna-society.org/rnalocate/
https://www.mirbase.org/
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category obtained from  DiProDB40 database. Besides, we also employed two di�erent combinations of features 
i.e., PseDNC + DiPro and principal component scores of PseDNC + DiPro (we call it PrinComp). �e Pse-in-

Figure 1.  (A) Distribution of sequences of the test set over number of localizations. (B) Number of sequences 
of the test set present in di�erent locations. (C) Distribution of sequences in more than one locations. (D) Heat 
map of AUC-ROC for four di�erent kernels with all the four feature sets. (E) ROC curves for all the four festure 
sets with all the eight localizations.
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One  server41 was implemented for retrieving PseDNC features. Here, the purpose of using PrinComp feature 
is to transform the correlated features into independent features or predictors, rather than reducing the dimen-
sion. �erefore, all the principal component scores were subjected for prediction. �e PrinComp features were 
nothing but the principal component scores obtained from the combined features of DiPro and PseDNC, where 
the function princomp of the R-package “stats”42 was utilized to get the principal component scores. A precise 
description of computation of features is as follows.

Features based on di-nucleotide properties (DiPro). We extracted the physico-chemical, thermodynamic and 
conformational properties of di-nucleotides from DiProDB, which is accessible at https ://dipro db.�i-leibn iz.de/
ShowT able.php. Speci�cally, 11 di�erent properties of RNA i.e., twist, rise, shi�, tilt, slide, roll, stacking energy, 
hydrophilicity, enthalpy, entropy and free energy are available in this database. However, there are two types of 
hydrophilicity, enthalpy, entropy and free energy. �us, a total of 15 features were employed. �e values of these 
properties corresponding to each di-nucleotide are given in Supplementary Table S2. Based on these properties, 
each sequence was mapped to a vector of 15 numeric observations, where each element corresponds to the mean 
value of the respective di-nucleotide properties.

Feature based on pseudo di-nucleotide composition (PseDNC). With the tendency to capture both local and 
global ordering information of di-nucleotides43,44, PseDNC feature descriptor has been employed for sequence 
encoding in many �elds of computational biology and  bioinformatics45–48. For a given nucleotide sequence, the 
PseDNC feature vector can be represented as V = {v1v2 . . . v16v16+1 . . . v16+�} with

 where w is the weight factor, � represents the number of pseudo components, αj is the jth tier correlation factor 
and gτ represents the normalized frequencies of di-nucleotides. �e jth tier correlation factor is nothing but 
the correlation between all the jth adjacent di-nucleotides, and for any sequence of L nucleotides long it can be 

computed as αj =
1

L−j−1

∑L−j−1

i=1 Ri,j(j = 1, 2, . . . , �; � < L) , where Ri,j = 1
µ

∑µ

f=1
[Pf (Di) − Pf (Dj)]

2 . Here, µ 

denotes the number of di-nucleotide properties which is 15 in this study, Pf (Di) and Pf
(

Dj

)

 are the numeric 

values of the f th di-nucleotide properties for the di-nucleotide at ith and jth positions of the sequence respectively.

prediction with SVM. �e SVM has been e�ectively and successfully employed in several areas of 
 bioinformatics49–53. A precise description about SVM can be found in Chou and  Cai54. Based on structural risk 
minimization principle, SVM has strong generalization ability. �e SVM algorithm searches for a hyper plane 
that maximizes the margin between observations of di�erent classes. In this regard, the kernel function plays 
a crucial  role55. We �rst assessed the accuracy with four widely used kernels (radial, sigmoid, polynomial and 
linear) using a sample dataset from each localization, and the kernel function that provided highest accuracy was 
utilized in the �nal prediction. �e SVM was implemented with “e1071”56 package of R-so�ware.

Measuring prediction accuracy. Two important measures that are area under ROC 
(receiver operating characteristics) curve (AUC-ROC)57 and PR (precision-recall) curve 
(AUC-PR)58 are employed to assess the accuracy of prediction model. Besides, sensitiv-
ity = tp/(tp + fn) , speci�city = tn/(tn + fp) , F1-score=2 × precision × recall/(precision + recall) and 
MCC== [(tp × tn) − (fp × fn)]/sqrt[(tp + fn) × (tp + fp) × (tn + fp) × (tn + fn)] were also utilized 
to measure the prediction accuracy, where recall is same as the sensitivity for binary classi�cation and pre-
cision = tp/(tp + fp) . �e tp, tn, fp and fn denote true positive, true negative, false positive and false negative 
respectively. Further, repeated �vefold cross validation technique was adopted to measure the accuracy, where 
the experiment was repeated 100 times for each localization. In case of imbalanced dataset, AUC-PR is better 
metric than AUC-ROC as the former takes into account the information of both the classes in binary classi�ca-
tion problem.

prediction with balanced dataset. �e sizes of the datasets are di�erent for di�erent localizations 
(Table  1). �us, the imbalanced dataset comes into play with the prediction using one-vs-rest strategy. For 
instance, in case of axon (positive) versus rest (negative), the ratio of negative to positive dataset is ~ 45:1. Use of 
imbalanced dataset for prediction using MLA o�en produces biased result towards major  class32. �ere are two 
sampling strategies (under and over sampling) commonly used to alleviate the impact of data imbalance. In this 
study, we preferred SMOTE (synthetic minority over-sampling technique)59 technique that generates synthetic 
samples for the minor class. In SMOTE, synthetic observations for the minority class (class having less num-
ber of instances than the other class) are generated rather than over-sampling with replacement. �e synthetic 
observations are introduced along the lines of the nearest neighbours of each minority class sample. Depending 
upon the amount of over-sampling, neighbours are randomly taken from K-nearest neighbours. For example, if 
3 times more observations are required then only three neighbours are chosen from the K-nearest neighbours 
and one synthetic observation is generated along the direction of each. �e synthetic observations are generated 
in 3 steps. First, the di�erence between the observation under consideration and its neighbour is taken. Second, 

vτ =



















gτ
�16

i=1 gi+ω
�
�

j=1

αj

(1 ≤ τ ≤ 16)

wατ−16

�16
i=1 gi+ω

�
�

j=1

αj

(16 ≤ τ ≤ 16 + �)
,

https://diprodb.fli-leibniz.de/ShowTable.php
https://diprodb.fli-leibniz.de/ShowTable.php
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the di�erence is multiplied with a random number between 0 and 1 and the resultant vector is added to the 
observation under consideration in the third step. It has been widely used in numerous bioinformatics studies 
in the  past60–63.

Results and discussion
Analysis of kernel functions. A sample dataset with 50% sequences from each of the localization was used 
to choose the best �tted kernel out of 4 considered kernels, with default setting of parametric values. �e predic-
tion was made with one-vs-rest strategy. In other words, for a given localization, sequences of the remaining 7 
localizations constitute the negative set. �us, eight predictors were developed for eight di�erent localizations. 
From the heat map of the AUC-ROC (Fig. 1D), it can be seen that the radial basis function (RBF) kernel yielded 
higher accuracy for all the eight localizations predictors across all the four di�erent kind of feature sets. It has 
also been stated that RBF kernel gives best classi�cation hyperplane due to e�ective training process as well as 
 speed39,64. Taking the collective view, RBF kernel was utilized in the subsequent prediction analysis.

Analysis of feature sets. With the default parameters setting of RBF kernel, prediction accuracies were 
further evaluated for all the four di�erent feature sets i.e., PseDNC, DiPro, PseDNC + DiPro and PrinComp 
using same sample dataset as used in analyzing the kernel functions. From the ROC curves (Fig. 1E), it is seen 
that in most of the cases accuracies are higher for PrinComp feature set except for the localizations where the 
number of sequences are very less i.e., axon (16), extracellular vesicle (25) and microvesicle (21). Least accuracies 
are seen with DiPro features. �ough PseDNC + DiPro and PrinComp have same number of features, accuracies 
are found to be higher for PrinComp may be due to independent nature of the principal component scores. �us, 
we preferred the PrinComp features for the subsequent prediction.

parameter optimization analysis. Optimization of parameters is essential to obtain higher accuracy. In 
particular, tuning of RBF kernel width parameter (gamma: γ) and regularization parameter (cost: C) is required. 
�rough a grid search approach, the values of the parameters were optimized. By using 50% randomly drawn 
sample observations for each localization (from the �rst dataset), optimum values of the parameters were deter-
mined. More clearly, optimum values of gamma and cost for each localization were selected out of 19 × 21 com-
binations of gamma and cost, where the gamma was considered as  2–15:23 with step size 2 and cost as  215:  2–5 with 
step size  2–1 . For all the combinations, prediction accuracies were calculated following �vefold cross validation 
procedure and the combination with least error was chosen as the optimum one. �is process was repeated for 
all the eight localizations. �e optimum values of parameters along with the corresponding classi�cation error 
are given in Table 2. Using the optimum values of parameters, classi�cations were performed for all the eight 
localizations.

prediction analysis with AUc‑Roc and AUc‑pR. For the �rst dataset (positive set + ND-I), predic-
tion was made with balanced datasets obtained a�er applying SMOTE (except exosome). �e AUC-ROC are 
observed between 63–71%, whereas AUC-PR between 69–76% (Table 3). For exosome, both AUC-ROC and 
AUC-PR are observed to be > 97%, may be due to the large size dataset and also used without applying SMOTE. 
With the second dataset (positive + ND-II), it is observed that AUC-ROC are ~ 45–75% whereas the AUC-PR 
between ~ 50–81% (Table 3). Performance metrics are observed to be more stable for exosome and mitochon-
drion due to larger size datasets. On the other hand, less stable accuracies are observed for axon, extracellular 
vesicle and microvesicle due to smaller size datasets (Table 3). Interestingly, accuracy for exosome is less than the 
others in case of second dataset, may be due to that miRBase negative dataset shares a higher degree of similarity 
with exosome localized sequences.

prediction analysis with other performance metrics. Besides AUC-ROC and AUC-PR, we have also 
computed sensitivity, speci�city, F1-score and MCC for both �rst (positive + ND-I) and second (positive + ND-II) 
datasets. Repeated �vefold cross validation technique was adopted to measure the performance metrics (similar 
to AUC-ROC and AUC-PR), where the experiment was repeated 100 times for each localization. �e perfor-

Table 2.  Optimum parametric values of RBF kernel for prediction of miRNA in eight subcellular localizations, 
where sample datasets are used for optimization analysis.

Localization γ (gamma) C (cost) error

Axon 0.125 2 0.05

Circulating 0.25 2 0.145

Cytoplasm 0.125 1 0.137

Exosome 0.065 8 0.121

Extracellular vesicle 0.125 2 0.11

Microvesicle 0.125 1 0.106

Mitochondrion 0.125 4 0.081

Nucleus 0.125 2 0.112
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mance metrics are given in Table 4. For the �rst dataset, sensitivity is seen to be least for nucleus (51.3%) and 
highest for exosome (72.4%). Speci�cities are observed to be ~ 66–74%, which are higher than the sensitivities. 
�e F1-score and MCC are found to be ~ 61–72% and ~ 52–69% respectively. Similar trend is also observed for 
the second dataset, where speci�cities (~ 68–79%) are higher than the sensitivities (~ 55–77%). Further, the 
F1-scores are observed between ~ 64–77%, and MCC between ~ 50–70%. Moreover, the performance metric for 
the second dataset are found to be higher than that of �rst dataset, barring few exceptions. It is also observed that 
the accuracies obtained with the second dataset are more stable (less standard error) than that of �rst dataset.

comparison with other machine learning approaches. Performance of SVM was also compared 
with six other well known MLAs i.e., arti�cial neural network (ANN)65, Bagging (Bag)66, Boosting  (Bos)67, 
k-nearest neighbor (kNN)68, naïve Bayes (NB)69 and random forest (RF)70. Prediction performance was evalu-
ated using the �rst dataset (positive set + ND-I). Di�erent R-packages were used to implement these MLAs. List 
of R-packages and parameters used for execution of these techniques are provided in Supplementary Table S3. 
Accuracies are measured in terms of AUC-ROC and AUC-PR, where repeated �vefold cross validation tech-
nique (as mentioned in “Feature generation”) was adopted to assess the performance. Prediction accuracies are 
displayed in Fig. 2. It can be seen that SVM achieved highest accuracies across localization than the other classi�-
ers, whereas ANN achieved least accuracies. Over localizations, AUC-ROC values for ANN, Bag, Bos, kNN, NB, 
RF and SVM are observed to be 49.09, 59.52, 51.89, 61.39, 49.81, 61.11 and 71.97 percentages, whereas AUC-PR 
as 47.38, 58.51, 50.66, 58.48, 49.11, 62.05 and 75.62 percentages respectively. As expected, RF performed at par 
or better than Bagging classi�er because RF is an improved version of Bagging classi�er. Interestingly, kNN is 
seen to be performing better than most of the classi�ers across localizations, with few exceptions. Furthermore, 

Table 3.  Prediction accuracy of the proposed model (SVM with PrinComp features). Accuracies are measured 
following �vefold cross validation procedure, where the experiment was repeated 100 times. Values inside 
brackets denote standard error.

Class

First dataset (Positive + ND-I)
Second dataset 
(Positive + ND-II)

AUC-ROC AUC-PR AUC-ROC AUC-PR

Axon 0.715 (0.062) 0.761 (0.071) 0.714 (0.053) 0.765 (0.062)

Circulating 0.675 (0.037) 0.696 (0.047) 0.744 (0.027) 0.782 (0.031)

Cytoplasm 0.671 (0.033) 0.690 (0.047) 0.712 (0.027) 0.752 (0.035)

Exosome 0.971 (0.005) 0.973 (0.004) 0.452 (0.019) 0.505 (0.014)

Extracellular Vesicle 0.702 (0.058) 0.700 (0.076) 0.755 (0.043) 0.765 (0.064)

Microvesicle 0.717 (0.043) 0.792 (0.039) 0.749 (0.047) 0.810 (0.049)

Mitochondrion 0.672 (0.017) 0.734 (0.024) 0.712 (0.014) 0.773 (0.019)

Nucleus 0.635 (0.043) 0.704 (0.055) 0.646 (0.041) 0.719 (0.055)

Table 4.  Estimates of the performance metrics for the proposed model (SVM with PrinComp features). 
Accuracies are computed following �vefold cross validation procedure, where the experiment was repeated 100 
times for each localization.

Dataset Localization Sensitivity Speci�city F1-score MCC

First dataset (Positive + ND-I)

Axon 0.704 ± 0.027 0.740 ± 0.011 0.721 ± 0.016 0.695 ± 0.031

Circulating 0.631 ± 0.030 0.728 ± 0.008 0.676 ± 0.018 0.613 ± 0.029

Cytoplasm 0.657 ± 0.023 0.690 ± 0.016 0.672 ± 0.017 0.597 ± 0.033

Exosome 0.724 ± 0.004 0.686 ± 0.004 0.706 ± 0.003 0.661 ± 0.006

Extracellular vesicle 0.713 ± 0.021 0.731 ± 0.010 0.722 ± 0.013 0.694 ± 0.025

Microvesicle 0.674 ± 0.027 0.742 ± 0.008 0.706 ± 0.015 0.669 ± 0.027

Mitochondrion 0.646 ± 0.015 0.665 ± 0.011 0.654 ± 0.010 0.561 ± 0.019

Nucleus 0.513 ± 0.048 0.741 ± 0.011 0.610 ± 0.031 0.524 ± 0.041

Second dataset (Positive + ND-II)

Axon 0.747 ± 0.023 0.791 ± 0.008 0.768 ± 0.013 0.739 ± 0.025

Circulating 0.689 ± 0.020 0.786 ± 0.007 0.734 ± 0.012 0.679 ± 0.020

Cytoplasm 0.717 ± 0.021 0.741 ± 0.014 0.728 ± 0.014 0.658 ± 0.026

Exosome 0.615 ± 0.007 0.684 ± 0.006 0.644 ± 0.006 0.501 ± 0.011

Extracellular vesicle 0.774 ± 0.013 0.787 ± 0.010 0.780 ± 0.008 0.761 ± 0.016

Microvesicle 0.753 ± 0.021 0.787 ± 0.010 0.769 ± 0.013 0.740 ± 0.024

Mitochondrion 0.694 ± 0.015 0.731 ± 0.011 0.711 ± 0.010 0.626 ± 0.019

Nucleus 0.557 ± 0.035 0.788 ± 0.012 0.656 ± 0.024 0.566 ± 0.034



7

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:14557  | https://doi.org/10.1038/s41598-020-71381-4

www.nature.com/scientificreports/

accuracies are found to be more stable for the localizations with larger size datasets (circulating, cytoplasm, exo-
some and mitochondrion) and less stable with smaller size datasets (axon, extracellular-vesicle, microvesicle, 
nucleus). Nevertheless, SVM is found to be better than rest of the considered classi�ers for predicting localiza-
tions of miRNAs.

Figure 2.  Accuracy of machine learning methods in terms of AUC-ROC and AUC-PR with regard to 
prediction of localizations of miRNAs.
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prediction with independent dataset. Prediction with independent test dataset is necessary to validate 
newly established prediction model. Prediction was made with two models trained with two di�erent datasets. 
Out of 2066 localizations (distributed over 691 sequences), 695 localisations were correctly predicted with the 
model trained with the second dataset (positive set + ND-II) and 1,046 were correctly predicted with the �rst 
dataset (positive set + ND-I). �ough the cross validation accuracies were higher with second dataset (Table 3), 
less accuracies are observed with the blind dataset. �us, it can be inferred that by using the miRBase nega-
tive dataset there is a probability of getting over prediction accuracy. On the other hand, > 50% localizations 
(1,046/2066) are correctly predicted with the �rst dataset. In particular, 35% of axon, 54.49% of circulating, 
50.00% of cytoplasm, 74.81% of exosome, 25.80% of extracellular vesicle, 25.40% of microvesicle, 36.86% of 
mitochondrion and 41.56% of nucleus localizations were correctly predicted (Fig. 3A). Distribution of mul-
ticellular localization for the test set is shown in Fig. 3B. Out of 362 sequences that are present in exactly two 
localizations, both localizations are correctly predicted for 97 sequences, one localization is correctly predicted 
for 204 sequences, and both localizations are wrongly predicted for 61 sequences. Similarly for the 142 sequences 
belonging to three localizations, 1, 2 and 3 localizations are correctly predicted for 66, 59 and 10 sequences 
respectively, whereas all the three localizations are wrongly identi�ed for only 7 sequences. Out of 75 sequences 
present in 4 localizations, 1, 2 and 3 localizations are correctly predicted for 23, 34 and 18 sequences respectively. 
For the sequences belonging to �ve localizations (56), 6, 23, 22 and 5 sequences are correctly predicted for 1, 2, 
3 and 4 localizations respectively. With respect to sequences present in six localizations, 8, 19, 14, 12 and 3 are 
accurately predicted respectively for 1, 2, 3, 4 and 5 localizations (Fig. 3B).

prediction for the miRnAs of miRBase database. Prediction was also made for all the miRNA 
sequences (48,885 sequences) of the miRBase dataset. Less than 0.05% of sequences are predicted not to be 
localized in any of the considered 8 localizations. On the other hand, < 0.02% of sequences are predicted to be 
localized in all the 8 localizations. Besides, ~ 1.7, 8.4, 26.1, 36.3, 21.5, 5.2 and 0.7 percentages of sequences are 
predicted in 1, 2, 3, 4, 5, 6 and 7 localizations respectively. It is also found that 46.47, 50.21, 50.28, 59.37, 49.10, 
41.97, 40.45 and 47.76 percentages of sequences are predicted into axon, circulating, cytoplasm, exosome, extra-
cellular vesicle, microvesicle, mitochondrion and nucleus localizations respectively. For the �rst dataset, exo-
some dataset was not highly unbalanced and hence used without employing SMOTE.

Figure 3.  (A) Number of sequences observed and correctly predicted in di�erent localizations. (B) Confusion 
matrix of the number of localizations observed and predicted.
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prediction server. Development of web application of any computational method is essential for the 
users, speci�cally those are not familiar with the statistics or MLAs. Here, we have established a web server 
“miRNALoc” (http ://cabgr id.res.in:8080/mirna loc/) for predicting the localizations of miRNAs based on the 
proposed computational approach. �e user has to supply the miRNA sequences to get the desired results. A 
snapshot of the server page (Fig. 4A) and resulted output for a single sequence (Fig. 4B) is shown. �e result page 
shows the probabilities with which each sequence is predicted in eight di�erent localizations. From the output, 
it is inferred that the sequence is predicted with probabilities 0.233, 0.552, 0.603, 0.67, 0.347, 0.943, 0.169 and 
0.619 in localizations axon, circulating, cytoplasm, exosome, extracellular vesicle, microvesicle, mitochondrion 
and nucleus respectively. In other words, the sequence is predicted to be localized in circulating, cytoplasm, 
exosome, microvesicle and nucleus. �e prediction approach is believed to supplement the localization research 
pertaining to other classes of ncRNA.

comparative analysis with existing methods. �e MiRLocator and MirGOFS-based predictor are the 
two existing methods, as far as predicting localizations of miRNAs is concerned. Six localizations (circulating, 
cytoplasm, exosome, microvesicle, mitochondrion and nucleus) were considered in both the existing methods, 
whereas we have considered eight localizations. Further, we compared the performance of the developed model 
(SVM with PrinComp feature) with that of MirGOFS and MiRLocator by utilizing the same datasets that have 
been used in the respective models. Tenfold cross validation approach was further adopted for measuring the 

Figure 4.  Snapshot of the (A) web server and (B) result page.

http://cabgrid.res.in:8080/mirnaloc/
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accuracy as has been employed in MirGOFS and MiRLocator. Same performance metrics i.e., F1-score (for 
MirGOFS) and average precision (for MiRLocator) were also adopted for comparison with the respective model. 
�e developed computational model achieved F1-score of 65.77%, which is ~ 4% higher than the MirGOFS 
(61.2%). While compared with MiRLocator (average precision: 57.96%), ~ 4% higher of average precision is also 
obtained for the proposed approach (average precision: 61.82%). �us, the established computational approach 
may provide higher accuracy than the considered existing methods. Moreover, none of the existing methods 
have been evaluated on independent dataset, whereas the developed approach correctly predicted > 50% locali-
zations correctly while evaluated with an independent dataset. Besides, we have also developed an online pre-
diction server for the user, whereas prediction server is not available for both the existing methods which limits 
their usefulness in future studies. Nevertheless, the proposed methodology is expected to supplement the avail-
able methods for predicting localizations of miRNAs.

Advantages, disadvantages and future scope for improvement. In this study, we employed sup-
port vector machine with RBF kernel for predicting localizations of miRNAs. �e SVM is seen to achieve higher 
accuracy than that of other models i.e., Bagging, Boosting, kNN, Naive Bayes, Random Forest and ANN algo-
rithms. �e reason may be the high generalization in prediction accuracy of SVM. Because of the imbalanced 
nature of the datasets, SMOTE technique was utilized to get balanced dataset and thereby higher prediction 
accuracy. Because of the balanced dataset obtained using SMOTE, cross validation accuracies are seen to be 
higher than that of accuracy achieved with the independent test dataset. �erefore, our future endeavour will 
be development of algorithms to get higher accuracy without balancing the di�erent classes. Another reason of 
less accuracy obtained with independent dataset may be due to the use of less number of predictors (features) 
i.e., 33, and hence accuracy of the present methodology may be improved further by generating and includ-
ing more number of discriminative features. With regard to existing localization predictors i.e., MiRLocator 
and MirGOFS, the developed approach may provide higher accuracy of localization prediction. Nevertheless, 
the present attempt is expected to add to the existing knowledge as far as computational prediction of miRNA 
localization is concerned.

conclusion
�is study presents an SVM-based computational method for predicting localizations of miRNAs. Besides, a com-
putational tool “miRNALoc” has also been established to help the biologist working in the �eld of RNA biology. 
�is work is believed to supplement the biochemical methods with regard to localization study of miRNAs. �e 
developed approach may also be useful for developing methods to predict localizations of other classes of ncRNA.

Data availability
All the datasets used in this study are available at http ://cabgr id.res.in:8080/mirna loc/datas et.html.
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