
Mirror reflectometer based on optical cavity decay time

Dana Z. Anderson, Josef C. Frisch, and Carl S. Masser

Described is a reflectometer capable of making reflectivity measurements of low-loss highly reflecting mirror
coatings and transmission measurements of low-loss antireflection coatings. The technique directly mea-
sures the intensity decay time of an optical cavity comprised of low-loss elements. We develop the theoreti-
cal framework for the device and discuss in what conditions and to what extent the decay time represents
a true measure of mirror reflectivity. Current apparatus provides a decay time resolution of 10 nsec and has
demonstrated a cavity total loss resolution of 5 ppm.

1. Introduction

Low-loss optical coatings often play a crucial role in
the performance of optical instruments. Unfortu-
nately, coating characteristics can vary considerably
from batch to batch from a single manufacturer and
drastically from manufacturer to manufacturer, even
when identical specifications are quoted for the coating.
For this reason it may be useful to have on hand a device
which can measure coating characteristics rather than
rely on the specifications given by the manufacturer.

In this paper we describe a device designed to mea-
sure the reflectivity of highly reflecting mirror coatings
(having reflectivity approaching 1), alternatively it can
also be configured to measure the transmission of low-
loss antireflection coatings (on low-loss substrates).
Seemingly straightforward techniques such as mea-
suring the small change in incident light intensity with
a power meter have proved unreliable. A technique
suggested by Sanders 1 works well for moderate loss
optical elements but less so when losses are very low.
The following method is reliable and in fact becomes
more accurate with decreasing losses.

The fundamental quantity measured by our appa-
ratus is the cavity decay time. From this quantity,
other characteristics such as mirror reflectivity can be
inferred. A technique developed by Herbelin et al.

2

obtains the cavity decay time through a measurement
of the phase retardation of an intensity modulated
source laser induced by an optical cavity. The tech-
nique described herein measures the decay time directly

The authors are with California Institute of Technology, Division
of Physics, Mathematics, and Astronomy, Pasadena, California
91125.

Received 13 January 1983.

0003-6935/84/081238-08$02.00/0.

© 1984 Optical Society of America.

in a straightforward manner using relatively simple
instrumentation. Our apparatus has a decay time
resolution of 10 nsec and has demonstrated a total
cavity loss resolution of 5 ppm.

Figure 1 shows a conceptual schematic of the appa-
ratus. Our technique relies on the fact that, with no
light incident on the cavity, its output is determined
only by its transient response which'is characterized by
an exponential decay of the intensity with a time con-
stant which in turn is determined only by the round-trip
losses in the cavity, the round-trip path length of the
cavity, and the speed of light. Therefore if light is in-
jected into the cavity and then the source is quickly shut
off, the decay time can be measured with a clock.
Measuring the round-trip path length is easy; with these
two numbers in hand the cavity losses can be deduced. 3

To obtain the actual mirror losses one must make a
separate measurement of their transmission, which can
be done with reasonable precision with a power meter
having a large dynamic range (or having calibrated at-
tenuators) by measuring the incident intensity with and
without the mirror in the light path. On the other hand,
in many applications it may be the actual cavity char-
acteristics which are of interest rather than the mirrors
which comprise it, in which case the latter step is un-
necessary. Losses of antireflection coatings can be
determined by placement in the optical path of a pre-
viously characterized cavity. We now delve more
deeply into the theory behind the measurement and the
calculation of the cavity (and mirror) characteristics and
present a small list of convenient formulas relating
various essentially equivalent characteristics to the
cavity decay time. We subsequently describe the ap-
paratus in more detail and following that we present the
results of some tests performed using the apparatus.

11. Theory

Imagine an optical cavity which has been filled with
light. In a classical sense one may think of the light as
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Fig. 1. Conceptual schematic of decay measuring device. Optical

switch shuts off light when detector output reaches a preset threshold

level.

traveling round and round (or back and forth) along the

optical path. With each round trip, a fraction of the
light is lost to the outside world. From this simplified
picture one might guess that the light at a given point
will decay in steps spaced a round-trip time apart with
a fractional height dictated by the round-trip losses.
With a somewhat greater leap of intuition one might
also guess that, if the losses are small, that is, if the step
size is small, the decay will be exponential. In the more
rigorous treatment below it is shown that this is indeed

the case and that in fact the decay time depends only
on the round-trip time and the fractional losses. Small
fractional changes in cavity length caused, for example,
by acoustical vibrations can only make small fractional

changes in the decay time. The frequency of the light
will affect decay time only insofar as the fractional losses
or round-trip time depend on frequency.

As stated above, the transient response of the cavity
is exponential only in the case of low total cavity losses.
For example, a 10% total cavity loss implies a standard
error of -1% for an exponential fit to the cavity decay.
Practical considerations, namely, electronic speed, put
a more stringent constraint on the maximum permis-
sible loss; so this technique is appropriate only when
cavity losses are small. In the following discussions, a
low-loss condition is assumed throughout.

There are several ways in which a mirror coating can
be characterized, the choice of which often depends on
whether the mirror itself or its intended use is to be
emphasized. As for the mirror itself, it will suffice for
present purposes to ascribe to it three parameters, R,
S, and T, the intensity reflection, loss, and transmission
coefficients, respectively. We use the term loss and
symbol S to represent the nonrecoverable energy losses
from scattering and absorption and do not include
transmission so that the coefficients are related through
energy conservation by

R+S+ T= 1. (1)

We will also use the term total loss meaning the sum, S
+ T L for a given mirror or for the cavity losses, in-
cluding transmission, as a whole. A mirror may also
exhibit amplitude and phase birefringence with respect
to the direction of polarization. In general the mirror
coefficients will depend on the direction of incidence
and wavelength as well; all these dependences will be
dropped for the following.

Two or more mirrors may be arranged to form an
optical cavity. Suppose light at frequency w is incident
on one mirror and a detector is placed to monitor the
light transmitted through a second mirror as in Fig. 1.
To within a phase factor, the electric field at the output
iS

4

E0 exp(-io.t) = Ei exp(-iwt) [Cmnq(TiToRP)1/2 1 - ]
(2)

where Cmnq is a mode matching coefficient describing
the coupling efficiency between the source and the
cavity (typically m and n are small integers, q is a very
large integer), Ei is the incident electric field, and Ti and
To are the transmission of the input and output mirrors,
respectively. R is the product of the mirror reflectivi-
ties, Rp is the product of reflectivities of the mirrors
which are traversed by the light path in-between (but
not including) the input and output mirrors (or Rp =
1 if there are none), and 3 is the round-trip optical phase
shift:

=-+ Px + , (3)

with L the round-trip path length and c the speed of
light. The additional phases sox ,py are dependent on
the transverse mode geometry which is in turn depen-
dent on the cavity geometry. 5 If we focus for the mo-
ment on the case where 6 is nearly a multiple of 27r, that
is, near resonance, the factor in brackets in Eq. (2) is
seen to have the following character:

Hmnq Cmnq(TiToRp)1/2{1 [i --- (L)

+ (terms higher order in i-A L (4a)

or

Hmnq Cmnq(TiToRp) - vR (I - i AwL)-i

- Amnq -[Yc + iAwmnql',
L

(4b)

where

AOmnq mnq - Cs,

L
- mnq 2irq - mrpx - nSpy,

Ye =(c/L)

Amnq Cmnq T]

In some cases it may be desirable to approximate the
bracketed factor in Eq. (2) with a sum of H functions
[defined by Eq. (4b)] centered about the successive
maxima of the bracketed term. This is a reasonable
procedure provided the successive maxima are well
separated, that is, if the cavity losses are small and if
either the transverse mode coupling is small or the
transverse mode frequencies are far apart compared to

Yc-
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The field internal to the cavity will become significant
only when the source is at or near a resonance of the
cavity, that is, when is very nearly a multiple of 27r.
Suppose the cavity has been subject to an electric field
on or near its resonance. The magnitude of the field
could be varying slowly, but to keep things simple let it
remain constant;, the result will not change significantly.
Now let the source be turned off at t = 0, quickly but
smoothly. What is meant by quickly becomes clear
below. In the time domain the source field is

Ei(t) = Es exp(-iwt) t < 0,

Ei(t) = Es exp[-(Qy8 + iw5)t] t > 0.

To calculate the field at the output we use a Laplace
transform approach; the output transform is the prod-
uct of the input transform and the transfer function of
the cavity6

Ea(s) = Ei(s)H(s), (6)

where s is the complex frequency parameter. Equation
(6) gives the definition of the transfer function-it is the
ratio of output field at frequency s to the input at the
same frequency. By inspection of Eqs. (2) and (4),7

E.(t) = E.A, { - expI-(Ly + is)t]
Ic-YS + AX

+
c/L

(1 - '/'Ys' - iAcz/ys)e'Yc + AW)
exp[-(Qy + icvc)t]I

t > 0. (lOb)

Equation (0a) represents the steady-state response
of the cavity to the source having been turned on at
some early time. Equation (lOb) represents the re-
sponse of the cavity to shutting off the source.8 Now
what we mean by turning off the source quickly becomes
clear: if the source is shut off at a rate y. << y, the first
term on the right-hand side will dominate although
there will be a small amount of interference between the
first and second terms for times of the order of the
cavity decay time. As expected, the cavity character-
istics do not become apparent when the light is slowly
extinguished. On the other hand if the light is switched
more abruptly so that Ys >> yc, the first term in Eq.
10(b) vanishes and the output for t > 0 becomes

E,(t) = EAc i exp[-(-yr + ic)t].
'Yr + Aw

(8)

H(s) = L E Amnq(s + Qmnq-
t
, (7)

L mnq

where the complex frequency Qmnq = Yc + iCemnq. For
the time being we will concentrate on a single-cavity
resonance and replace the subscript triplet with the
subscript c. The Laplace transform for the input field
is

El(s) =E Es exp(iwt) exp(st)dt +fl Es

X exp[-(,ys + ic5)t] exp(-st)dt

= -Es(Qa + Qb)(S + -aY Qb)-,

where

Oa = yS + is,

Qb = -iWs,

and the region of convergence for the integration is -ys
< Rels < 0. The first integral is derived from times t
> 0, the second from times t < 0. Equations (7) and (8)
yield for the output transform

E(s) EA( -M + b) (9)
O CL ( + Q)( -Q2b)(S + (9)

Finally, the output field is obtained by taking the
inverse transform of Eq. (9). Using the method of
residues we find

E.(t) = EAc EIL exp(Obt) t < 0,
Qb + c

Eo(t) = EAc !n OL exp(-Q2t)

+ cL(a + b) exp(-t)l t > 0.
(a- £2c)(9 + Qb) CI

Substituting for the complex frequencies

E 0(t) = EAc ir exp(-ico't) t < 0, (10a)
'YC + AWt)

This last equation says that the electric field at the
output decays to zero from its steady-state (t < 0) value
at a rate characteristic of the cavity. Note too that the
frequency of the output field is wu, the resonance fre-
quency of the cavity-regardless of the original source
frequency. The detector at the output senses the in-
tensity of the light transmitted by the cavity. I(t) =
IE(t)12 . Anticipating the short turn-off time of the
input light as in the above discussion, we need only take
the square of Eq. (11) to find the characteristic decay
time of the intensity:

I(t) = IO exp(-t/rc), (12)

where

1

Io = IE.(t < 0)12,

and the optical frequency time dependence has been
omitted. In the above conditions, by measuring the
intensity decay time one can obtain the product of the
mirror reflectivities since

(13)- /R = 2 L C.

By making a number of measurements with an appro-
priate number of mirrors one can always obtain the
reflectivities of each individual mirror. For example,
with three mirrors one can obtain the reflectivity of each
by making measurements on each of the three possible
two-mirror cavities which can be constructed from
them.

Once the cavity decay time and length are known, one
can translate these into various other quantities which
are often used in optics. For example, one can obtain
the finesse of the cavity by inspection of Eq. (12). The
finesse is defined as the ratio of the cavity free-spectral
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range (FSR) to the intensity response function full
width at half-maximum, Av,9

FSR c
F 2- = (AP)'

A L

Keeping terms to second order in i(AwoL/c) in Eq.

(4a),

2 ~1 IAwL\22 ~AwL 2-
I(w) IH(w)12 = 1 - v/R 1-- - +R t) 

= (A L) [(c/L)(1 - 1/R)/R1
4

]
2

+ (Aw)
2

-1, (14)

thus

(15)r(R)1/4
1 -a-

In terms
Z 0 Io

of the cavity decay time, using Eq. (13) with R

Table 1. Summary of Formulas Relating Various Cavity Parameters to the

Cavity Decay Time in the Low-Total Low-Loss Limit a

Parameter Symbol Formula

Cavity linewidth (FWHM intensity) Av (27rTr)-

Cavity quality factor Q 27rv-r

Finesse F 27rK

Total cavity loss (including transmission) L K-1

Mirror reflectivity product R 2

Mirror reflectivity (two-mirror cavity with R 1 - -

identical mirrors) 2K

a T, is the cavity intensity decay time, v is the optical frequency,

K is the round-trip number K = (c/L)rc, and L is the round-trip optical

path length.

F=2rc. (16)
L

It is sometimes preferable to speak in terms of cavity

total loss rather than in terms of mirror reflectivities.
When the total losses are small, one can use an easily
remembered formula relating the finesse to the cavity
losses. Letting Li = Si + Ti(=1 - Ri) we have, from
Eq. (15),

F r(R)/4 - [(1- L)(1 -L 2) . . .]1/21-1

or

2-r

F f L- - , (17)

where in the numerator we have set R1 /4 1 and where
the index i runs over the number of mirrors (and pos-
sibly over intracavity element losses as well). In other
words the cavity finesse is 27r divided by the sum of the
losses in the cavity. So far we see that the cavity can be

characterized in three equivalent ways: by its decay

time, its finesse, and its losses. We can also attribute
to the cavity a quality factor defined as its angular res-
onant frequency times the stored energy divided by the
energy loss rate. In terms of the intensity decay time

Q = 27rv-r, (18)

where v is the optical frequency. 11

The formulas relating the various cavity parameters
in terms of the decay time are summarized in Table I.
In the table we have introduced the round-trip number
K = TC cIL. It should be kept in mind that these for-
mulas have been derived in the limit of low total loss.

III. Accuracy Limitations

A few comments about the formulas leading to those
in Table I are in order. If one were to compare the in-
tensity decay time as given by Eq. (13) with that which
is given by the Fourier transform of Eq. (14), one would
see a discrepancy of a factor of R1 /4 . This factor was set
to 1 in order to get Eq. (16) from Eqs. (13) and (15).
The reason for the discrepancy is a bit subtle. The

output from the cavity is a series of steps having de-
creasing depths. We are approximating these steps
with an exponential. One obtains slightly different
values of the decay time depending on whether the ex-
ponential is made to fit the electric field decay or made
to fit the irtensity decay. What is this discrepancy
trying to te' us? The width of the steps at the output
is L/c, the round-trip travel time. Thus, the best one
would expect to measure the decay time is +1/2(L/c)
regardless of the speed and accuracy of the electronics.
The fractional error in a measurement of -r is then 1/
(2K) = L/(2c-r) = L/2. Any quantity derived from a
measured decay time must, of course, reflect this error.
For example, a nominal loss of 10-2 can be measured at
best to +5 X 10-5. The error in timing is enough to
make any discrepancies in factors of R1 /4 unresolvable.

In fact, it is just large enough to make factors of o\/ 
1 -

1/2L unresolvable. The conclusion is that, for the
above reasons, it is appropriate to set factors of aji- C
1 as has been done in the table. One can also conclude
that a clock resolution beyond the cavity round-trip
time is superfluous for a measurement of T,.

It has been shown that mirror reflectivities can be
obtained by measuring the transient response of the
cavity and the cavity length, and it is clear from Eq. (10)
in what conditions the transient response of the cavity
will dominate the output of the cavity. We now present
the general design of our apparatus and discuss the re-
quirements on the individual components necessary to
meet the above conditions and to have optimum per-
formance.

IV. Apparatus

The apparatus depicted in Fig. 1 is shown in Fig. 2
with greater detail. Let us iterate the operation of the
instrument: light from the source laser impinges on a
cavity mirror. The light from the laser will tend to drift
in and out of the various cavity resonances. If the laser
light is at a resonant frequency of the cavity for a rea-
sonable amount of time, light will build inside the cavity
and be transmitted throughout the mirrors of the cavity.
A detector senses the intensity of the light transmitted
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Fig. 2. Schematic of optical and electrical circuit

for cavity decay time measurement.

through one*6f the mirrors; when the transmitted light
reaches a predetermined level, the laser light is switched
off via the Pockels cell. The detector monitors the
decaying light level and a clock measures the le fall
time. We now describe the requirements on each of the
major components of the system.

The wavelength of the source laser must of course be
that for which the mirrors are designed, however, the
stability requirements are not severe. Frequency drift
is even desirable; in practice we have merely allowed the
laser to drift into cavity resonance, thus precluding the
need for some means of frequency control or sweeping
mechanism.

The mode matching system shown schematically in
Fig. 2 is designed so that the laser and cavity funda-
mental modes are well coupled.4 In most cases we have
found that the mode matching is not extremely critical;
it serves three purposes. In the case of a weak source
laser (such as most He-Ne lasers) it is necessary to
maximize the output intensity of the cavity and thereby
minimize the subsequent requirements on amplifier of
gain and signal-to-noise ratio. It may also be necessary
to discriminate against off-axis (m and/or n z 0) cavity
modes. In principle, so long as no apertures are present
and the mirror surfaces are large, the decay time for all
modes is the same. On the other hand, off-axis modes
have an effectively larger cross-sectional area and
therefore sample a larger surface area on the mirror than
do longitudinal (m,n = 0) modes. Thus in practice
these mode types may have different decay times.
Proper mode matching also minimizes the chance of
multiple cavity spatial mode excitation. If two or more
modes are excited in the cavity, there will be superpo-
sition of terms on the right-hand side of Eq. (11), each
with a different frequency and possibly a different decay
time. However, the eigenmodes with a common mode
number q are an orthogonal set. Therefore if the
photodetector area is large compared to the spot size,
it will detect no interference between modes having the
same mode number q even though they may have dif-
ferent frequencies; i.e., the detector sees only the decay
of the sum of the intensities of the various modes. Still,
if their decay times are different, the net intensity decay
can appear nonexponential. In any case, it is probably
best if the longitudinal mode coupling is the largest.

The optical switch consists of a Pockels cell (Coherent
model 28) sandwiched by a pair of crossed polarizers and
some electronics associated with the cell. The bias on
the cell is adjusted so that, when the (high-voltage)
electronic switch is off, no light is transmitted through
the second polarizer. With the switch on, maximum
light is transmitted. The second polarizer also deter-
mines the state of polarization which will enter the
cavity.

The cavity itself can, in, general, have any desired
geometry; it is best however to. use the highest two
transmitting mirrors as input and output if the mirrors
of the set are not nominally identical. Motions of the
mirrors due, for example, to mechanical vibrations are
usually small over time scales of the cavity decay time.
Once the light is switched off, motion of the mirrors
cannot significantly change the decay time since the
fractional change in cavity length is negligible.

The electronics is the most critical part of the appa-
ratus simply because it must be fast. Typical decay
times of low-loss cavities may be from 0.1 to 50 isec.
The precision of the measurement is directly deter-
mined by the speed of the electronics.

The front end of the electronics consists of a silicon
photodetector (Centronics BPX 65) followed by a cas-
caded pair of low-noise wideband preamplifiers (Com-
linear CL103AI). The output of the amplifier pair is
fed to a set of three comparators in parallel. Figure 3
shows the event timing of the comparators. When the
output level from the detector reaches a preset thresh-

POCKELS CELL

SWITCHED OFF

OFF ___________De

8 VCLOCK r< 1\/ CLOCK O

/e VCLOCK _

1
OFF CO. t COFF

Fig. 3. Comparator timing. Comparator 1 turns the Pockels device
off when detector output reaches Vff, comparator 2 turns the clock
on at Vclock, and comparator 3 turns the clock off when the detector

output falls to 1/e Vclock-
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old comparator 1 triggers. Its action triggers a high-
voltage MOSFET switch which turns the Pockels cell
off. Because there is a short delay before the light shuts
off, the clock does not begin timing until the detector
level falls below a second threshold set somewhat lower

than the first. The threshold on the third comparator
is lie of the second threshold. When this comparator
fires, the clock ceases timing. The decay time is dis-
played directly. Once this time is recorded the cycle
may be restarted by resetting the clock and turning on
the Pockels cell.

It is best to adjust the threshold of the first compa-
rator so that only events with the highest intensity
trigger the cycle. One can do this by first setting the
threshold high, then slowly reducing it until the circuit
triggers. One should then have a good working
threshold level. Multimode events caused by fast laser
drift or large and fast cavity mirror motions tend to be
less intense since the laser light is spending relatively
less time on resonance than when drift and motions are

slow and small. By setting the threshold high one
avoids most undesirable (nonexponential) events.

In our circuit the comparators are specified as having

a 14-20-nsec propagation delay. If overall timing ac-
curacy needs to be much better than 10 nsec, it would
be wise to select a matched pair for the second and third
comparators which control the clock. Propagation ef-
fects can be minimized this way.

Our clock consists of a set of TTL counters driven by

a quartz crystal and interfaced to a digital display. An
alternative would be a commercial unit such as a Fluke
7261A counter which has a 10-nsec resolution and can

be used in an interval timer mode. Another alternative
is a fast storage oscilloscope which has the additional
advantage of making the second and third comparator
unnecessary; this however is an expensive choice.

The Pockels cell driver is a high-speed high-voltage
MOSFET switch. This switch must of course be ca-
pable of switching a high voltage (-200 V) in a time
rather short compared with the cavity decay time.

V. Tests

For the most part there is a good deal of freedom in
the design of the instrument and requirements on the
optical components are rather lax. It is the electronics
which bears the brunt of the constraints. Before
measuring actual mirror characteristics we performed
several tests of the decay time device to confirm that it
was indeed measuring cavity losses and doing so accu-
rately. Our tests were performed using essentially the
arrangement shown in Fig. 2 except that a two-mirror
cavity was used rather than a ring cavity. The source
is a single-frequency argon-ion laser at 514.5 nm. In
each test the mode matching lenses were adjusted to
obtain reasonable coupling efficiency into the cavity and
yet not so much care was taken to avoid coupling to
off-axis modes.

The overall speed of the electronics was tested by
placing the detector directly in front of the source and
attenuating the source intensity to simulate light from
the cavity. Since light is impinging directly onto the

detector the Pockels cell is immediately switched off on
activation of the comparator circuitry. The decay time
was measured to be -25 nsec. This fall time is domi-
nated by the turn-off time of the Pockels cell; it does
not, however, inflict a serious limitation to the precision
of the decay time measurement for nominal decay time
of 0.1 ysec or more. The trigger circuitry is designed
to circumvent the problems of incident light intensity
fall time.

The mirrors that we wanted to characterize were
designed for use in our 40-m interferometer. For this
reason we chose to measure these mirrors using a 10-m
test facility. The resulting beam spot size samples a
relatively large fraction of mirror surface. The cavity
optical path was evacuated: we have made tests in open
air cavities but found our results depended on the am-
bient Pasadena air quality.

The detector was replaced behind the cavity in order
to make a measurement of the cavity decay time. A
Tektronics digital storage oscilloscope (model 468) was
used to monitor the cavity decay. A storage oscilloscope
is a very useful diagnostic tool in this application. It can
be used to verify the exponential nature of the decay,
but we have also found it superfluous as long as the
maximum-threshold rule of thumb is followed.

To verify the calibration of the instrument and to
demonstrate that the cavity decay is indeed exponential,
we first measured the decay time of the cavity. We then
chose a resistor and capacitor pair having a RC constant
equal to the measured decay time. To well within the
1% uncertainty in the RC component values, the two
time constants agreed. Figure 4, recorded with the
digital storage oscilloscope, illustrates the results. The
cavity decay curve is the lower of the two curves on the
left-hand side of the photo. The RC event is the upper
curve. The actual decays are perfectly merged within

Fig. 4. Typical cavity decay curve from a two-mirrored 10-m cavity

having a fall time of 23.2 gsec starts on the left-hand side as the lower

of the two curves. The second curve is the decay from a RC network

having the same decay constant. The decays from the two events are

perfectly merged showing that the cavity decay is indeed

exponential.
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Fig. 5. Cavity loss vs tilt of an etalon near the Brewster angle. Dots
are experimental data. The theoretical (solid line) curve was obtained
assuming a nominal cavity loss of 2 X 10-3 and a Brewster angle of

55.250.

the digitalizing accuracy of the oscilloscope. The cavity
decay is thus seen to be exponential. Direct measure-
ment of the threshold voltages for clock turn-on and
turn-off give a calibration for e 1 fall time of 0.5%.

As a third check of the device we measured the decay
time of our 40-m interferometer which currently uses
rather low reflectivity mirrors. The intensity linewidth
of this cavity had been previously measured to be 6.0 ±
0.5 kHz by scanning the frequency of a stabilized laser
and monitoring the intensity of the transmitted light.
The decay time deduced from the inewidth is 27 2
usec. This is in good agreement with the 26.5 sec
measured directly. This test shows that the decay time
measurement agrees with an independent measure of
cavity loss.

As a final test of the instrument, we measured the loss
of an uncoated etalon placed in an optical cavity near
the Brewster angle. For simplicity, this was done using
an open air cavity rather than an evacuated cavity
(71-cm spacing between mirrors). The cavity loss was
calculated from the measured decay time for small an-
gles about the Brewster angle. Figure 5 shows the
theoretical fit (solid line) to the data (dots) assuming
a nominal cavity loss of 2 X 10-3 and a Brewster angle
of 55.25'.12 The loss shown counts two surfaces. The
size of the dots indicates approximately one standard
error. The fit to the data is very good, indicating that
the decay time device is indeed measuring the actual
loss of the inserted optical element.

We intended to employ this device to characterize
mirrors of unknown reflectivity. We now demonstrate
the use of this instrument for such a purpose.

The 10-m cavity decay time was measured using two
different cavities in vacuum: one having low total loss,
the other comparatively high loss. Both members of
each pair of mirrors came from a single-coating run and
so were considered identical. In both cases, the cavities
consisted of one flat mirror and one curved mirror with
a radius of 62 m.

The decay time for the low-loss cavity was 185,gsec
d 1.4% where the error is the rms deviation from the
mean of twenty consecutive measurements. Trans-
missions of these mirrors was measured to be 120 ppm.
The decay time implies a 180-ppm total loss per mirror,
consistent with the transmission measurement and al-
lowing for 60-ppm absorption and scattering loss. The
second cavity decayed in 26.24 Asec ± 0.2%, indicating
a total loss per mirror of 1270 ppm. These mirrors are
evidently rather lossy as their transmission was mea-
sured to be 622 ppm. Note that in both cases the
standard error implies a total loss per mirror resolution
of 2.5 ppm (although in the second case the 0.5% timing
calibration exceeds the 0.2% spread in decay times).
For the record, our measurements give R = 0.999820 ±
3 ppm and R = 0.998730 7 ppm for the low- and
high-loss mirrors, respectively.

VI. Conclusions

We have presented the theoretical foundations be-
hind the decay time measurement and have discussed
in what conditions a measurement of the decay time
represents a measure of the mirror characteristics. We
have furthermore discussed problems which can be
encountered in a measurement. With the decay time
and cavity length in hand one can choose to characterize
either the cavity or the mirrors in a variety of ways using
the formulas of Table I.

The decay time apparatus was designed with a reso-
lution of 10 nsec and has exhibited a total loss resolution
of 5 ppm. This was accomplished by merely measuring
the time interval between two voltage levels on the
decay curve. One can envision various improvements
such as monitoring an entire decay and fitting to it an
exponential curve or improving the clock resolution to
better than 10 nsec. We expect the technique could be
pushed; nevertheless, this straightforward approach
shows very respectable performance using rather simple
instrumentation and measurement procedures.

We owe special thanks to R. W. P. Drever for his en-
couragement and insight. We would also like to thank
R. E. Spero, S. E. Whitcomb, and M. Hereld for valuable
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and S. W. Hammons of Litton Industries, Guidance &
Control Systems Division, for providing us with the
low-loss (180-ppm) mirror coatings and to S. S. M. Lu
and R. Hargrove of Litton for the production of the
coatings.
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Laser Spectroscopy, Vol. 6. Edited by H. P. WEBER and W.

LUTHY. Springer-Verlag, Heidelberg, 1983. 442 pp. $29.00.

Lasers continue to be a very valuable tool for spectroscopic inves-

tigations. In particular, many studies involving high resolution,

sensitivity, or unstable atoms and molecules that were difficult or not

possible with conventional spectroscopy can now be done. The latest

of these investigations is reported in this book, which contains the

proceedings of the Sixth International Conference on Laser Spec-

troscopy, Interlaken, Switzerland, 27 June-i July 1983. (Previous
meetings started in 1973 and have been held every other year since

then. Publications of the proceedings of these conferences are also

available from Springer-Verlag.)

A total of 145 papers are divided into 16 sections: (1) Photons in

Spectroscopy; (2) Spectroscopy of Elementary Systems; (3) Coherent

Processes; (4) Novel Spectroscopy; (5) High Selectivity Spectroscopy;

(6) High Resolution Spectroscopy; (7) Cooling and Trapping; (8)

Collisions and Thermal Effects on Spectroscopy; (9) Atomic Spec-

troscopy; (10) Rydberg-State Spectroscopy; (11) Molecular Spec-

troscopy; (12) Transient Spectroscopy; (13) Surface Spectroscopy;-

(14) NL-Spectroscopy; (15) Raman and CARS; and (16) Double

Resonance and Multiphoton Processes.

All the papers are short (1-6 pages) concise statements of the re-

search reported, and most contain extensive references and excellent

figures. To understand these papers one must be acquainted with

the fundamentals of the apparatus and the phenomena being inves-
tigated. They are written for the specialist in this work. This book
is a welcome addition to the literature on spectroscopy but in no way

should it be confused with a text on laser spectroscopy.

The papers in this book, like the papers in this journal, are valuable

references for all people who desire to keep up with the rapidly

changing field of laser spectroscopy.

DAVID W. STEINHAUS

Molecular Light Scattering and Optical Activity. By L. D.
BARRON. Cambridge University Press, New York, 1983. 408 pp.

$69.50.

This volume provides a comprehensive introduction to the mo-

lecular theory of optical activity phenomena. The author has been
one of the main contributors to this field for the past 15 years; he is

especially well known for his work on Rayleigh and Raman optical

activity.
Optical activity originates in a difference in response of a molecular

system to right and left circularly polarized light. The first chapter
provides a review of optical activity phenomena including brief

histories of their discovery and short and clear descriptions of the
essential physics of each of them. The author uses the term "natural"

to denote optical activity phenomena in the absence of externally
imposed electric and magnetic fields. He discusses natural and

magnetic optical rotation and circular dichroism, light scattering from

optically active molecules, vibrational optical activity, the Kerr and
Cotton-Mouton effects, as well as some aspects of symmetry in rela-

tion to optical activity.
The second chapter contains an introduction to the theory of atoms

and molecules in electric and magnetic fields. The theoretical de-

scription uses Maxwell's equations as a starting point. The Stokes
parameter representation is used to represent the polarization
properties of light waves, and a full discussion of partially polarized

light is given. Quantum mechanical perturbation theory is invoked

to derive expressions for the molecular property tensors that char-
acterize the responses of a molecule to particular electric and magnetic

field components. This chapter will be of special interest to Raman
spectroscopists for its clear discussion of Raman transition polariz-

abilities.
The third chapter as the author says "constitutes the heart of the

book." It uses the theoretical material derived in the previous chapter

to calculate explicit expressions, in terms of molecular property ten-

sors, for the polarization and intensity of light scattered by a molecular

system. These expressions form the basis of all the theories of optical

activity phenomena presented in the rest of the book. The author
gives a clear review of the relationship between scattering and re-

fraction and presents detailed expressions for polarization effects in
both scattering and refraction.

Chapter 4 as the author states is a ". . . rambling affair. It collects
together a number of disparate theories all of which have some bearing

on the application of symmetry arguments to molecular properties
in general and optical activity in particular." This chapter includes
discussions of Cartesian tensor algebra, inversion symmetry, and
permutation symmetry.

The last four chapters of the book contain detailed theories of
particular optical activity phenomena, usually including discussions

of the molecular structural features that give rise to them. The most
well-established optical activity phenomena in chemistry-natural
and magnetic electronic optical rotation and circular dichroism-are
discussed in Chaps. 5 and 6. In Chaps. 7 and 8 the emphasis changes

to the newer topics of natural vibrational optical activity, antisym-
metric scattering, and magnetic Raman optical activity.

continued on page 1248
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