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1 Introduction

Calabi-Yau manifolds have been a major subject of study in mathematics and physics over

the last three decades, following the realization that these geometries can be used to com-

pactify string theory in a way that preserves supersymmetry [1]. One of the most intriguing

aspects of Calabi-Yau threefolds is the existence of an equivalence known as mirror symme-

try (see e.g. [2]) that relates the physics of a type IIA string compactification on a Calabi-

Yau threefoldX to that arising from a type IIB string compactification on a mirror threefold

X̃. One of the first important clues to mirror symmetry was the observation [3, 4] that the
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Calabi-Yau threefolds generated by hypersurfaces in toric varieties have the property that

for every Calabi-Yau threefold X with Hodge numbers h1,1(X), h2,1(X) there is a corre-

sponding mirror threefold X̃ with Hodge numbers h1,1(X̃) = h2,1(X), h2,1(X̃) = h1,1(X).

The largest known set of Calabi-Yau threefolds are constructed from the class of over 400

million reflexive 4D polytopes found by Kreuzer and Skarke [5, 6], and exhibit this mirror

symmetry structure.

More recently, an increasing body of evidence [7–16] suggests that a large fraction of

known Calabi-Yau threefolds have the property that they can be described as genus one

or elliptic fibrations over a complex two-dimensional base surface. We recently showed

that this is true of all but at most 4 Calabi-Yau threefolds in the Kreuzer-Skarke database

having one or the other Hodge number h2,1, h1,1 at least 140, and that at small h1,1 the

fraction of polytopes in the Kreuzer-Skarke database that lack an obvious elliptic or genus

one fibration decreases roughly as 0.1× 25−h1,1
. In this paper we show that the structure

of these fibrations gives a natural way of “factorizing” mirror symmetry for many elliptic

and genus one fibered toric hypersurface Calabi-Yau threefolds, so that the fiber of X

determines the fiber of the mirror threefold X̃, and the base and fibration structure of X

determine the base of X̃. A key aspect of this factorization involves the observation that

a simple additional condition on the fibration structure of an elliptic toric hypersurface

Calabi-Yau threefold X implies that the mirror X̃ is also elliptic and has a mirror elliptic

fiber characterized by a 2D polytope dual to the one that contains the genus one or elliptic

fiber of X. Such mirror fibers were also studied in the related context of K3 surfaces

and heterotic/F-theory duality in [8, 17–20], and in the context of elliptic fibers for F-

theory in [21].

The outline of this paper is as follows: in section 2, we review some basic aspects of toric

hypersurface Calabi-Yau manifolds and elliptic and genus one fibrations; we then describe

in general the way in which mirror symmetry can factorize for toric hypersurface Calabi-

Yau manifolds. In section 3, we consider the simplest examples of this factorization: when

X is the generic CY elliptic fibration over any toric base surface B that supports an elliptic

Calabi-Yau threefold, the mirror X̃ has a simple description as an elliptic fibration over a

dual base B̃ that has a simple description in toric geometry in terms of B. In section 4, we

consider some further examples, including Weierstrass/Tate tunings of generic models over

a toric base, “stacked” fibrations with non-generic fiber types, and analogous factorization

for elliptic Calabi-Yau fourfolds. We conclude in section 5 with a summary and some open

questions.

2 Toric hypersurface Calabi-Yau manifolds, fibrations and mirror sym-

metry

In this section we review some basic aspects of toric hypersurface Calabi-Yau threefolds

and fibrations, and we describe the basic framework of mirror symmetry factorization that

applies for many elliptic and genus one fibered toric hypersurface Calabi-Yau manifolds.

Much of the material reviewed in the first part of this section is covered in more detail in

the papers [15, 16].
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2.1 Toric hypersurfaces and fibrations

A broad class of Calabi-Yau manifolds can be described as hypersurfaces in toric varieties

following the approach of Batyrev [22]. A lattice polytope ∇ is defined to be the set of

lattice points in N = Zn that are contained within the convex hull of a finite set of vertices

vi ∈ N . The dual of a polytope ∇ is defined to be

∇∗ = {u ∈MR = M ⊗ R : 〈u, v〉 ≥ −1, ∀v ∈ ∇}, (2.1)

where M = N∗ = Hom(N,Z) is the dual lattice. A lattice polytope ∇ ⊂ N containing the

origin is reflexive if its dual polytope is also a lattice polytope. For any reflexive polytope,

the origin is the unique interior point.

When ∇ is reflexive, we denote the dual polytope by ∆ = ∇∗. The elements of the dual

polytope ∆ can be associated with monomials in a section of the anti-canonical bundle of

a toric variety associated to ∇. A section of this bundle defines a hypersurface in the toric

variety associated to ∇; this hypersurface is a Calabi-Yau manifold of dimension n−1. The

polytopes ∇ and ∆ describe toric hypersurface Calabi-Yau manifolds that are related by

mirror symmetry [4]. As ∇ and ∆ are a pair of 4D reflexive polytopes, there is a one-to-one

correspondence between l-dimensional faces θ of ∆ and (4 − l)-dimensional faces θ̃ of ∇
related by the dual operation

θ∗ = {y ∈ ∇, 〈y, pt〉 = −1| for all pt that are vertices of θ} . (2.2)

For the CY associated with ∇, the Hodge numbers are given by

h2,1 = pts(∆)−
∑
θ∈F∆

3

int(θ) +
∑
θ∈F∆

2

int(θ)int(θ∗)− 5, (2.3)

h1,1 = pts(∇)−
∑
θ̃∈F∇

3

int(θ̃) +
∑
θ̃∈F∇

2

int(θ̃)int(θ̃∗)− 5, (2.4)

where θ are faces of ∆, θ̃ are faces of ∇, F
∇/∆
l denotes the set of l-dimensional faces of ∇

or ∆ (l < n), and pts(∇/∆) := number of lattice points of ∇ or ∆, int(θ/θ̃) := number of

lattice points interior to θ or θ̃. The correspondence (2.2) makes the duality between the

Hodge number formulae manifest.

When the polytope ∇ has a 2D subpolytope ∇2 that is also reflexive, the associated

Calabi-Yau manifold has a genus one fibration [23].1 This fibration is characterized by a

projection π on N = Zn that maps the fiber ∇2 to 0. For a 4D polytope ∇, the base B of

the fibration is described by the 2D toric variety associated with the set of primitive rays

in the image of ∇ under the projection π : Z4 → Z2, where a primitive ray is one that

1In [24] it is argued that in some cases the condition for a fibration is more subtle; in particular, the

clearest way of constructing a fibration uses a toric morphism that must be compatible with a triangulation

of ∇, which may not be possible in some cases, particularly in higher dimensions. We do not analyze

the detailed structure of triangulations in this paper; for the simple cases considered here there does not

seem to be any obstruction to the existence of a triangulation giving a toric morphism compatible with

the fibration, but this in principle should be checked in detail, particularly for higher-dimensional varieties

where the triangulation of the base is not unique.
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is not an integer multiple of another element of the lattice. Since the base in this case is

two-dimensional, the triangulation in the resulting toric variety is uniquely determined by

the ordering of the rays; in higher dimensions, there may be many distinct triangulations

possible.

There are 16 distinct reflexive 2D polytopes, listed in appendix A. The structure of

the genus one and elliptic fibrations associated with each of these 16 fibers is studied in

some detail in [25] and in the F-theory context in [16, 21, 26, 27]. As discussed in these

papers, all fibers other than F1, F2, F4 contain at least one curve of self-intersection −1;

such a curve gives rise to a global section so that the fibration is elliptic and not just genus

one. Associated with each of the 16 reflexive 2D polytopes F = ∇2 = Fi is a dual fiber

F̃ , given by F̃i = ∆2 = F17−i for all i except i = 7, 8, 9, 10 in which cases F̃i ∼= Fi under

a linear change of coordinates. We will refer to F̃ as the mirror fiber of F . The anti-

canonical hypersurfaces in F, F̃ represent a mirror pair of 1D Calabi-Yau varieties (genus

one curves). Aspects of these dual fibers and associated mirror curves have previously been

encountered and studied in the contexts of K3 fibrations, heterotic/F-theory duality and

F-theory fibers in [8, 17–21].

When a polytope ∇ admits a toric fibration of this kind, the lattice points in the dual

polytope ∆ can be associated with monomials in various line bundles over the base B. We

can choose a coordinate system on N so that the vertices of the fiber F = ∇2 lie in the

plane (0, 0; ·, ·). Each lattice point v ∈ ∇ can then be represented in the form

v = (v1, v2; v3, v4) = (v(I); v(II)) , (2.5)

where the first two coordinates v(I) = (v1, v2) correspond to the base direction, and the

last two coordinates v(II) ≡ (v3, v4) correspond to the toric fiber direction. For each point

vF ∈ ∇2, the point v = (0; vF ) lies in ∇.2 The primitive rays defining the base as a toric

variety are those that are not integer multiples of another ray,

{vB} = {v(I) = (v1, v2)/(GCD(v1, v2)), ∃v(II) : v = (v(I), v(II)) ∈ ∇} . (2.6)

The existence of the projection π : v = (v1, v2; v3, v4) → (v1, v2; 0, 0) taking ∇2 → 0

is equivalent to the condition that there is a projection on the dual lattice ρ : m =

(m1,m2;m3,m4) → (0, 0;m3,m4) that maps ∆ to the mirror fiber F̃ = ∆2.3 For each

m(II) ∈ ∆2, the set of lattice points in ∆ that map under ρ to m(II) can be thought of as

monomials that are sections of a specific line bundle over B. Each ray of the form (2.5)

satisfies the condition v · m ≥ −1, which implies (v1, v2) · (m1,m2) ≥ −1 − v(II) · m(II).

2Note that v(II) in the fiber direction may lie outside the fiber ∇2 for a general point (v(I); v(II)) in ∇.

In fact, as we discuss further later in the paper, this has to be the case for some lattice points in ∇ when

the dual polytope ∆ is not a fibered polytope.
3This can be easily proven as follows: given the projection π, we know that the fiber ∇2 lies in the plane

(0, 0; ·, ·). This implies that any m = (m1,m2;m3,m4) ≡ (m(I);m(II)) satisfies m(II) · vF ≥ −1, ∀vF ∈ ∇2,

which implies m(II) ∈ ∆2, i.e., the existence of the projection ρ onto ∆2. To see the existence of the fiber

given the projection ρ, every point in the form v = (0, 0; vF ), where vF ∈ ∇2, satisfies v ·m ≥ −1, ∀m ∈ ∆

since vF ·m(II) ≥ −1, ∀m(II) ∈ ∆2; we therefore have ∇2 ⊂ ∇, and the projection taking ∇2 → 0 takes the

form π.
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When vB = (v1, v2) is a primitive ray and corresponds to a toric curve C in the base B,

this means that m(I) = (m1,m2) is a section of a line bundle that can vanish to order

v(II) ·m(II) + 1 on C.

The simplest examples of the utility of these conditions can be seen in polytopes that

have the “stacked” form described in [15, 16, 28], where there is a fixed lattice point vs ∈ ∇2

so that for every ray vB in the base there exists a ray of the form (vB; vs) ∈ ∇ for that

particular lattice point vs. In these cases, the monomials over m(II) represent sections of

the line bundle O(−nKB), where n = 1 + v(II) ·m(II) and −KB is the anti-canonical class

of the base. In particular, when the fiber is F10 = P2,3,1, and vs = (−3,−2) the resulting

“standard stacking” form gives monomials over the points in ∆2 that naturally describe the

general (Tate) form of the Weierstrass model for an elliptic fibration, and can be described

as sections of O(−nKB), with n = 1, 2, 3, 4, 6.

2.2 Factorization of mirror symmetry

From the preceding characterization of polytope fibrations, it clearly follows that under

certain circumstances when the polytope ∇ has a subpolytope ∇2 = Fi that gives a genus

one fibration of the associated Calabi-Yau hypersurface X the polytope ∆ will also have a

subpolytope ∆2 = F̃i that gives a genus one fibration of the mirror Calabi-Yau X̃. This

will occur whenever there is a coordinate system such that the point (0, 0;m(II)) is a point

in ∆ for all m(II) ∈ ∆2. A necessary and sufficient condition for this to occur is that there

exist a coordinate system so that every lattice point in ∇ can simultaneously be put in

the form (2.5), with v(II) = vF ∈ ∇2 (the values of vF need not be the same for different

lattice points in ∇ but they must all lie in ∇2), i.e. that there is a projection in the space

N onto the fiber polytope ∇2.4

In any situation where these conditions hold, we have a mirror pair of Calabi-Yau

manifolds5 X, X̃, each of which is elliptically or genus one fibered. Furthermore in the

toric presentation, the 2D toric fibers associated with the elliptic or genus one fibers of

X, X̃ themselves have mirror hypersurface curves, with F = Fi, F̃ = F̃i. We refer to this

situation as a “factorization” of mirror symmetry for elliptic Calabi-Yau manifolds.

4This condition was encountered in the context of K3 surfaces and heterotic F-theory duality in several

earlier papers; mirror K3 fibrations were described in terms of slices and projections in [8, 17], and described

in terms of symplectic cuts in [19], motivated by some examples found by Candelas. This type of construc-

tion has been further used in studying mirror symmetry of G2 manifolds [29]. The strong prevalence of

mirror symmetric pairs of K3-fibered CY3s observed in [8] is closely related to the prevalence of mirror

symmetric pairs of elliptically-fibered CY3s studied here; indeed, many of the examples we consider here

are also K3 fibered.
5The polytopes in the KS database [6] are associated with the monomial polytopes ∆. Given a mirror

pair of fibered polytopes ∇,∆, where ∇ is the “fan polytope” associated with the fibration X with the

Hodge numbers (h1,1(X), h2,1(X)), it is the ∆ polytope associated with the data M:# lattice points, #

vertices (of ∆) N:# lattice points, # vertices (of ∇) H: h1,1(X), h2,1(X) that is listed on the website.

Then ∆ is the fan polytope associated with the fibration X̃ with the Hodge numbers (h1,1(X̃) = h2,1(X),

h2,1(X̃) = h1,1(X)) While the lattice points in the fan polytope ∇ associated with the fibration X are

denoted by v, when ∆ is viewed as the fan polytope associated with the fibration X̃, we sometimes denote

the lattice points in ∆ by w, while we use the same symbol m to denote the lattice points in either ∆ or ∇
in the cases when they are used as the monomial polytope.
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This kind of factorization is really in some sense a semi-factorization. In particular, the

relationship between the base B of the elliptic fibration of X and the base B̃ of the mirror

fibration depends upon the “twist” of the fibration of X encoded in the specific way in which

the rays of the base lie over the fiber in (2.5). In general, this relationship can be rather

complex, though it can always be determined from the condition described in section 2.1

that implies that each primitive base ray in the mirror is associated with a section m(I) of

a line bundle whose degree of vanishing on the associated curve is constrained by the set

of inner products v(II) ·m(II).

In many cases, the structure is particularly simple and the base B̃ of the mirror elliptic

fibration can be associated with a line bundle O(−nKB) for a fixed n, so that B̃ can be

read off in a simple way from B. In particular, this occurs when all the rays of the base are

stacked over a particular point vs ∈ ∇2 in the fiber, and there are no rays in ∇ (associated

with “tops” [30]) representing rays in the base over other fiber points that impose extra

constraints on the points in the mirror polytope. In this case, the monomials in the dual

polytope B̃ can be associated with sections of line bundles O(−nKB), with n = 1+vs·m(II),

and the base B̃ can be associated with a polytope built from the primitive rays in the set

of points in the 2D polytope associated with −nKB with the largest value of n realized

from the points m(II) ∈ ∆2:

{wB̃i } = {w = (w1, w2)| GCD(w1, w2) = 1, w · vB ≥ −nvs ∀vB ∈ ΣB}, (2.7)

where ΣB is the toric fan for B and nvs = max({(1+vs ·m(II))|m(II) ∈ ∆2}). In appendix A

we illustrate for each vs ∈ ∇2 the maximum value of 1 + vs · m(II). Note that unlike

in (2.6), where we are dealing with projections of 4D rays, when an integer multiple kw

of a primitive 2D vector w satisfies kw · vB ≥ −n then the vector w also satisfies this

condition, so we can construct all primitive vectors by simply taking those with unit GCD

on the coordinates. The simplest cases in which (2.7) applies is for the “standard stacking”

F10 fiber constructions associated with the generic Tate form for an elliptic fibration over

a toric base, as discussed at the end of section 2.1, in which case nvs = 6. We describe

a number of examples of this type in section 3. When there is a further tuning of the

monomials in ∆, associated with a nontrivial “top” in ∇, the construction of the mirror

base B̃ is similar but depends on the tuning, as we discuss in more detail in section 4.

All of the analysis just outlined is equally relevant taking mirror symmetry the other

way. Starting with ∆, the base B can similarly in the complementary cases, such as when

∆ is a standard stacking associated with a generic elliptic fibration over B̃, be calculated

using (2.7) from O(−nwsKB̃), where ws ∈ ∆2 is the stacking point of the stacked polytope

∆, and nws = max({(1 + ws · m(II))|m(II) ∈ ∇2}), and the same kind of generalization

is used when there is a tuning of the monomials in ∇. In the remainder of the paper

we consider primarily examples of this type, where there is a clear factorization of the

mirror symmetry that allows a ready identification of both the fiber and the base of the

mirror fibered Calabi-Yau variety. We leave a further analysis of more general cases for

future work.
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3 Generic Calabi-Yau elliptic fibrations over toric base surfaces

In this section we consider the simplest and perhaps clearest class of examples of the

factorization of mirror symmetry described above: Calabi-Yau threefolds X that are generic

CY elliptic fibrations over a toric base surface B. The closely related class of threefolds

resulting from tuned Tate-form Weierstrass models over a toric base provide a larger class

of examples where the mirror symmetry factorization can be understood easily; examples

of this broader class are given in section 3.4, section 4.1, and section 4.2.

3.1 General case

It was shown in [31] that there are 61,539 toric bases that support an elliptic Calabi-Yau

threefold with a smooth resolution.6 The Hodge numbers of the generic elliptic fibrations

over all these bases were analyzed in [7]. It was shown in [15] that for each toric base

B, a reflexive 4D polytope in the Kreuzer-Skarke database can be constructed by starting

with a “standard stacking” polytope defined by the convex hull of the set of points of

the form (2.5), where the first two coordinates are taken across all toric rays vB in the

fan of B, and the last two coordinates vs = (−3,−2) correspond to a vertex of the fiber

F = F10 = P2,3,1, and then taking the “dual of the dual” of the resulting polytope. In

the simplest cases, where B only has curves of self-intersection −n where n|12, the initial

polytope is already reflexive. In all these cases, there is a corresponding reflexive 4D

polytope in the Kreuzer-Skarke database that has an explicit F10 fiber.

For each of these generic elliptic fibrations over a toric base, the dual polytope ∆

associated with the mirror Calabi-Yau threefold X̃ contains lattice points that can be

interpreted as sections of line bundles O(−nKB) with n = 1, 2, 3, 4, 6. These correspond

to the coefficient polynomials in the “Tate form” of a Weierstrass model7

y2 + a1yx+ a3y = x3 + a2x
2 + a4x+ a6 , (3.1)

where an is a section of O(−nKB). Since the origin is contained in each of the 2D sets of

points over each m(II) ∈ ∆2, for all these models the dual polytope ∆ has a subpolytope

F̃ = ∆2 lying on the plane m1 = m2 = 0, so the resulting mirror X̃ also has an elliptic

fiber given by an anti-canonical curve in the toric fiber F̃ ∼= F = F10. These correspond

to one of the simplest classes of elliptic toric hypersurface Calabi-Yau threefolds with a

simple and manifest factorization of mirror symmetry. In these cases, the dual polytope

has a base that is described as a toric variety by the set of primitive rays associated with

the monomials in O(−6KB), which lie over the point m(II) = (−1,−1) ∈ ∆2. The Hodge

6Note that these bases include those with curves of self-intersection −9,−10,−11. Such bases can be

blown up at non-toric points to achieve a smooth flat fibration Calabi-Yau resolution; Calabi-Yau three-

folds can also be realized as non-flat fibrations over these bases. This technicality is handled automati-

cally through the resolution process for the toric hypersurface Calabi-Yau threefolds in the Kreuzer-Skarke

database [15] (see also examples in table 2 and an example in section 4.3.)
7The term “Tate form” is used often by physicists for this general form of the Weierstrass model because

of its use in the context of F-theory in the Tate algorithm for constructing models with a particular desired

gauge group.
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Figure 1. The Hodge numbers (blue points) of Calabi-Yau threefolds X formed as generic elliptic

fibrations over toric base surfaces. All these examples have a particularly simple form of factorized

mirror symmetry in which X and X̃ both have elliptic fibers described as anti-canonical curves

in the toric fiber F10 = P2,3,1 and the mirror base B̃ is constructed as a toric variety from the

monomials in the line bundle O(−6KB), where B is the base of the elliptic fibration of X. Gray

points are Hodge numbers in the full KS database.

numbers of the generic elliptic fibrations over toric bases are plotted in figure 1 [7]; these

include many of the largest Hodge number pairs in the KS database.8

In the remainder of this section we describe some examples of these factorized mirror

pairs explicitly. From this construction, it is clear that similarly, an arbitrary Tate tuning

of the generic elliptic fibration over a toric base B, which is realized by a reduction in

the set of monomials in ∆ and an increase in the set of rays in ∇ (often described in the

language of “tops” [30]), as described in more detail in [15], will also lead to a mirror pair

of Calabi-Yau threefolds that are both elliptically fibered with the self-dual toric 2D fiber

type F10. In general, tuning the fibration X will reduce the size of the polytope associated

with the mirror base B̃, which will then be described by a toric fan that contains as rays

only a subset of the primitive rays in −6KB.9 We describe examples of such tunings in

sections 4.1–4.3.

8The simplest subset of these cases, where both sides of the mirror symmetry are generic elliptic fibrations

without tuning, and some of the patterns appearing in these cases, were noted in the context of an earlier

project with Braun and Wang [32].
9Note that in some cases when all monomials over some points m(II) ∈ ∆2 are set to vanish, this

furthermore will correspond to reducing the size of ∆2, with a corresponding increase in the size of ∇2; for

example, setting a6 = 0 in the Tate model changes the dual fiber to F̃13, so that the fiber of ∇ acquires two

additional points and becomes F13.
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3.2 Example: generic elliptic fibration over P2 (Hodge numbers (2, 272))

As a simple first case, we consider the case of the base B = P2, with a generic elliptic fiber

given by an anti-canonical curve in the toric fiber space P2,3,1 (i.e. the toric fiber F10). In

this case the polytope ∇ has vertices

{vi} = {(0, 0; 1, 0), (0, 0; 0, 1), (1, 0;−3,−2), (0, 1;−3,−2), (−1,−1;−3,−2)} . (3.2)

Here the fiber is given by the slice with vertices (0, 0; 1, 0), (0, 0; 0, 1), (0, 0;−3,−2), and the

projection onto the base projects the last two coordinates to 0. Since B contains no curves

of self-intersection −n with n not a divisor of 12, ∇ is immediately reflexive. The dual

polytope ∆ is easily seen to have vertices (see e.g. [15] for explicit analysis)

{mi} = {(0, 0;−1, 2), (0, 0; 1,−1), (−6, 12;−1,−1), (12,−6;−1,−1), (−6,−6;−1,−1)} .
(3.3)

Under a coordinate transformation on the last two coordinates this takes the form

{wi} = {(0, 0; 1, 0), (0, 0; 0, 1), (−6, 12;−3,−2), (12,−6;−3,−2), (−6,−6;−3,−2)} . (3.4)

This dual polytope ∆ is again fibered by an F10 fiber in the (0, 0; ·, ·) plane, and the

projection onto the base gives a base B̃ that has a toric description using the primitive

rays in the 2D polytope with vertices (−6, 12), (12,−6), (−6,−6) (See figure 2). The dual

base polytope consists of the points in ∆ that can be associated with sections of the line

bundle −6KB. The mirror polytopes ∇,∆ both appear in the Kreuzer-Skarke database,

and give rise to elliptic toric hypersurface Calabi-Yau threefolds with hodge numbers (2,

272) and (272, 2) respectively (see footnote 5).

We can characterize the mirror base B̃ as a toric variety by the sequence of self-

intersections of the toric rays calculated by equation (2.7)

B̃ → [[−11//− 12//− 12//− 11//− 12//− 12//− 11//− 12//− 12//]] (3.5)

where the notation // denotes the sequence of self-intersections

// = −1,−2,−2,−3,−1,−5,−1,−3,−2,−2,−1 . (3.6)

This sequence of self-intersections is a familiar sequence that connects −12 curves that

support E8 (Kodaira type II∗) singularities in the elliptic fibration (see e.g. [33, 34]). This

sequence of self-intersections characterizes a face of the base at distance 6 from the origin;

similar structure for faces at different distances from the origin are described in appendix B.

Using methodology motivated by F-theory we can compute the Hodge numbers of the

generic elliptic fibrations over B, B̃ directly from the geometry of the bases [7, 35, 36]. For

B, all curves have self-intersection above −3, so there is no non-Higgsable gauge group.

From the Shioda-Tate-Wazir formula we have

h1,1(X) = h1,1(B) + 1 = 2 . (3.7)

From the gravitational anomaly condition, we have

h2,1(X) = 273− 29(h1,1(B)− 1)− 1 = 272 . (3.8)
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B = P2

H-6, 12L

H-6, -6L H12, -6L

B̃ ∼ −6KB

Figure 2. The base B = P2 and the base B̃ of the mirror of the generic elliptic fibration over B,

shown as toric varieties. Rays that are red, blue, purple, green correspond to curves in the toric

base B̃ that carry non-Higgsable E8, F4, G2, and SU(2) gauge groups respectively.

For the mirror the computation is a bit more complicated. On each −11 curve there

is a single (4, 6) point that must be blown up so that the total space has a smooth

Calabi-Yau resolution [33]. Before these blowups the number of toric curves is 108, so

h1,1(B̃) = 108− 2 + 3 = 109. The non-Higgsable gauge group from the curves of negative

self-intersection below −1 is G = E9
8 × F 9

4 × (G2 × SU(2))18, with rank 162. We then have

h1,1(X̃) = h1,1(B̃) + rank G+ 1 = 109 + 162 + 1 = 272 . (3.9)

On the other hand, each G2 × SU(2) non-Higgsable factor is associated with 8 charged

matter hypermultiplets, so we have

h2,1(X̃) = 273− 29(h1,1(B̃)− 1) + dim G−mNH − 1

= 273− 29(108) + 9(248 + 52 + 34)− 144− 1 = 2 . (3.10)

3.3 Example: self-mirror Calabi-Yau threefold with Hodge numbers (251,

251)

We now consider the self-mirror Calabi-Yau threefold with Hodge numbers (251, 251) at

the central peak of the “Hodge shield”. This polytope can be put into a coordinate system

where the vertices are

{vi} = {(0, 0; 1, 0), (0, 0; 0, 1), (−1, 6;−3,−2), (0,−1;−3,−2), (42, 6;−3,−2)} . (3.11)

This polytope is self-dual, ∇ = ∆, up to a coordinate transformation, and is clearly a P2,3,1

fibration over the base B with vertices (−1, 6), (0,−1), (42, 6). Since the inner product

– 10 –



J
H
E
P
0
4
(
2
0
1
9
)
0
8
3

H0, -1L

H-1, 6L H42, 6L

B = B̃

Figure 3. The base B = B̃ over which the generic elliptic fibration is the self-mirror Calabi-Yau

threefold with Hodge numbers (251, 251). Note that the inner product between each pair of vertices

is −6, so that B = B̃ ∼ −6KB . Rays that are red, blue, purple, green correspond to curves in the

toric base B̃ that carry non-Higgsable E8, F4, G2, and SU(2) gauge groups respectively.

between each pair of these vertices is −6, the procedure of constructing the mirror base B̃

from monomials in O(−6KB) gives B = B̃. The primitive rays in this base (figure 3) give

a toric surface with a sequence of self-intersections

[[0, 6,−12//− 11//− 12//− 12//− 12//− 12//− 12//− 12//− 12]] . (3.12)

Again using the relationship between geometry and F-theory physics we can compute

the Hodge numbers directly from the geometry of the base. There are 99 toric curves in

the base, with one −11 curve that must be blown up, so h1,1(B) = 99 − 2 + 1 = 98. The

non-Higgsable gauge group is G = E9
8 × F 8

4 × (G2 × SU(2))16, with rank 152, so

h1,1(X) = h1,1(B) + rkG+ 1 = 251 . (3.13)

Similarly,

h2,1(X̃) = 273− 29(h1,1(B)− 1) + dim G−mNH − 1 = 251 . (3.14)

3.4 Example: generic elliptic fibration over Fn (Hodge numbers (3, 243), . . . ,

(11, 491)

As further examples we consider the generic elliptic fibrations over the Hirzebruch surfaces

B = Fn. In each case the mirror Calabi-Yau is elliptic over a base constructed from

−6KB, though in some cases the mirror is not a generic elliptic fibration but has some

tuning. We describe several specific cases in detail and summarize the complete set for

all n = 0, . . . , 12 in table 1 and table 2. The Hirzebruch surface Fn can be described

by the toric rays (0, 1), (1, 0), (0,−1), (−1,−n). For n = 0, 1 these are the vertices of the

associated 2D polytope, while for n > 1 (0,−1) is not a vertex and the other three are.

The dual base B̃ ∼ −6KB is thus characterized by the toric variety with a fan given by all

primitive rays in the polytope defined by the vertices

{(−6,−6), (−6, 12/n), (6(n+ 1),−6)} , (3.15)

when n ≥ 2, {(−6,−6), (−6, 12), (6, 0), (6,−6))} for n = 1, and {(−6,−6), (−6, 6), (6, 6),

(6,−6)} for n = 0.
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Figure 4. Part of the ray structure of the toric base B̃ for the mirror X̃ of the generic elliptic

fibration over the Hirzebruch surface F6.

When n|12, n > 1, the vertices of the polytope (3.15) containing the dual base are

integral; from this it follows that the polytope ∇ is reflexive, since ∆ has the form of (3.3),

where the last set of vertices are given by (m(I);−1,−1), with m(I) vertices of the poly-

tope (3.15). The polytope ∇ has vertices [15]

{vi} = {(0, 0; 1, 0), (0, 0; 0, 1), (1, 0;−3,−2), (0, 1;−3,−2), (−1,−n;−3,−2)} . (3.16)

As in the preceding examples we can read off the sequence of self-intersections of the toric

rays associated with primitive rays in (3.15). We give a few explicit examples.

F12. The polytope ∇ is reflexive, and the Hodge numbers of the associated Calabi-Yau

threefold are (11, 491); this is the largest possible value of h2,1(X) for any elliptic Calabi-

Yau threefold [7]. In this case the vertex (−6, 1) of B̃ is primitive and corresponds to a

curve of self-intersection 0, and the vertices (−6,−6) and (78,−6) each go to primitive

rays (−1,−1) and (13,−1) associated with curves of self-intersection 11. The sequence of

self-intersections of the toric rays for B̃ is then

[[−12//− 11//(−12//)13 − 11//− 12, 0]] (3.17)

Blowing up the base at two points on the −11 curves we can confirm that the Hodge

numbers of the generic elliptic fibration, corresponding to the polytope ∆, are (491, 11) as

expected.

F6. In this case again ∇ defined through (3.16) is immediately reflexive. The Hodge num-

bers for the associated Calabi-Yau threefold are (9, 321), which can be immediately deter-

mined from the non-Higgsable E6 gauge group over the−6 curve in B. In this case, however,

the vertex (−6, 2) is not primitive. The top part of the toric diagram for B̃ is shown in

figure 4, and contains the sequence of curves of self-intersection −1,−2,−2,−2,−2,−2,−1.

Unlike in the case of F12 the mirror polytope ∆ is not a generic elliptic fibration over B̃.

And indeed, the generic elliptic fibration over B̃ has Hodge numbers (317, 17) rather than

the values of (321, 9) expected from mirror symmetry. This can be understood from the

fact that the vertex (−6, 2) is not present in B̃, so the monomials in −6KB̃ are not sim-

ply the points in B = F6 but also include the lattice points (0,−k), k ∈ {4, 5, 6}. In the

polytope ∇ these monomials are all set to vanish. Computing the resulting gauge group

structure on B̃ we find that there is a gauge group SU(2)×G2×SU(2) tuned on the middle
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sequence of three −2 curves. This gives an additional rank contribution of 4 to h1,1(X̃)

from the gauge group and there are contributions to h2,1(X̃) of +20 from the dimension

of the tuned gauge group, and −28 from the charged matter fields,10 so that the correct

Hodge numbers are found for the tuned Calabi-Yau

(321, 9) = (317, 17) + (4,−8) . (3.18)

When n does not divide 12, there are additional vertices of ∇ that must be included

to attain a reflexive polytope from the simple stacking of Fn.

F5. For example, when n = 5, (0,−3,−3,−2) is an additional vertex that must be in-

cluded with the set in (3.16) for ∇ to be reflexive,11 so the projection of the whole ∇
polytope to the base plane is instead the polytope defined by the vertices

{(1, 0), (0, 1), (−1,−5), (0,−3)}, (3.19)

and the convex hull of the toric fan of B lies within this polytope. On the dual side, X̃ is a

generic elliptic fibration with Hodge numbers (295, 7). The polytope defined by all mono-

mials in O(−6KB) (defined using the rays in B from equation (3.19)) has the set of vertices

{(−6, 2), (−4, 2), (−6,−6), (36,−6))}. (3.20)

This is the projected polytope of the whole ∆ to the base. The primitive rays in this pro-

jected polytope define the base B̃, which is characterized by the self-intersection sequence

[[−12//− 11//(−12//)6 − 11//− 12,−1,−2,−2,−3,−1,−3,−2,−2,−1]], (3.21)

and the vertices of the convex hull of the toric fan of B̃ are

{(−5, 2), (−6, 1), (1, 1), (−6,−5), (−5,−6), (31,−5), (35,−6)}, (3.22)

which is contained in the projected polytope. In this case the mirror ∆ is again a generic

(non-tuned) elliptic fibration over the mirror base B̃, and the Hodge numbers can be com-

puted directly from the non-Higgsable clusters on the base with intersections (3.21).

We list the results of the remaining Fn cases in table 1 for 0 ≤ n ≤ 8, n = 12.12 For

n = 9, 10, 11, additional blowups at points in the base that may be toric or non-toric are

required to support a flat elliptic fibration, and there are various ways to resolve these bases

(see table 15 in [15]). We find that the corresponding mirror fibrations are generic models

over different dual bases B̃ for different resolutions. The results are listed in table 2.
10Note that the correct counting of h2,1 considers only the matter fields charged under the Cartan

subalgebra. The counting in this case is equivalent to that of the rank preserving tuning of SU(2) ×
SU(3) × SU(2), where the SU(3) has 6 hypermultiplets charged in the fundamental (3) representation, 4

of which are in bifundamentals with the SU(2) factors. In this case the SU(3) fundamentals combine in

pairs into G2 fundamentals, and the G2 has one additional fundamental (7), which contributes another 6

hypermultiplets charged under the Cartan, canceling the difference in dimension between SU(2) and G2.

This rank-preserving tuning between SU(2) and G2 connects two phases of the same Calabi-Yau geometry.
11Additional vertices from tops for all generic fibrations over Hirzebruch surfaces can be looked up in

table 11 in [15].
12Thanks to Yinan Wang for a computation showing that tunings were missing in the F3,F4 examples in

the original version of the paper.
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B (h1,1, h2,1) Resolved B Mirror base B̃

F9 (14, 404)

−12//− 11//(−12//)10 − 11//− 9, 0

(*) −12//− 11//(−12//)10 − 11//− 12,−1,−2,−2,−1

−11//− 11//(−12//)10 − 11//− 10, 0

−12//− 11//(−12//)10 − 11//− 10,−1,−1

−12//− 11//(−12//)10 − 11//− 11,−1,−2,−1

−11//− 11//(−12//)10 − 11//− 11,−1,−1

F10 (13, 433)

(*) −12//− 11//(−12//)11 − 11//− 10, 0

−12//− 11//(−12//)11 − 11//− 12,−1,−2,−1

−11//− 11//(−12//)11 − 11//− 11, 0

−12//− 11//(−12//)11 − 11//− 11,−1,−1

F11 (12, 462)
−12//− 11//(−12//)12 − 11//− 11, 0

(*) −12//− 11//(−12//)12 − 11//− 12,−1,−1

Table 2. For each Hirzebruch base B = Fn, n = 9, 10, 11 the Hodge numbers of the generic elliptic

fibration X over resolved B, the toric structure of the resolved base and the base B̃ of the mirror

Calabi-Yau threefold X̃. The bases marked with (*) are resolved at generic non-toric points, and

correspond to the naive stacking models with the given Hirzebruch base, while the other bases are

resolved at combinations of toric and non-toric points.
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4 Some further examples

In this section we consider some further examples that go beyond generic CY elliptic

fibrations over toric bases. We first consider some cases of Tate tunings of the generic

elliptic fibrations. As discussed in more detail in [15], a Tate tuning over a toric base

generally gives a reflexive 4D polytope with a standard stacking form and the F10 fiber,

where the Tate tuning corresponds to reducing the monomials in ∆. There is a natural

correspondence between these Tate tunings and tops involving additional lattice points in

∇. In general, for a Tate tuning where a1, . . . , a6 vanish to orders [an]i on the toric divisor

associated with the ray vBi , the vanishing of the monomials in an corresponds to a removal

of the points in ∆ that lie over the point in ∆2 associated with sections of the line bundle

O(−nKB). For many Tate tunings, as for the generic elliptic fibration, the remaining

points in the toric representation of O(−6KB) are a superset of the remaining points in

the other O(−nKB)’s. This is equivalent to the condition that the mirror polytope ∆

has a standard stacking form so that all rays in the base have a preimage under the fiber

projection of the form (·, ·;−1,−1). In such situations, the set of rays of the dual base

becomes

{wB̃i } = V B(a6) , (4.1)

where13

V B(an) = {w = (w1, w2)|GCD(w1, w2) = 1, w · vBi ≥ −n+ [an]i ∀vBi ∈ ΣB} . (4.2)

We describe explicit examples of this in section 4.1 and section 4.2. More generally, there

are some Tate tunings (such as SU(6)) that place such stronger constraints on a6 than on

other coefficients an. This can occur when 6 − [a6]i < n − [an]i for some i and n ≤ 4. In

such cases, the mirror ∆ is no longer a standard stacking but we can still give an explicit

description of the base B̃ in terms of B and the Tate tuning,

{wB̃i } = ∪n∈{1,2,3,4,6}V B(an) . (4.3)

This is essentially a rewriting of (2.6) for the mirror polytope ∆ when ∇ is a standard stack-

ing type polytope with the fiber F10. We describe an explicit example of this in section 4.3.

In terms of the monomial polytope ∆, the set of points determined by equation (4.2) are

given by

V B(an) = {(m1,m2)/GCD(m1,m2)|m = (m1,m2,m
F̃ (n)) ∈ ∆} , (4.4)

where mF̃ (n) represents the two coordinates of the particular lattice point m(II) ∈ ∆2 that

is associated with monomials in an. This formulation was used in some of the following

explicit computations. In the coordinate system we adopt in this paper

mF̃ (n = 1, 2, 3, 4, 6) = {(0, 0), (−1, 1), (0,−1), (−1, 0), (−1,−1)}, (4.5)

mF (n = 1, 2, 3, 4, 6) = {(0, 0), (−1, 0), (−1,−1), (−2,−1), (−3,−2)}. (4.6)

13Note that V B(an) can also be described simply as a set of primitive rays in 2D toric coordinates

associated with the monomials in an, with the product Πizi of the toric variables zi associated with the

rays of ΣB taken as the origin.
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For example, V B(a6) = {(m1,m2)/GCD(m1,m2)|m ∈ ∆ of the form (m1,m2,−1,−1)} .
In principle, we can use this same kind of analysis to describe other kinds of fibrations with

general fiber types Fi, though details of the structure of tuned models will be different

and depend on tops for the different fibers [25]. We leave a more complete analysis of the

general situation to future work.

In section 4.4, we consider a case of a stacked fibration with another fiber type, in

section 4.5 we illustrate a case of a fibered polytope where the mirror is not fibered, and

in section 4.6 we give an example of the factorization of mirror symmetry for a Calabi-

Yau fourfold constructed as a generic elliptic fibration over a toric threefold base. These

examples simply illustrate some of the directions in which the framework developed here

can be extended, and a more detailed analysis of these directions is left for the future.

4.1 Tunings of generic fibrations (example: tuning an SU(2) on P2)

We consider tuning an SU(2) on one of the +1-curves in the P2 base of the generic fibration

model in section 3.2. The corresponding ∆ polytope of the tuned model can be constructed

by reducing the set of lattice points in the ∆ polytope of the generic model (detailed

examples of constructing tuned polytope models can be found in appendix A in [15]); this

corresponds to the polytope in the case database with data: M:316 7 N:11 6 H:3,231. The

new Hodge numbers match with the prediction from F-theory physics of tuning the SU(2)

on a +1-curve (2, 272)+(1,−41) = (3, 231). The standard stacking polytope ∇ has vertices

{vi}={(0, 1;−3,−2), (−1,−1;−3,−2), (1, 0;−3,−2), (1, 0;−2,−1), (0, 0; 1, 0), (0, 0; 0, 1)}.

Now there is a non-trivial top over the base divisor associated with the ray (1, 0) due to

the SU(2) tuning over the divisor, which we can interpret in terms of a Tate tuning in

∆. ∇ has the usual (0, 0; vF ) form of F10 fiber as the only 2D subpolytope ∇2. The dual

polytope ∆ has vertices

{wi}= {(−4,−6;−1,−1), (−4, 10;−1,−1), (−2,−2;−1, 1), (−2, 4;−1, 1), (12,−6;−1,−1),

(0, 0;−1, 2), (0, 0; 1,−1)}. (4.7)

The ∆ polytope has multiple distinct fibrations, consisting of four F10 fibers, three F13

fibers, and one F16 fiber. In particular, there is a fiber ∆2 dual to ∇2, which has lattice

points also in the form (0, 0;wF ). This gives the mirror fibration of the ∆ polytope X̃

when viewed as a fan polytope.14 We can calculate the dual base B̃ by equation (2.6) for

the polytope ∆, giving the self-intersection sequence

B̃ → [[−12//− 12//− 11//− 12//− 12,−1,−2,−2,−3,−1,−5,−1,−3,−2, (4.8)

−1,−8,−1,−2,−3,−2,−1,−8,−1,−2,−3,−2,−1,−8,−1,−2,−3,−2,

−1,−8,−1,−2,−3,−1,−5,−1,−3,−2,−2,−1]].

14Note that ∆ does not project onto the other fibers (the projection strictly contains the other fibers);

otherwise ∇ would have had more than one fiber subpolytope.
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This is exactly the base over which the generic elliptic fibration has Hodge numbers (231, 3).

Therefore, we know ∆ is the fan polytope associated with this generic fibration model. This

generic fibration is thus the mirror fibration to the tuned SU(2) fibration model.

Note that this base has a smaller toric diagram than the base described in (3.5).

There are additional constraints on the rays w in (2.7) in this case coming from base rays

vB over points in the fiber ∇2 other than vs. We can see how this works explicitly as an

example of (4.1). Tuning an SU(2) gauge factor using a Tate tuning over the divisor in

P2 associated with vB3 = (1, 0) requires tuning the coefficients in (3.1) to vanish to orders

([a1], [a2], [a3], [a4], [a6]) = (0, 0, 1, 1, 2) on this divisor. Thus, the rays in B̃ are restricted

to a subset of those in O(−6KB), which satisfy the additional condition w · vB3 ≥ −4, so

w1 ≥ −4. This is already no stronger than the constraint on any of the other sections

O(−nKB), n ≤ 4, so we can use (4.1) and there are no other contributions from the more

general formula (4.3). From figure 2 we see that the base B̃ is thence associated with

the primitive rays in the polytope with vertices (−4, 10), (−4,−6), (12,−6). This matches

perfectly with the projection from (4.7).

As ∆ is also a generic elliptic fibration associated with a standard stacking polytope

with stacking point ws = (−1,−1), we can calculate B ∼ O(−6KB̃), and confirm that the

monomials in O(−6KB̃) are all the lattice points of the form (·, ·,−3,−2) in the original

polytope ∇.

It is interesting to note that in this case while there is a tuning of the fibration on the

∇ side, corresponding to a reduction in the size of B̃ on the ∆ side, the mirror is still a

generic elliptic fibration over the new base. We now consider a case where there are tunings

on both sides.

4.2 Tunings of generic fibrations over base B and mirror base B̃

We now consider an example where both the fibration and the mirror fibration are tuned

models. There is only one polytope associated with a CY3 with Hodge numbers (6, 248),

which is a standard stacking polytope. The polytope ∇ has vertices

{vi} = {(1, 0;−3,−2), (0, 1;−3,−2), (−1,−3;−3,−2), (0,−1;−1, 0), (0,−2;−3,−2),

(0, 0; 1, 0), (0, 0; 0, 1)}. (4.9)

The obvious F10 fiber in the plane (0, 0; ·, ·) is the only fiber of ∇. The associated CY3 is a

Tate tuned model over the base F3 with so(7) gauge symmetry enhanced on the −3-curve.

The dual polytope ∆ has vertices

{wi} = {(24,−6;−1,−1), (0, 2;−1,−1), (−6,−6;−1,−1), (−6, 2;−1,−1), (−2, 2;−1, 0),

(−4, 2;−1, 0)(0, 0; 1,−1), (0, 0;−1, 2)} . (4.10)

The dual polytope ∆ has three F10 fibers and one F13 fiber. The dual fiber with lattice

points in the form {0, 0; ·, ·} gives the mirror fibration with Hodge numbers (248, 6). ∆ is

a standard stacking polytope with stacking point ws = (−1,−1) with respect to the fiber.

The mirror base, by direct calculation (taking the rays of B̃ to be the primitive rays of all
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the projected 4D lattice points in ∆ using (2.6) on ∆) is

B̃ → [[−4,−1,−4,−1,−3,−2,−2,−1, (4.11)

−12//− 11//− 12//− 12//− 12//− 12//− 11//− 12,−1,−2,−2,−3,−1]].

The generic fibration over B̃ has Hodge numbers (247, 7), so this is a tuned model. By

explicit analysis of the Weierstrass model over B̃ associated with the polytope ∆, we

know there are enhanced gauge symmetries so(9)⊕ sp(1)⊕ so(9) on the first three curves

−4,−1,−4. The Hodge number shifts calculated from F-theory physics (with shared matter

representations carefully considered) are (1,−1), which agrees with the Hodge numbers

associated with ∆ (247, 7) + (1,−1) = (248, 6).

Unlike the previous example, in this case we have tunings both on the original fan

polytope (∇) and on the mirror (∆) side. Nonetheless, the tunings of gauge symmetries in

X and X̃ allow us to use equation (4.1) to calculate the bases in both cases:15

{w(B̃)
i } = V B(a6) and {v(B)

i } = V B̃(ã6), (4.12)

where a6 is associated with lattice points in ∆ of the form (·, ·,−1,−1), and where ã6 is

associated with lattice points in ∇ of the form (·, ·,−3,−2) (cf. equations (4.5) and (4.6)).

All the examples we have considered so far are cases in which equation (4.1) applies to

the calculation of both B and B̃. We now consider a case in which the more general

formula (4.3) is required.

4.3 Standard stacking F10-fibered ∇ vs. non-standard F10-fibered ∆

We now consider tuning an SU(6) on one of the +1-curves in the P2 base of the generic CY

elliptic fibration model in section 3.2. The tuned model corresponds to the polytope M:207

11 N:15 8 H:7,154 in the KS database. The new Hodge numbers match with the prediction

from F-theory physics of tuning the SU(6) on a +1-curve: (2, 272) + (5,−118) = (7, 231).

The standard stacking polytope ∇ has vertices

{vi} = {(0, 0; 1, 0), (0, 1;−3,−2), (−1,−1;−3,−2), (1, 0;−1,−1), (1, 0;−3,−2), (0, 0; 0, 1),

(1, 0; 0, 1), (1, 0; 0, 0)}. (4.13)

The dual polytope ∆ has vertices

{wi} = {(−1,−4;−1, 0), (−1,−2;−1, 1), (−1,−1; 0, 0), (−1, 2; 0, 0),

(−1, 3;−1, 1), (−1, 5;−1, 0), (0,−6;−1,−1), (0, 0;−1, 2),

(0, 0; 1,−1), (0, 6;−1,−1), (12,−6;−1,−1)}. (4.14)

This is however not a standard stacking P2,3,1 polytope, which can be seen from the feature

that there is more than one monomial in the coefficients of x3 or y2 in the Tate form [15]:

15We can safely use equation (4.1) without going to the general formula (4.3) in the absence of Tate

tunings of gauge symmetries SU(n), n ≥ 6 and SO(n), n ≥ 13.
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Figure 5. Base resolution that gives rise to a tuned flat elliptically fibered CY. Left: before

resolution. Right: after resolving (4,6) points in the base. The top curve is D1 and the down curve

is D49. The curves in the left chain from top to down are {D2, D2,. . . ,D48}, in the right chain from

bottom to top are {D50, D51, . . . , D59}.

two lattice points (0,0,0,1) and (1,0,0,1) in (4.13) contribute to the x3 terms. The set of

rays in the dual base B̃ is given by equation (4.3), and in this case

∪n∈{1,2,3,4,6} V B(an) = V B(a4) ∪ V B(a6), (4.15)

which gives a 2D toric fan with the self-intersection numbers

B̃ → [[−10//− 12//− 11//− 12//− 10,−1,−2,−2,−2,−2,−2,−2,−2,−2,−1]].

The generic elliptic fibration over B̃ has Hodge numbers (143, 23), so X̃ is a tuned model.

As ∆ is not a standard stacking P2,3,1 polytope, we do not have a Weierstrass model from

a Tate form for this polytope. Nonetheless, the Weierstrass model can be obtained with

the trick of “treating ∆ as a Bl2P1,1,2-fibered polytope” as described in section 4.2 in [15].

This is a tuned Weierstrass model with tunings of gauge symmetries su(2)⊕su(3)⊕su(3)⊕
su(3)⊕ su(3)⊕ su(2) enhanced on −2,−2,−2,−2,−2,−2 (D

(B)
52 −D

(B)
57 ), and also an su(2)

gauge symmetry enhanced on a non-toric 0-curve intersecting the two −10-curves. The

polytope ∆ gives a non-flat elliptic fibration model; we can however find an equivalent

flat elliptic fibration description with the same tuning of gauge symmetries over a resolved

base [15]. In the resolved base, the original −10-curves are resolved to −12-curves through

four successive blowups, and the non-toric 0-curve is replaced by curves −1,−2,−2,−2,−1

where the two −1-curves intersect with the two −12-curves, respectively (see figure 5). The

SU(2) gauge symmetry that was enhanced on the non-toric 0-curve is now enhanced on

the middle −2-curve in the blowup sequence; this is therefore a flat elliptic fibration. The

Hodge number shifts of the flat fibration model calculated from the tunings match exactly

with the polytope model: (11,−16) + (1,−5) = (154, 7)− (143, 23).

4.4 Other toric fibers (example: vertex stacking on fiber F2 = P1 × P1)

For the other examples we have considered so far we have restricted attention to fibrations

with the fiber F10 and the “standard stacking” form. The mirror symmetry structure also
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factorizes with other fiber types, though the physics of the corresponding F-theory models

is more complicated and does not follow from standard Tate tuning structures. We give one

example here of another toric fiber type, and leave further exploration of mirror symmetry

with other fiber structures to further work.

As a simple example of a mirror pair of elliptically fibered CY3s associated with fibered

polytopes with different fiber types, we start with an F2-fibered polytope with base B = P2.

We again use the “stacked” form where all the rays of the fan of B are embedded within ∇
in the form (vBi ; vs), vs ∈ ∇2. Let the stacking point be one of the F2 vertices vs = (1, 0).

Therefore, the polytope ∇ has vertices

{vi} = {(−1,−1; 1, 0), (1, 0; 1, 0), (0, 1; 1, 0), (0, 0; 0, 1), (0, 0; 0,−1), (0, 0;−1, 0)} . (4.16)

This corresponds to the polytope given by the data M:117 8 N:8 6 H:4,94 [-180] in the KS

database.

The mirror polytope also has a simple structure. The dual polytope ∆ has vertices

{wi}= {(−2,−2; 1, 1), (4,−2; 1, 1), (−2, 4; 1, 1), (−2, 4; 1,−1), (−2,−2; 1,−1),

(4,−2; 1,−1), (0, 0;−1, 1), (0, 0;−1,−1)} . (4.17)

The mirror fiber F̃ = F15 has the vertices16

{(0, 0,−1,−1), (0, 0, 1,−1), (0, 0, 1, 1), (0, 0,−1, 1)} . (4.18)

Over the points in the mirror fiber, we have points associated with the monomials in

O(−2KB) over all the points (1, y), y = −1, 0, 1, and points associated with O(−KB) over

the points (0, y), y = −1, 0, 1, and only the points (0, 0;−1, y) over the remaining points

in the fiber. From this we see that the dual base B̃ is given by the toric surface with the

self-intersection sequence that can be read off from O(−2KB),

B̃ → [[−1,−4,−1,−3,−1,−4,−1,−4,−1,−3,−1,−4,−1,−4,−1,−3,−1,−4]].

While the factorization of mirror symmetry is equally clear in this example to the

others considered here, the F-theory interpretation is more subtle. A full analysis involves

considerations using methods like those of [21, 25]. We outline the analysis on the ∇ side

in this case and leave further work in this direction to the future. The polytope ∇ has the

single obvious fiber F2, which does not provide a section, so this is a genus one fibration. We

can analyze the gauge group and matter structure of the corresponding Jacobian fibration,

which is relevant for F-theory [37]. The Weierstrass model of the Jacobian fibration has no

nonabelian gauge symmetries. From the Hodge numbers we expect a nontrivial Mordell-

Weil group of rank 2,

G = U(1)×U(1) . (4.19)

16Note that ∆ has many distinct fibrations; the numbers of each of the 16 fiber types of ∆ are

{6, 0, 6, 6, 6, 6, 0, 12, 6, 9, 0, 0, 9, 6, 4, 1}. We can immediately read off the mirror fibration however from the

form of ∇, and none of the other fibrations has a corresponding projection since the fiber of ∇ is unique.
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Codimension two singularities in the Weierstrass model suggest 36 + 72 + 72 matter fields

charged in various ways under the U(1) factors in G, which is in accordance with the

expected Hodge numbers (4, 94) = (2, 272) + (2, 2− (36 + 72 + 72))).17

4.5 Elliptic fibration with a non-fibered mirror

As a final Calabi-Yau threefold example we consider a case where a CY threefold has an

elliptic fibration associated with a 2D reflexive subpolytope, but the mirror has no fibration.

In such cases, there cannot be a projection onto the fiber of ∆, as discussed in section 2.2.

We consider the polytope from the KS database associated with the Calabi-Yau three-

fold with Hodge numbers (h1,1, h2,1) = (149, 1). There is a coordinate system in which this

polytope ∇ has vertices

{vi} = {(0, 0; 1, 0), (−2, 8;−3,−2), (−2, 0;−3,−2), (6, 0;−3,−2), (−2,−8, 5, 6)} . (4.20)

In this coordinate system there is an F10 reflexive 2D fiber in the standard form (0, 0; vF ).

The polytope does not satisfy the condition needed for the mirror to have a fibration,

however, since the last vertex v = (v(I); v(II)), v(II) = (5, 6) does not satisfy v(II) ∈ ∇2.

Furthermore, it is straightforward to see that no linear transformation that preserves ∇2

can move all the vertices to satisfy this condition. In particular, the second and last vertices

will always have v(II) values that differ by a vector of the form

v
(II)
5 − v(II)

2 = (8, 8) + 16(x, y), x, y ∈ Z . (4.21)

Thus, the mirror can never satisfy the fibration condition. This is not surprising since the

mirror has Hodge numbers (1, 149) and cannot have a genus one or elliptic fibration since

the Shioda-Tate-Wazir would give h1,1(X̃) ≥ h1,1(B̃) + 1 ≥ 2. One can also check explic-

itly that the lattice points in the mirror polytope ∆ do not contain a linearly embedded

P2,3,1 fiber.

4.6 Elliptic Calabi-Yau fourfolds (example: generic elliptic fibration over P3)

The factorization structure that we have described for elliptic toric hypersurface Calabi-

Yau threefolds can occur in much the same fashion for higher-dimensional Calabi-Yau

manifolds realized as toric hypersurfaces. We leave a more detailed investigation of higher-

dimensional Calabi-Yau mirror symmetry for future work, but note here simply that the

simplest cases of generic elliptic fibrations over toric bases have a natural generalization

to arbitrary higher dimension. We present here only a single simple case, the Calabi-Yau

fourfold given by the generic elliptic fibration over the base P3. The polytope ∇ in this

case is the simple generalization of the polytope with vertices given by eq. (3.2), and has

vertices

{vi} = {(0, 0, 0; 1, 0), (0, 0, 0; 0, 1), (1, 0, 0;−3,−2), (0, 1, 0;−3,−2), (4.22)

(0, 0, 1;−3,−2), (−1,−1,−1;−3,−2)} . (4.23)

17Note that from [21], the F-theory models associated with the Jacobian fibrations of F2 fibered polytopes

should generically have toric Mordell-Weil group U(1) × Z2. The stacked form we have here over a vertex

of F2 gives a degeneration that may enhance the Z2 to a U(1) factor. (Thanks to Paul Oehlmann for

explaining this to us.)
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The Hodge numbers of the corresponding Calabi-Yau fourfold are h1,1(X) = 2, h3,1(X) =

3878. The dual polytope ∆ is again P2,3,1 fibered, with a base B̃ given by the set of toric

rays within the polytope having vertices

{v(B̃)
i } = {(−6,−6,−6), (18,−6,−6), (−6, 18,−6), (−6,−6, 18)} . (4.24)

There are a tremendous number of ways of triangulating this 5D polytope to give a complete

toric fan. Independent of the triangulation, however, the generic elliptic fibration over the

toric base B̃ will have a non-Higgsable gauge group

G = E34
8 × F 96

4 ×G256
2 × SU(2)384 . (4.25)

This can be seen from the numbers of primitive rays in B̃ with specific minimum values of

the inner products with the vertices in (4.23). For each triangulation, the mirror Calabi-

Yau will have Hodge numbers h1,1(X̃) = 3878, h3,1(X̃) = 2. An interesting feature of

the mirror Calabi-Yau fourfolds associated with the polytope ∆ is that it is one of the

“attractive” endpoints reached by blowing up P3 as far as possible consistent with a base

that supports an elliptic fibration [38]. This may be associated with the large number

of triangulations that are possible in this case. The other attractive endpoints also are

factorizable mirrors over simple bases that are 3D toric varieties with few rays. We leave

further exploration of the many interesting questions associated with mirror symmetry and

Calabi-Yau fourfolds to further work.

5 Conclusions and further questions

5.1 Summary of results

Building on recent work [16] in which we showed that most toric hypersurface Calabi-Yau

threefolds have a manifest genus one or elliptic fibration, we have found that many of these

elliptic fibrations exhibit a mirror symmetry that factorizes, in the sense that the fiber F

of X is a mirror Calabi-Yau 1-fold to the fiber F̃ of X̃. This connects with a number of

directions of earlier research related to aspects of such mirror fibers [17–21, 39, 40]. We

have furthermore found that the structure of the mirror base B̃ is determined in a clear

and well-defined way from the base B and fibration structure of X. In many cases of

interest the mirror base takes a simple form in terms of the toric geometry of a line bundle

over B. In particular, for generic CY elliptic fibrations over toric base surfaces, the mirror

base B̃ has a toric fan that is built from the primitive rays in the set of sections of the

line bundle O(−6KB). For tuned Tate models over a toric base surface, there is a slightly

more complicated expression for the rays in B̃, given by (4.1) when ∆ is also a standard

stacking polytope, or (4.3) when ∆ fails to maintain the standard stacking structure due

to excessive removal of points associated with monomials in O(−6KB). As shown in [15],

almost all the Hodge number pairs in the KS database with h1,1 ≥ 240 or h2,1 ≥ 240 are

realized by generic or tuned elliptic fibrations with the standard stacking structure.

We have explored some simple examples of this factorized mirror symmetry, particu-

larly for some cases of Calabi-Yau threefolds with large Hodge numbers, and generic and

tuned elliptic fibrations over simple bases such as P2 and the Hirzebruch surfaces Fn.
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With growing evidence that most known Calabi-Yau threefolds admit a genus one or

elliptic fibration, the results we have found here suggest that there may be a very general

way of understanding mirror symmetry in terms of fibration by smaller-dimensional Calabi-

Yau fibers. Further work is clearly needed to explore the details of the mirror dictionary for

different bases and fibers, in higher dimensions, and the extent to which the factorization

structure identified here can be extended beyond the toric hypersurface framework.

5.2 Further questions and directions

We list here some specific open questions that may be of interest for further research.

• We have given a variety of examples here where mirror symmetry between a pair

of elliptic Calabi-Yau threefolds factorizes between the base and the fiber of the fi-

brations. From these examples it is clear that there are regular local structures that

could be used to begin to form a dictionary relating structure on the mirror base B̃ to

structure of the base B and fibration structure of the original elliptic Calabi-Yau X.

For example, a curve of self-intersection +1, such as was encountered in the example

in section 3.2, naturally corresponds to a sequence of toric curves of self-intersections

//− 12//− 12// in the mirror base B̃. Similarly, in table 2, we see a pattern where

blowing up a non-toric vs. toric point in the base B corresponds to blowing up a toric

vs. non-toric point in the mirror base B̃. It would be interesting to try to system-

atically develop this kind of structure, ideally including the additional reductions on

the base B̃ that are imposed by different Tate tunings on the generic elliptic fibration

over a toric B, which can be understood through additional constraints arising from

the associated “tops”.

• We know that at large Hodge numbers many of the Calabi-Yau threefolds in the

Kreuzer-Skarke database are generic or tuned elliptic fibrations over toric bases that

can be constructed from polytopes with a fiber F10, and these exhibit the simplest

forms of mirror factorization studied in section 3, section 4. It would be interesting

to study further what fraction of the KS database exhibit mirror factorization and

what other types of structures arise frequently or in isolated cases at smaller Hodge

numbers.

• We have focused here primarily on the simplest cases where the toric 2D fiber is the

self-dual fiber F10, corresponding to generic elliptic fibrations. It would be interesting

to study in more detail the structure of the other 2D toric fibers. In particular, it was

found in [21] that the dual fibers Fi, F̃i exhibit some interesting structure, including

identical numbers of sections associated with toric Mordell-Weil rank, and a matching

between Mordell-Weil torsion on one side and discrete symmetries associated with the

Tate-Shafarevich/Weil-Chatalet group on the dual side. It would be interesting to

understand better how these features of the fibers can be used in understanding mirror

symmetry of the full Calabi-Yau threefolds X, X̃ with the different dual fiber types.

• One natural way of trying to extend the analysis here is to look at complete intersec-

tion Calabi-Yau varieties. A large class of complete intersection fibers were analyzed
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in [39], and the properties of mirror fibers in these more general cases were noted

in this paper and studied more thoroughly in [40]. It would be interesting to in-

vestigate these structures further in the context of full elliptic Calabi-Yau threefolds

(and fourfolds).

• One of the most powerful approaches to mirror symmetry that has been used in earlier

work is the Strominger-Yau-Zaslow (SYZ) picture [41], in which mirror symmetry is

realized by T-duality on a 3-torus fiber over a real threefold base. While this picture

has led to some powerful insights into mirror symmetry, it is incompatible with the

algebro-geometric structure of Calabi-Yau manifolds, and the 3-torus fibration of a

general Calabi-Yau is extremely singular. The factorization structure identified here

seems to match more naturally with ideas from algebraic geometry and involve more

controlled singularity structures. It would be interesting to understand whether there

is a way of relating the SYZ picture to the factorization structure found here.

• As described in a simple example in section 4.6, the factorization structure explored

here should be equally valid for higher-dimensional Calabi-Yau varieties, and par-

ticularly for Calabi-Yau fourfolds. It would be interesting to explore further the

structures that arise for mirror symmetry of elliptic Calabi-Yau fourfolds.

• The mirror symmetry identified here between elliptic fibrations suggests that there

may be an interesting corresponding duality in F-theory. This would be interesting

to explore further.

• It would be interesting to connect this factorization structure of mirror symmetry to

other aspects of mirror symmetry research and Calabi-Yau geometry. For example, it

would be interesting to understand how the form of Calabi-Yau periods and the struc-

ture of the moduli space, or recent progress on the all genus amplitudes of topological

string theory on elliptic Calabi-Yau threefolds [42] fits into this factorized picture.

• There are several contexts in which this structure of mirror symmetry may have an

interesting physical interpretation or consequences for physics. Beyond the possibility

mentioned above of a new duality in F-theory, for more conventional type II mirror

symmetry the existence of an elliptic fibration on both sides of the duality suggests

additional structure that may lead to physical insights. We have not explored this

direction significantly in this paper but it should be a very interesting direction for

further study.
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A The 16 reflexive 2D fiber polytopes ∇2

We list here the 16 reflexive 2D polytopes ∇2. The mirror of fiber F = Fi is the fiber

F̃ = F17−i for i < 7, i > 10; the fibers Fi for i = 7, 8, 9, 10 are self-mirror up to linear

transformations. For each lattice point vF , we include the maximum value of 1 + vF ·
m(II),m(II) ∈ ∆2.
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Figure 6. Primitive rays associated with a face of the toric base polytope at distance 2 from the

origin give a sequence of toric curves of self-intersection −1,−4,−1,−4, . . .

B Faces of the base polytope and chains of non-Higgsable clusters

Certain chains of self-intersections of curves in the base, associated with characteristic

combinations of non-Higgsable clusters, have been observed both in 6D supergravity the-

ories [31, 33] and 6D superconformal field theories constructed from F-theory [34, 43, 44].

In the context of the toric bases we consider here, these can be seen as arising simply

from the sequences of primitive rays in a toric base associated with a face of the bounding

polytope at different distances from the origin. We encounter the E8 sequence connecting

−12 curves in the example in section 3.2, and the simple SO(8) sequence connecting −4

curves in the example in section 4.4. We briefly discuss here all the constructions of this

type to illustrate how they arise in a unifying context in this framework.

The simplest case is that of the self-intersection sequence [[−1,−4,−1,−4,−1, . . .]].

This can be seen as arising from the set of primitive rays associated with a face of the toric

base polytope at distance 2 from the origin (figure 6). The primitive rays in this case are

of the forms (n, 1)∀n and (2k + 1, 2)∀k. For example, starting from (0, 1), the sequence of

rays in a toric diagram associated with a polytope having a face along the line (x, 2) is

(0, 1), (1, 2), (1, 1), (3, 2), (2, 1), . . . (B.1)

Since from toric geometry we know that a toric curve vi has self-intersection −n when

nvi = vi−1 + vi+1, we can read off the self-intersection sequence [[-4, -1, -4, -1, -4, . . . ]]

from the ray sequence (B.1). This corresponds to a sequence of non-Higgsable gauge groups

SO(8), ·, SO(8), ·, SO(8) . . . in the F-theory picture.

Performing a similar analysis at other distances we see that the following sequences arise:

d = 2 → [[−4,−1,−4, . . .]] (SO(8)) (B.2)

d = 3 → [[−6,−1,−3,−1,−6, . . .]] (E6 × SU(3)) (B.3)

d = 4 → [[−8,−1,−2,−3,−2,−1,−8, . . .]] (E7 × (SU(2)× SO(7)× SU(2))) (B.4)

d = 6 → [[−12,−1,−2,−2,−3,−1,−5,−1,−3,−2,−2,−1,−12]]

(E8 × F4 × (G2 × SU(2))2) (B.5)

where in each case the sequence repeats and we have indicated the non-Higgsable gauge

group for a single cycle of the sequence. These are precisely the maximal connected se-

quences identified in [33] and associated with e.g. “E8 matter” in [34].
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