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INTRODUCTION 

There has been much recent excitement among mathematicians about a cal-
culation made by a group of string theorists (P. Candelas, X. C. de la Ossa, 
P. S. Green, and L. Parkes [6]) which purports to give a count of the number of 
rational curves of fixed degree on a general quintic threefold. The calculation 
mixes arguments from string theory with arguments from mathematics, and is 
generally quite difficult to follow for mathematicians. 

I believe that I now understand the essential mathematical content of that 
calculation. It is my purpose in this note to explain my understanding in terms 
familiar to algebraic geometers. What Candelas et al. actually calculate is a q-
expansion of a certain function determined by the variation of Hodge structure 
of some other family of threefolds with trivial canonical bundle. The "mirror 
symmetry principle" is then invoked to predict that the Fourier coefficients in 
that expansion should be related to the number of rational curves on a quintic 
threefold. 

One mathematical surprise in this story is a new q-expansion principle for 
functions on the moduli space of Calabi-Yau manifolds. Near points on the 
boundary of moduli where the monodromy is "maximally unipotent," there 
turn out to be natural coordinates in which to make q-expansions of func-
tions. In this paper, we will discuss these q-expansions only in the case of 
one-dimensional moduli spaces; the general case will be treated elsewhere. 

By focusing on this q-expansion principle, we place the computation of [6] 
in a mathematically natural framework. Although there remain certain depen-
dencies on a choice of coordinates, the coordinates used for calculation are 
canonically determined by the monodromy of the periods, which is itself intrin-
sic. On the other hand, we have removed some of the physical arguments which 
were used in the original paper to help choose the coordinates appropriately. 
The result may be that our presentation is less convincing to physicists. 
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224 D. R. MORRISON 

The plan of the paper is as follows. In § 1 we review variations of Hodge 
structure, and explain how to define "Yukawa couplings" in Hodge-theoretic 
terms. (A discussion of Yukawa couplings along the same lines has also been 
given by Cecotti [9, 10].) In §2 we study the asymptotic behavior of the periods 
near points with maximally unipotent monodromy. This is applied to find q-
expansions of the Yukawa couplings in §3. In §4 we attempt to describe mirror 
symmetry in geometric terms. In §5 we turn to the main example (the family 
of "quintic-mirrors"), and in §6 we explain how the mirror symmetry principle 
predicts from the earlier calculations what the numbers of rational curves on 
quintic threefolds should be. Several technical portions of the paper have been 
banished to appendices. 

We work throughout with algebraic varieties over the complex numbers, 
which we often identify with complex manifolds (or complex analytic spaces). 
If X is a compact complex manifold and p, q;::: 0, we define 

HP,q(X) = Hq(D.i,) = Hq(APD.x ) 

where D.x is the holomorphic cotangent bundle of X. (This is slightly non-
standard.) We extend this definition to the case p < 0, q;::: 0 by 

HP,q(X) = Hq(A -P8x ) , 

where 8 x is the holomorphic tangent bundle of X. (This is very nonstandard.) 
The dimension of H P, q (X) is denoted by hP, q (X) , or simply by hP, q . 

1. VARIATIONS OF HODGE STRUCTURE ARISING FROM FAMILIES OF 

CALABI-Y AU MANIFOLDS 

Recall that a Calabi-Yau manifold is a compact Kahler manifold X of com-
plex dimension n which has trivial canonical bundle, such that the Hodge 
numbers hk , 0 vanish for 0 < k < n. Thanks to a celebrated theorem of Yau 
[41], every such manifold admits Ricci-flat Kahler metrics. 

Any nonzero section of the canonical bundle determines isomorphisms 

Hi(8x ) ~ Hi(D.~-I). 

Thus, if n > 1 , then X has no holomorphic vector fields. Moreover, the tangent 
space to moduli Hl(8x ) has dimension h-1,1 = hn-1,1 and the natural ob-
struction space for the moduli problem H2 (8 x) has dimension hn - 1 , 2 , which 
is generally nonzero for n > 2. However, the theorem of Bogomolov [4], Tian 
[39], and Todorov [40] says that the moduli problem is in fact unobstructed, 
and the moduli space is therefore smooth of dimension h n- 1 , 1 . 

We review some facts about Hodge structures and their variation. Good 
general references for this are Griffiths et al. [21], and Schmid [35]. The nth 
cohomology group of X has a Hodge decomposition 

Hn(X, q ~ EB HP,q(X). 
p+q=n 
P, q?O 
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MIRROR SYMMETRY AND RATIONAL CURVES ON QUINTIC THREEFOLDS 225 

(With our conventions, this follows from the Hodge theorem in de Rham co-
homology H~R(X) = (BHG,q(X) together with the Dolbeault isomorphism 
HG,q(X) ~ Hq(Qi) = HP,q(X).) The Hodge decomposition can also be de-
scribed by means of the Hodge filtration 

pP (X):= E9 HP' , n-p' (X) ; 
p<;;.p'<;;'n 

we then have HP,n-p(X) ~ pP(X)/pP+I(X). 
The cup product on cohomology composed with evaluation on the canonical 

orientation class of X determines a bilinear map 
n n 2n ~ ( I ) : H (X, Z) x H (X, Z) --> H (X, Z) --> Z, 

called a polarization. There is an associated adjoint map 

ad( I) : Hn(X, Z) --> Hom(Hn(X, Z), Z) 

defined by ad( I) (x)(y) = (xl y). After tensoring with C and invoking the 
Hodge decomposition, the adjoint map induces isomorphisms 

ad(l) : HP,n-p(X) ~ (Hn-p,P(X))*. 

We now recall a construction which first arose in the study of infinitesimal 
variations of Hodge structure by Carlson, M. Green, Griffiths, and Harris [8]. 
The cup product determines a natural map 

(1) 

called the differential of the period map. Iterates of this map are symmetric in 
their variables; the nth iterate of the differential is the induced map 

Symn HI(ex ) --> Hom(Hn,o(X), HO,n(X)). 

Using the canonical isomorphism Hom(Hn,o(X), HO,n(X)) = (Hn,o(X))* ® 
HO,n(X) and the isomorphism HO,n(X) ~ (Hn,o(X))* induced by the adjoint, 
we get a map 

(2) 

We call this the unnormalized Yukawa couplingl of X. 
If we choose an element of H n,O(X)®2 and evaluate the map (2) on that 

element, we get a map Symn HI (ex) --> C called a normalized Yukawa coupling. 
The "normalization" is the choice of element of Hn ,O(X)®2 . 

We now analyze these constructions for a family of manifolds. Suppose we 
are given a quasi-projective variety C and a smooth map 7t : 2' --> C whose 

IThis particular Yukawa coupling is probably only interesting in physics if n = 3. In dimension 
n, what is being computed here is the" n-point Yukawa coupling." 
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fibers are Calabi-Yau manifolds. Suppose also that this family can be completed 
to a family of varieties tt: fl? -+ C ,where C is a projective compactification 
of C. The fibers of tt may degenerate over the boundary B := C - C. We 
assume that B is a divisor with normal crossings on C. 

For any point PEe we denote the fiber n-I(p) of n by Xp. The Kodaira-
Spencer map p: 8 c ,p -+ HI(8x) maps the tangent space to C at P to the 
tangent space to moduli at the point [Xp ]. If C is actually a moduli space for 
the fibers of fl? , the map p will be an isomorphism. 

The cohomology of the fibers of the map n with coefficients in Z and C 
fit together into local systems Rnn.Z and Rnn.C on C. The Hodge filtration 
becomes a filtration of the vector bundle !70 := Rnn.C 0 &'C by holomorphic 
subbundles: 

Rnn*C 0 &'c =!70 :J!71 :J '" :J !7n-1 :J!7n :J (0). 

The vector bundle !70 has a natural flat connection V' : !70 -+ !70 0 nc 
called the Gauj3-Manin connection, whose horizontal sections determine the lo-
cal system Rnn*C. The Griffiths transversality property says that V'(!7P) c 
!7P-1 0nc · 

There is a natural extension of this setup over the boundary B, which in-
volves the sheaf nc(log B) of logarithmic differentials. (That sheaf is locally 
generated by nc and all elements of the form df / f , where f = 0 is a local 
equation of a local component of B .) Although the local system R n n * C cannot 
in general be extended across B in a single-valued way, the Hodge bundles !7P 

do have natural extensions to bundles !7P on C. And the GauO-Manin con-
nection V' extends to a connection V':!7 ° -+ !7 ° 0 nc(log B) which satisfies 
--P -p-I -V'(!7 ) c!7 0 nc(logB). This restriction on the types of poles which V' 
may have along B is equivalent to a requirement that the connection V' have 
"regular singular points." 

The extended GauO-Manin connection V' gives rise to an &'C linear map on 
the associated gradeds 

(3) 
- -p -p+1 -p-I-p 
V' :!7 /!7 -+ (!7 /!7) 0 nc(logB). 

To make contact with the nth iterate of the differential and the Yukawa cou-
pling, we introduce the sheaf 8c( - log B) of vector fields with logarithmic zeros, 
which is the dual of nc(log B). The map (3) then induces the bundle version 
of (1) 

8 c( -10gB) -+ EB .7l' om(!7P /!7P+1 , !7P-1 /!7P ). 

When this is iterated n times, it produces a map 

(4) 
n -n -=<l-I 

Sym (8c(-logB» -+ .7l'om(!7 ,!7 /!7 ). 

The polarizations fit together into a bilinear map of local systems 
n n 2n '!<! (I ) : R nJl x R nJ., -+ R nJl -+ Z 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MIRROR SYMMETRY AND RATIONAL CURVES ON QUINTIC THREEFOLDS 227 

whose adjoint map induces an isomorphism ad( I) : (yO /yl) --+ (yn)* . This 
extends to a map of bundles 

(5) -0 -I -n * 
ad( I) : (Y /Y ) --+ (Y ) . 

-n -0 -I -n -0 -I 
Using the canonical isomorphism jif' om(Y ,Y /Y ) = (Y )* (9 (Y /Y ) 
and composing the map (5) with the map (4), we get the Yukawa map 

n -n * 02 
K: Sym (ec(-logB)) --+ ((Y )) . 

If we also specify a section of (yn)02, we get a normalized Yukawa map 

K norm : Symn(ec(-logB)) --+&'c' 

Suppose that C is actually the moduli space for the fibers of 2" , so that p 
is an isomorphism. If we compose p-l with a normalized Yukawa map K norm 

we get 
nIp - 1 n K norm 

Sym H (ex) --> Sym (ec p) --> &'C p = <C. 
p , , 

In this way, we exactly recover the corresponding normalized Yukawa coupling. 
Candelas et al. [6] typically compute the Yukawa coupling in local coordinates 

(away from the boundary) as follows. Suppose that dim C = 1, and that I.jf is 
a local coordinate defined in an open set U C C. There is an induced vector 
field d / d I.jf , which is a local section of eu ' Choose a section2 0) of yn over 
U , and define 

KIf/ ... 1f/ = K (/I.jf , ... , /I.jf) .0)2. 
(The number of I.jf'S in the subscript is n.) This is a holomorphic function 
on U. If we alter 0) by the gauge transformation 0) f--+ j 0), then the Yukawa 
coupling transforms as KIf/ ... 1f/ f--+ j2 K If/ ... If/' "Normalizing the Yukawa map" is 
the same thing as "fixing the gauge." 

Our primary goal will be to compute the asymptotic behavior of the Yukawa 
map K in a neighborhood of the boundary B. 

2. THE ASYMPTOTIC BEHAVIOR OF THE PERIODS 

For simplicity of exposition, we now specialize to the case in which C is a 
curve. Let P E B be a boundary point, and let Tp be the monodromy of the lo-
cal system R n7(*Z around P. We regard Tp as an element of Aut Hn(Xp' , Z), 
where pi is a point near P; Tp is determined by analytic continuation along a 
path which goes once around P in the counterclockwise direction. By the mon-
odromy theorem [24], Tp is quasi-unipotent, which means that some power T; is unipotent. Moreover, the index of unipotency is bounded: we have 
(T; - !)n+1 = O. 

2To avoid confusion with the cotangent bundle, we denote this section by w rather than n. 
However, in appendix C below, we will revert to the notation n used in [6]. 
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We say that P is a point at which the monodromy is maximally unipotent if 
the monodromy Tp is unipotent, and if (Tp - It =1= O. (Thus, the index of 
nilpotencyof Tp - I is maximal.) Since Tp - I is nilpotent, we can define the 
logarithm of the monodromy N = 10g(Tp) E End Hn(Xpl ,Q) by a finite power 
series 

(Tp - 1)2 n+l (Tp - I)n 
10g(Tp)=(Tp-l)- 2 +···+(-1) n 

(Rational coefficients are needed in cohomology since rational numbers appear 
in the power series.) N is also a nilpotent matrix, with the same index of 
nilpotency as Tp - I . 

Lemma 1. Let 7f. : J!l7 --+ C be a one-parameter family of varieties with hn, 0 = 1 . 
Let P E B = C - C be a boundary point at which the monodromy on Rn7f.*'lL is 
maximally unipotent and let N be the logarithm of the monodromy. Then the 
image of N n is a Q-vector space of dimension one, and the image of N n- 1 is a 
Q-vector space of dimension two. 

We defer the proof of this lemma to Appendix A. 

We say that a basis go' gl of (ImNn- 1) @ C C Hn(Xpl, q is an adapted 
basis if go spans (1m N n) @ C. (We have extended scalars to C since certain 
computational procedures lead more naturally to complex coefficients.) If go' 
gl is an adapted basis for (1m N n- 1) @ C, then by Poincare duality, there are 
homology classes Yo' Yl E Hn(Xpl ,q such that (g) 0:) = fy 0: for any 0: E 

J 

Hn(Xpl, q. Here we denote the evaluation of cohomology classes on homology 
classes by using an integral sign, since that evaluation is often accomplished by 
integration. 

Proposition. Let Yo' Yl be the homology classes determined by an adapted basis 
go' gl of (1m N n- 1) @ C. Define a constant m by N gl = mgo' Let U be a 
small neighborhood of P, and let z be a coordinate on U centered at P. Let 

-n -w be a nonzero section of!T over U. Then 
(1) J w extends to a single-valued function on U. 

Yo 
(2) fY1 w is not single-valued. However, we can write 

1 J w "iii YI log z . I I dfi . J = ~ + smg e-va ue unctIOn. 
Yo W 7f.l 

Proof Any g E Hn(Xpl, q can be extended to a section g(z) of the local 
system over U = U - P , which may be multi-valued. But by the nilpotent 
orbit theorem [35], exp( -~N)g(z) extends to a single-valued section. 

Since w is single-valued, 

\ exp ( _l~!: N)g(Z)lw) 
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will also be single-valued. Now gj E (1m N n - 1) Q9 <C implies that N 2 gj = 0 for 
j = 1, 2. The series needed for exp in this case is thus rather simple: 

exp ( - l~!; N) gj(z) = (I _ l~!; N) gj(z) 

logz 
= gj(z) - 2ni N gj(z). 

We conclude that 

and l w - m l~!; io w = \ gl (z) - l~!; mgo(z)i w) 

are single-valued functions. Q.E.D. 

Corollary. Let Yo' Yl be the homology classes determined by an adapted basis 
go' gl of (1m N n - 1) Q9 <C, as in the proposition. The function 

1 J W ._ m Y1 
t.- J W 

Yo 

gives a natural parameter on the universal cover fj of U called a quasi-canonical 
parameter, and 

27Cil q:= e 
gives a natural coordinate on U called a quasi-canonical coordinate. These are 
independent of the choice of w. We have 

d 2. d 
dt = nl q dq , 

either of which serves as a local generator of the sheaf ec( -log B) . 
Moreover, under a change of adapted basis (go' gl) 1----7 (ago' bgo + cg1), we 

have 
c b d 27Cib/mc m 1----7 - m , t 1----7 t + - , an q 1----7 e q. a mc 

Therefore, t is uniquely determined up to an additive constant, and q is uniquely 
determined up to a multiplicative constant. 

We can normalize further if we take the integral structure into account. We 
call go' gl a good integral basis of 1m N n- 1 if go is a generator of 1m N n n 
Hn(Xpl, Z), and gl is an indivisible element of Hn(Xpl, Z) which can be 
written as gl = ±Nn- 1 g for some A> 0 and some g E Hn(Xpl, Z) such that 
(gol g) = 1 . Notice that a good integral basis is an adapted basis. 

The next lemma, which is based on some work of Friedman and Scattone 
[17], will be proved in Appendix A. 
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Lemma 2. Good integral bases exist. IJ go' gl and g~, g; are good integral 
bases, then 

I I 
gl = k go + (-1) gl' 

I I 
go = (-1) go' 

Jor some integers k and I. . 

Since (T - /)2 = 0 on ImNn- 1 ,we have the simple formula N = T - I on 
that space. In particular, when restricted to 1m N n- I , the map N is defined 
over the integers. Thus, if go' gl is a good integral basis and we write N gl = 
mgo ' then m is an integer. Note that m is independent of the choice of good 
integral basis. 

Corollary. Let go' gl be a good integral basis, and define an integer m by 
N gl = mgo' Then the quasi-canonical coordinate q Jormed from this basis is 
unique up to multiplication by an Imlth root oJunity. 

We call q a canonical coordinate and t a canonical parameter under these 
circumstances. These are actually unique if Iml = 1; in this case, we say that 
the monodromy is small. 

3. THE q-EXPANSION OF THE YUKAWA COUPLING 

The first example of the construction of the previous section is furnished by 
the classical theory of periods of elliptic curves. Let n : i!P --+ U be a family of 
smooth elliptic curves over a punctured disk U which can be completed to a 
family it : i!P --+ U with a singular fiber over the boundary point P = U - U . 
The point P is called a cusp. 

Let pi E U, and suppose there is a symplectic basis Yo' YI of the first 
homology group HI (Xpl ,Z) such that the monodromy Tp acts as 

Tp(Yo) = Yo' 
Tp(Y I ) = Yo + YI · 

(The basis is symplectic if Yo n YI = 1.) This easily implies that P is a max-
imally unipotent boundary point, that YO' YI is the homology basis dual to a 
good integral basis, and that m = 1 . 

For a fixed holomorphic one-form w on Xpl, the numbers (fyo W, IYI w) 
were classically known as the periods of the elliptic curve X p" By varying the 
one-form, the periods can be normalized to take the form (1, r). The invariant 
way to formulate this is to define 

Iy W 
r=-I-Iyo W 

This function r can be regarded as a map from the universal cover f) of U to 
the upper half-plane JHI. (The image lies in the upper half-plane since the basis 
is symplectic.) 
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The monodromy transformation Tp induces the map 

(6) 

Thus, functions f defined on U pull back to functions f on U which are 
invariant under (6). It follows that any such function has a Fourier series 

f-( ) - ~ 21Cinr 
'l" - L...ane . 

nEZ 

If expressed in terms of the natural coordinate q = e21Cir on U, this is called a 
q-expansion, and it takes the form 

If f has a hoi om orphic extension across the cusp P, the only terms appearing 
in this sum are those with n 2: 0 . 

What we have shown in §2 is that this classical construction generalizes to 
functions defined near a maximally unipotent boundary point P of a Calabi-
Yau moduli space (at least when that space has dimension one). Fix a good 
integral basis, which determines a canonical coordinate q and a canonical pa-
rameter t. The monodromy transformation Tp acts on t by t ~ t + 1 . 
Therefore, any function f defined near P which is holomorphic at P will 
have a q-expansion 

00 

n=O 
which can also be regarded as a Fourier series 

00 

l(t) = L ane21Cint 
n=O 

in t. These expressions are unique if Iml = 1 , i.e., if the monodromy is small. 
In order to obtain a q-expansion of the Yukawa coupling, we must normalize 

that coupling. But there is a natural choice of normalization determined by 
a good integral basis. To see this, note that any good integral basis go' gl 
determines a section (fyo)-I E HO(U, (g-n)) by 

for any nonzero W E H O ( U , g-n). By Lemma 2, a change in good inte-
gral basis may change the sign of (J )-1 , but the induced section Uy ) -2 E 

Yo 0 

HO(U, (g-n)®2) is independent of the choice of good integral basis. 
We thus have a very natural normalization for the Yukawa map in U. We 

also have a natural parameter t with which to compute, such that d / d t is 
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a generator of 8 u( -log B). So we can define the mathematically normalized 
Yukawa coupling K t ... t by the formula 

Kt".t = K (:t ' ... , :t) . (lJ -2 

This mathematically normalized Yukawa coupling Kl...t is an intrinsically de-
fined function on a neighborhood of the boundary. (It is canonically determined 
by our choice of maximally unipotent boundary point; however, it could con-
ceivably change if the boundary point changes.) The function Kl...t therefore 
has a q-expansion 

(7) 

which can also be regarded as a Fourier expansion in the parameter t: 

(8) 

These expressions are unique if the monodromy is small. 

4. MIRROR SYMMETRY 

In this section I will attempt to outline the mirror symmetry principle in 
mathematical terms, and describe some of the mathematical evidence for it. I 
apologize to physicists for my misrepresentations of their ideas, and I apologize 
to mathematicians for the vagueness of my explanations. 

Gepner [18] has conjectured that there is a one-to-one correspondence be-
tween N = 2 superconformal field theories with c = 3n, and Calabi-Yau 
manifolds X of dimension n equipped with some "extra structure" S. (This 
correspondence can be realized concretely in a number of important cases using 
work of Greene, Vafa, and Warner [20], Martinec [27, 28], and others.) A pre-
cise geometric description of the extra structure S has not yet been given. It 
appears to involve specifying a class in u/r, where U c HI, I (X) is some open 
set, and r is some group of automorphisms of U. What is clear about this 
extra structure is how to perturb it: first-order deformations of S correspond 
to elements of HI, I (X) . 

An instructive example is the case in which X is an elliptic curve. In that 
case, as shown in [12] and [1], one takes U C HI, I (X) ~ C to be the upper 
half-plane, and r = SL(2, Z). Thus, the extra structure S represents a point 
in the j-line, or equivalently, a choice of a second elliptic curve. 

We specialize now to the case of dimension n = 3. The space of first-
order deformations of the superconformal field theory can be decomposed as3 

3It has become common in the physics literature to use H 2 o I (Xl in place of HI (ex 1 , largely 
because of the success of Candelas [5] and others in computing Yukawa couplings on H 2

o I. In 
order to get the correct answer in families, however, we must return to the original analysis of 
Strominger and Witten [37] and work with Yukawa couplings on HI(exl. The point is that 
while HI (ex land H 2, I (X) are isomorphic for a Calabi-Yau threefold, they are not canonically 
isomorphic. This affects the bundles over the moduli space to which they belong. 
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HI(8x ) EEl HI(Ox)' with HI(8x ) = H- I , I(X) corresponding to first-order 
deformations of the complex structure on X, and HI (Ox) = HI, I (X) corre-
sponding to first-order deformations of the extra structure S. These first-order 
deformations are called marginal operators in the physics literature. 

Specifying a superconformal field theory of this type also determines cubic 
forms Sym3 H-I,I(X) -+ C and Sym3 HI,I(X) -+ C. The cubic form on 
H-I,I is the Yukawa coupling described in §1, normalized in a way specified 
by the physical theory. From a mathematical point of view, this is determined 
by the variation of Hodge structure plus the choice of normalization. This cubic 
form depends on the complex structure of X, but should be independent of 
the "extra structure" S. 

The cubic form on HI, I lacks a precise geometric description at present. By 
work of Dine, Seiberg, Wen, and Witten [13] and Distler and Greene [14], it is 
known to have an expression of the form 

00 

(9) ""' -kR 
~ake , 
k=O 

where R is a complex parameter which depends on the extra structure S . The 
real part of R is related to the "radius" in the physical theory in such a way 
that ReR -+ 00 is the "large radius limit." The leading coefficient ao is the 
natural topological product Sym3 HI, I (X) -+ C. (In other words, the cubic 
form on HI,I approaches the topological product in the large radius limit.) 
The higher coefficients ak are supposed to be related in some well-defined way 
to the numbers of rational curves of various degrees on the generic deformation 
of X (assuming those numbers are finite). One of the important unsolved 
problems in the theory is to determine this relationship precisely. 

As was first noticed by Dixon [15, p. 118], and later developed by Lerche, 
Vafa, and Warner [25] and others, the identification of one piece of the super-
conformal field theory with HI, I (X) and the other piece with H-I,I (X) ~ 
H2, I (X) involves an arbitrary choice, and the theory is also consistent with 
making the opposite choice. Moreover, as we will describe below, there are 
examples in which the Gepner correspondence can be realized for both choices. 
But except in the very rare circumstance that the Hodge numbers hi, I and 
h2 , I = dim H- I , 1 coincide, changing the choice necessarily involves changing 
the Calabi-Yau threefold X. The new threefold X' will have a completely 
different topology from the old: in fact, the Hodge diamond is rotated by 90° 
when passing from one to the other. 

This leads to a mathematical version of the mirror symmetry conjecture: 
To each pair (X, S) consisting of a Calabi-Yau threefold X together with 
some extra structure S there should be associated a "mirror pair" (X', S') 
which comes equipped with natural isomorphisms H- I , I (X) 2:. HI, I (Xi) and 
HI, I (X) 2:. H- 1, I (X') that are compatible with the cubic forms. 
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Even in this rather imprecise4 form, the conjecture as stated is easily refuted: 
There exist rigid Calabi-Yau threefolds, which have h2 , I = 0 (see Schoen [36] 
for an example). Any mirror of such a threefold would have hI, I = 0, and 
so could not be Kahler. A potentially correct version of the conjecture, even 
less precise, begins: "To most pairs (X, S) , including almost all of interest in 
physics, there should be associated .... " 

It is tempting to speculate that the theory should be extended to non-Kahler 
threefolds as in Reid's fantasy [31], which might rescue the conjecture in its 
original form. Alternatively, Aspinwall and Liitken [2] suggest that the Gep-
ner correspondence (and hence the mathematical version of mirror symmetry) 
should only hold in the large radius limit. Since no "limits" can be taken in the 
rigid case, a mathematical mirror construction would not be expected there. 

To be presented with a conjecture which has been only vaguely formulated 
is unsettling to many mathematicians. Nevertheless, the mirror symmetry phe-
nomenon appears to be quite widespread, so it seems important to make further 
efforts to find a precise formulation. In fact, there are at least four major pieces 
of mathematically significant evidence for mirror symmetry. 

(i) Greene and Plesser [19] have studied a case in which there are very 
solid physics arguments which tie the pair (X, S) to the corresponding 
superconformal field theory (as predicted by Gepner). The Calabi-Yau 
threefolds in question are desingularizations of quotients of Fermat-type 
weighted hypersurfaces by certain finite groups (including the trivial 
group). For each pair (X, S) of this type, Greene and Plesser were 
able to find the corresponding mirror pair (X', S/) by analyzing the 
associated superconformal field theories. It turns out that the pairs are 
related by taking quotients: X' is a desingularization of XjG for some 
symmetry group G. By deformation arguments, the mirror symmetry 
phenomenon persists in neighborhoods of (X, S) and (X', X'). Roan 
[34] subsequently gave a direct mathematical proof that the predicted 
isomorphisms between H- I , I and HI, I groups exist in this situation. 

(ii) Candelas, Lynker, and Schimmrigk [7] have computed the Hodge num-
bers for a large class of Calabi-Yau threefolds which are desingulariza-
tions of hypersurfaces in weighted projective spaces. They put some ex-
tra constraints on the form of the equation, and found about 6000 types 
of three folds satisfying their conditions. The set of pairs (h I, I , h2 , I) 

obtained from these examples is very nearly (but not precisely) symmet-
ric with respect to the interchange hI, I ...... h2 ' I . Since there is no a priori 
reason that the mirror of a desingularized weighted hypersurface should 
again be a desingularized weighted hypersurface, this is consistent with 
the conjecture and supports it quite strongly. 

4Among the things not properly defined from a mathematical viewpoint, we must include the 
normalization of the Yukawa coupling, the complex parameter R (which depends on the "extra 
structure" S), and the higher coefficients (Jk . 
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(iii) Aspinwall, Liitken, and Ross [3] (see also [1]) have carefully studied a 
particular mirror pair (X, S), (X', S') . They put X in a family 2' = 
{XI} which has a degenerate limit as t approaches O. Some heuristics 
were used in choosing the family 2', in an attempt to ensure that the 
limit as t -> 0 would correspond to the "large radius limit" for the 
mirror (X' , S'). Aspinwall et al. then computed the limiting behavior 
of the cubic form on H- I , I (XI) , and showed that it coincides with the 
topological product a~ on HI, I (X'), as predicted by the conjecture. 
(Actually, there is a normalization factor which was not computed, but 
the agreement is exact up to this normalization.) 

(iv) The work of Candelas, de la Ossa, P. Green, and Parkes [6] being de-
scribed in this paper goes further, and computes the other coefficients 
in an asymptotic expansion. This will be explained in more detail in 
the next two sections. 

5. THE QUINTIC-MIRROR FAMILY 

We now describe a certain one-parameter family of Calabi-Yau threefolds 
constructed by Greene and Plesser [19], as amplified by Candelas et al. [6]. 
Begin with the family of quintic threefolds (2''1/ = {x E p4 I P'I/(x) = O} defined 
by the polynomial 

5 5 

P'I/ := L X~ - 51f1 II X k · 
k=1 k=1 

Let #5 be the multiplicative group of 5th roots of unity, and let 

5 

G := { a = (ai' ... , a 5) E (#5)5 I II a k = 1 } 
k=1 

act on p4 by a: Xi f-+ a i • Xi' There is a "scalar" subgroup of order 5 which 
acts trivially; let G = G / {scalars} be the image of G in Aut(P4). G is a group 
which is abstractly isomorphic to (71/571)3. 

The action of G preserves the threefold (2''1/ ; let ry: (2''1/ -> (2''I//G denote the 
quotient map. For each pair of distinct indices i, j, the set of 5 points 

Sij := {x; + xJ = 0, Xg = 0 for all £ ! i, j} C (2''1/ 

is preserved by G, and there is a group Gij C G of order 25 which is the 
stabilizer of each point in the set. The image Si]/G is a single point Pi] E 

(2''I//G. In addition, for each triple of distinct indices i, j, k, the curve 

C ijk := {x; + xJ + x~ = 0, Xg = 0 for all £ ! i, j, k} C (2''1/ 

is preserved by G. There is a subgroup G ijk C G of order 5 which is the 
stabilizer of every point in C - ry-I({p ij , Pjk' Pik})' The image Cijk = Cijk/G 
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is a smooth curve in t2'1f//G. The action of G is free away from the curves 

Cijk · 
The quotient space t2'1f//G has only canonical singularities. At most points of 

Cijk ' the surface section of the singularity is a rational double point of type A4 , 

but at the points Pij the singularity is more complicated: three of the curves of 
A4-singularities meet at each Pij' By a theorem of Markushevich [26, Prop. 4] 
and Roan [32, Prop. 2], these singularities can be resolved to give a Calabi-Yau 
manifold ~. There are choices to be made in this resolution process; we 
describe a particular choice in Appendix B. (By another theorem of Roan [33, 
Lemma 4], any two resolutions differ by a sequence of flops.) 

For any 0: E 115 ' there is a natural isomorphism between t2'alf//G and t2'1f//G 
induced by the map 

(10) 

This extends to an isomorphism between ~If/ and ~,provided that we have 
resolved singularities in a compatible way. We verify in Appendix B that the 
choices in the resolution can be made in a sufficiently natural way that this 
isomorphism is guaranteed to exist. 

Thus, A.:= ",5 is a more natural parameter to use for our family. We define 
the quintic-mirror family to be 

PT¥J:} -; {A.} ~ C. 

This has a natural compactification to a family over pi , with boundary B = 
pi _ C = {oo}. 

The computation made by Candelas et al. [6] shows that the monodromy at 00 

is maximally unipotent, and that m = 1 , i.e., that the monodromy is small. (We 
explain in Appendix C how this follows from [6].) The key computation in [6] 
is an explicit calculation of the q-expansion of the mathematically normalized 
Yukawa coupling. Candelas et al. find that the q-expansion begins: 

(11 ) 271:il 471:il 
K ttt = 5 + 2875e + 4876875e + .... 

In fact, they have computed at least 10 coefficients. 

6. MIRROR MOONSHINE? 

Greene and Plesser [19], using arguments from superconformal field theory, 
have identified the family of quintic-mirrors {W ¥J:} as the "mirror" of the 
family of smooth quintic threefolds {Lz }. Note that the Hodge numbers satisfy 

hl,I(L) = 1, 
hl,I(W) = 101, 

h2 ,I(L) = 101, 
h2 , I(W) = 1. 

According to the mirror symmetry conjecture, varying the complex structure in 
the family {W ¥J:} should correspond to varying the "extra structure" S on a 
fixed smooth quintic threefold L . These are both one-parameter variations. 
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Candelas et al. [6], arguing from physical principles, propose an identification 
of the Yukawa coupling of the quintic-mirrors with the cubic form on HI, I (L) . 
In terms of the mathematical framework established here, that identification 
involves four assertions: 

(i) The isomorphism H- I ',(7r) -+ HI,I(L) defined by dldt I--> [H] 
(where did! E H- I ,I(7r) is the vector field defined by the canonical 
parameter t, and [H] E HI, I (L) is the class of a hyperplane section of 
L) is the isomorphism which is predicted by the mathematical version 
of the mirror symmetry conjecture. 

(ii) The mathematically normalized Yukawa coupling K ttt on H- I ,I(7r) 
is the correctly normalized coupling predicted by the physical theory. 

(iii) The parameter R from the physical theory coincides with -2nit, where 
t is again the canonical parameter. Thus, the q-expansion of K ttt in 
equation (8) will coincide with the asymptotic expansion in R given by 
equation (9), evaluated on the generator H®3 of Sym3 H- I , I (L) . 

(iv) There is an explicit formula for the coefficients Gk ' as described below. 

To explain the formula for Gk , let nk denote the number of rational curves of 
degree k on the generic quintic threefold. Candelas et al. propose the formula 

(12) 
00 k3 21likt 
""' n k e 21lit 3 41lit 

K ttt = 5 + ~ 1 _ e21likt = 5 + nle + (2 n 2 + nl)e +"', 
k=1 

which implicitly incorporates their expressions for the higher coefficients. (The 
first two expressions are GI (H®3) = n" G2(H®3) = 23n 2 + n l .) 

In the large radius limit 1m t -+ 00, the right-hand side of equation (12) 
approaches 5. This agrees with the mirror symmetry conjecture,5 since the 
topological intersection form on L is determined by its value on the standard 
generator H , viz., H3 = 5 . 

Moreover, by comparing equations (11) and (12), we can predict values for 
the numbers nk • The first two predictions are n l = 2875, which was classically 
known to be the number of lines on a quintic threefold, and n2 = 609250, 
which coincides with the number of conics on a quintic threefold computed by 
Katz [22]. And the third prediction n3 = 317206375 has just been verified by 
Ellingsrud and Stmmme [I6]! 

How was formula (12) arrived at? I am told that the field theory computation 
necessary to derive this formula can be done in principle, but seems to be too 
hard to carry out in practice at present. So Candelas et al. give a rough derivation 
of this formula based on some assumptions. Why do they believe the resulting 
formula to be correct? I quote from [6]: 

5This should not be taken as strong evidence in favor of the conjecture, since the definitions 
have been carefully designed to ensure that this limit would be correct. 
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These numbers provide compelling evidence that our assump-
tion about the form of the prefactor is in fact correct. The 
evidence is not so much that we obtain in this way the correct 
values for n l and n2 , but rather that the coefficients in eq. (11) 
have remarkable divisibility properties. For example asserting 
that the second coefficient 4,876,875 is of the form 23 n2 + nl 
requires that the result of subtracting n l from the coefficient 
yields an integer that is divisible by 23 . Similarly, the result of 
subtracting n l from the third coefficient must yield an integer 
divisible by 33 . These conditions become increasingly intricate 
for large k. It is therefore remarkable that the nk calculated 
in this way turn out to be integers. 

I would add that it is equally remarkable that the coefficients in eq. (11) them-
selves turn out to be integers: I know of no proof that this is the case. 

These arguments have a rather numerological flavor. I am reminded of the 
numerological observations made by Thompson [38] and Conway and Norton 
[11] about the j-function and the monster group. At the time those papers were 
written, no connection between these two mathematical objects was known. 
The q-expansion of the j-function was known to have integer coefficients, and 
it was observed that these integers were integral linear combinations of the 
degrees of irreducible representations of the monster group. This prompted 
much speculation about possible deep connections between the two, but at the 
outset all such speculation had to be characterized as "moonshine" (Conway 
and Norton's term). 

The formal similarities to the present work should be clear: a q-expansion of 
some kind is found to have integer coefficients, and these integers then appear to 
be integral linear combinations of another set of integers, which occur elsewhere 
in mathematics in a rather unexpected location. Perhaps it is too much to hope 
that the eventual explanation will be as pretty in this case. 

ApPENDIX A: PROOFS OF THE MONODROMY LEMMAS 

Let 
Wo C WI C ... C W2n = Hn(Xp ' , Q) 

be the monodromy weight filtration at P, and let 
o I n-I n F :J F :J ... :J F :J F :J (0). 

be the limiting Hodge filtration at P. (We refer the reader to [21] or [35] 
for the definitions.) By a theorem of Schmid [35], these induce a mixed Hodge 
structure on the cohomology. Note that since N n+1 = 0, we have Wa = 1m N n • 

Moreover, if ( I ) denotes the polarization on the cohomology, we have 

(Nxl y) = -(xl Ny). 
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Recall also that the polarization is symmetric or skew-symmetric, depending on 
the dimension n: 

(xly) = (_I)n(ylx). 

Proof of Lemma 1. Since w: is the monodromy weight filtration, N n induces 
an isomorphism 

(13) 

These spaces cannot be zero, since (Tp - I)n =1= o. On the other hand, since 
F n+1 = (0), the Hodge structure on W2n/W2n-l must be purely of type (n, n). 
It follows that F n /(Fn n W2n- 1) = W2jW2n _ 1• But since F n is one-dimensional, 
this can only happen if F n C »';n - »';n-l ' and W2n/W2n_l has dimension 
one. By the isomorphism (13), WO = ImNn has dimension one as well. 

Next, note that »';n-l/W2n-2 has a Hodge structure with two types, (n, 
n - 1) and (n - 1, n), each of which must determine a space of half the 
total dimension. But since F n n »';n-l = (0), nothing nonzero can have type 
(n, n - 1). It follows that »';n~I/W2n-2 = (0), and that W1/Wo = (0) as well 
(using the isomorphism induced by N n- 1). 

Thus, the image of N n- I comes entirely from the map 
n-l N : W2n ----+ W2• 

That this image is two-dimensional is easily seen: Wo is one-dimensional, and 
there is an isomorphism 

n-I n-l 
N : »';n/W2n-l ----+ (ImN )/Wo' 

which shows that (1m N n- I ) / Wo is also one-dimensional. Q.E.D. 

In order to prove Lemma 2, we must first prove 

Lemma 3 (Essentially due to Friedman and Scattone [17]). 
Good integral bases exist, and form bases of the two-dimensional Q-vector space 
ImNn - l . If go' gl = tNn-lg is a good integral basis. then 

( 14) 1 n-I 
IN x = -(gllx)go + (golx)gl 

for all x E Hn(Xpl, Q). 

Proof Choose either generator of 1m N n n H n (X pi, Z) as go. We claim that 
(go)1. = W2n - 2 . Let h E W2n - W2n- 2 ' so that N n h = ago with a =1= o. Then 
for any x we have 

n n nh n ) (N xlh) = (-1) (xiN ) = (-1) a(xlgo . 

Thus, »';n-2 = ker N n c (go)1. . Since both W2n- 2 and (go)l. are codimension 
one subspaces of W2n ' they must be equal. 
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By Poincare duality, the polarization on H n (X pi , /Z) is a unimodular pairing. 
Thus, there exists an element g E Hn(Xpl , /Z) such that (gol g) = 1. Since g fI. 
(go).L ,neither N n- I g nor N n g is zero. There is thus a unique positive rational 
number A such that gl = ±Nn- I g is an indivisible element of Hn(Xpl, /Z) . It 
is clear that go' gl forms a basis for the Q-vector space 1m N n- I • 

We next claim that (gIl g) = ±(Nn - I gl g) = O. For, on the one hand, moving 
the N's to the right side one at a time we have 

while, on the other hand, the symmetry of the polarization says that 

(Nn- I gl g) = (_l)n (gl N n- I g). 

It follows that (Nn- I gl g) = O. 
To prove equation (14), we first compute in general 

n-I n-I n-I n-I (N xl g) = (-1) (xl N g) = (-1) (XIAgl ) = -A(gllx). 

Now suppose that x E W2n - 2 . Then N n- I x E 1m N n , which implies that 
N n - I x = ago for some a. Thus, in this case 

n-I (N xl g) = (agol g) = a, 

which implies that a = -A(gll x) . Thus, 

1 n-I 1 
IN x = Iago = (gIl x)go 

and since (xl go) = 0, the formula follows in this case. 
To prove the formula in general, note that 

(golx - (golx)g) = 0 

for any x, so that x - (gol x)g E (go).L = W2n - 2 • Thus, applying the previous 
case we find 

1 n-I 1 n-I ( ) 1 n-I ( ) IN x = IN x - (gol x}g + IN (gol x}g 

( I ) 1 n-I 
= - gl (x - (golx}g) go + (golx}I N g 

= -((gllx) - (golx}(gll g»)go + (golx}gl 
= -(gllx)go + (golx}gl 

since (gIl g) = O. Q.E.D. 

We can now prove Lemma 2. 

Proof of Lemma 2. The only generators of 1m N n n Hn(Xpl, /Z) are ±go' so 
we must have g~ = (_I)f go for some f E /Z. Write g; = f. N n - I g' for some 
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g' with (g~1 g') = 1 , and let k = -(g,1 g') E Z. Then by Lemma 3, 

1 n-l , " p 
IN g =-(gt!g)go+(golg)g, =kgo +(-1) g,. 

Thus, ±Nn-' g' E Hn(Xpl , Z). We claim that it must be an indivisible element 
there. For if ).~ N n-' g' is integral for some f.i E Z with f.i > 1 , then reversing 
the roles of g and g' in the argument above shows that ).~ N n-' g is also 
integral, a contradiction. 

, k l Thus, g, = go + (-1) g,. Q.E.D. 

ApPENDIX B: RESOLUTIONS OF CERTAIN QUOTIENT SINGULARITIES 

In this appendix, we will verify that the singularities of the variety t§",/G 
can be resolved in a natural way. The choices we make are sufficiently natu-
ral that the isomorphism between t§a",/G and t§",/G automatically lifts to an 
isomorphism between the desingularizations. 

We choose to follow the strategy outlined by Reid [30] for resolving canonical 
threefold singularities. In brief, we perform the following steps: 

Step I: Blow up the "non-cDV points" of t§",/G. (These are exactly the 
10 points Pi) E t§",/G which are the images of points in t§", with 
stabilizer of order 25.) 

Step IIA: Blow up the singular locus. (It has pure dimension one.) 
Step lIB: Blow up the pure dimension one part of the singular locus. (60 

isolated singular points (lying over the Pi}) were created by step 
IIA, and these are not to be blown up yet.) 

Step III: Obtain a projective small resolution of the remaining 60 singular 
points by blowing up the union of the proper transforms of the 
exceptional divisors from step I. 

Step III involved an additional choice, since Reid's strategy does not specify 
how one should obtain small resolutions. 

When stated in this form, it is clear that the process we have described is suffi-
ciently natural that it is preserved under any isomorphism. It yields a projective 
(hence Kahler) variety ~ with trivial canonical bundle. 

In the remainder of this appendix, we will show that the process above has 
the properties mentioned during its description, and that it gives a resolution 
of singularities of t§",/G. 

We first observe the effect of the process on the curve Cijk , away from the 
points Pi}' Pjk' Pik' Steps I and III are concentrated at those special points 
(and their inverse images) and so these steps do not affect Cijk . Steps IIA and 
lIB simply blow up Cijk and then the residual singular curve in the exceptional 
divisor. But two blowups are precisely what is required to resolve a rational 
double point of type A4 , as is easily verified from its equation xy + z5 =:= O. 

To verify that the process has the correct properties at the points Pi}' we use 
the language of toroidal embeddings (see [23] or [29]). It suffices to consider the 
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point P45' Since (XI' x2 ' x3 ) serve as coordinates in a neighborhood of any of 
the points in 17- 1 (P45) ,the singularity P45 E r2''f//G is isomorphic to a neighbor-
hood of the origin in ([3/ G45 , where G45 ~ {(ol ' °2 , ( 3) E (#5)3 I 11 Ok = I} 
acts diagonally on ([3 . 

Let M be the lattice of G45 -invariant rational monomials in ([(XI' x2 ' x 3 ) . 

We embed M in ~3 bl 

M - {( ) J[])3 I 5m l 5m2 5m3 "'( )G45 } - m l , m 2 , m3 E ~ XI X 2 X3 E 'l..- XI ' X 2 ' X3 . 

It is easy to see that {( I , 0, 0), (0, 1, 0), 0" ~, ~)} is a basis of the lattice 
M C ~3. Let 

N = {ii E ~3 1m· ii E Z for all m E M} 
3 

= {(nl ' n2, n3) E Z I n l + n2 + n3 == 0 mod 5} 

be the dual lattice, and let (J C NIT? be the convex cone generated by (5, 0, 0) , 
(0, 5, 0) , and (0, 0, 5). According to the theory of toroidal embeddings, 

([3/ G45 = Specqx l , X 2 ' x31G45 = Va' 

where Va is the toric variety associated to (J. 

Each blowup of Va corresponds to a decomposition of (J into a fan. The 
effects of the blowups in our process is illustrated in Figure 1, which depicts 
the intersection of the fan with {(n l , n2, n3) E NIT? I l:.nk = 5} after each 
step. The exceptional divisors D jj of each blowup are indicated by solid dots, 
labeled by the corresponding elements ii EN. (The fact that the stated blowups 
produce the illustrated decomposition is a straightforward calculation with the 
toroidal embeddings.) 

We can now see in detail what happens in our process. In step I, we blow up 
P45 , and produce three exceptional divisors Dc3 , I, I)' Dcl , 3, I) , and DCI , 1,3) . 

The remaining singular locus at this stage consists of the original three curves 
of A4-singularities together with three new curves of AI-singularities: the inter-
sections of pairs of exceptional divisors. In step IIA, we blow up the union of 
these six curves, and produce nine new exceptional divisors: one corresponding 
to each curve of AI-singularities (such as D c2 , I ,2))' and two corresponding to 
each curve of A4-singularities (such as D c4 ,0, I) and DCI ,0,4))' The remaining 
singularities consist of six isolated points (corresponding to the Quadrilaterals 
in the figure) and three curves: the intersections of the corresponding pairs of 
exceptional divisors from the original A4-singularities. 

In step lIB, we blow up these three curves, producing six new exceptional 
divisors, two for each curve (such as D(3,0,2) and D(2.0,3))' This leaves the 
six isolated singular points; but blowing up the proper transforms of D(3, I, I) , 

6This nonstandard embedding is chosen in order to make the coordinates of the dual lattice be 
integers. 
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(0,5,0) 

(5,0,0) (0,0,5) (4,0,1) (1,0,4) 

Step I Step IIA 

(3,0,2) (2,0,3) 

Step lIB Step III 

FIGURE 1. The steps in the toroidal resolution. 

D(I, 3, I) , and D(I, 1,3) (which are now disjoint) in step III resolves those final 
singular points. 

ApPENDIX C: THE MONODROMY OF THE QUINTIC-MIRRORS 

In this appendix we will explain how to use the calculation of Candelas et 
al. [6] to verify the monodromy statements about the family of quintic-mirrors 
which we made in §5. 

Candelas et al. begin by choosing an explicit basis {A I , A2 , B 1 ' B2} for 
the homology H3 (~ , Z) of a quintic-mirror, valid in some simply-connected 

region in {'" I ",5 =1= 0, I} which includes the wedge {'" I 0 < arg '" < 2n / 5} . 
This basis is symplectic, Le., Aa n Bb = oa band Aa n Ab = Ba n Bb = O. 
The corresponding dual basis of H3(~, Z) is denoted by {aI' a2, pI, p2}. 
Fixing a particular holomorphic 3-form n (which depends on ",), we then get 
period functions 
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These fit into a period vector 

By doing some integrals, calculating the differential equation satisfied by a pe-
riod function, and manipulating certain hypergeometric functions, the authors 
of [6] are able to obtain explicit formulas for the four period functions. This 
allows them to calculate the monodromy of the periods around various paths. 

Notice that we are working in the 'I'-plane at present. The family {~} has 
singular fibers at 'I' = 0 and at 'I' = Q for all fifth roots of unity Q; there is 
also a singular fiber over 'I' = 00. Candelas et al. calculate the monodromy on 
the periods induced by transport around 'I' = 1 , which they represent in matrix 
form by Il --+ Til. They also compute, for I'l'l < 1 , the effect on the periods 
of the isomorphism ~'I/ ~ ~ given in equation (10), representing this by 
Il(Q'I') = AIl('I'). 

We need to know the monodromy around 00 in the A-plane, where A = '1'5 . 

A moment's thought will convince the reader that this is represented by 

and that (AT)-5 describes the monodromy around 00 in the 'I'-plane (as as-
serted in [6]). Let Tp = T- I A-I. 

The explicit calculations from [6] for the matrices A and Tare: 

(-9 -3 5 -i) (~ 
0 0 

~) A- 0 1 0 
T= 

1 0 
- -20 -5 11 5 ' 0 1 

-15 5 8 -4 0 0 

from which it easily follows that 

( 0 l 
0 

~) , (~ 
0 0 

~) 
2 0 0 0 3 0 0 

(log(Tp)) = 0 10 0 (log(Tp)) = 0 0 
-10 0 5 -5 0 

In particular, the index of nilpotency of 10g(Tp) is maximal. 
(We note in passing that at A = 1 the monodromy is represented by T, and 

since (T - 1)2 = 0, the index is not maximal there. In addition, at A = 0 
the monodromy is represented by A. This monodromy matrix is only quasi-
unipotent, with A 5 = I unipotent; the index of A 5 is not maximal either. 
It follows that A = 00 is the only possible boundary point with maximally 
unipotent monodromy.) 
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In order to construct a good integral basis go' gl' we compute 

Using the relations 

( 15) 

this implies 
2 2 I 

(log(Tp)) (fJ ) = 10a l + 5fJ , 
3 2 

(log(Tp)) (fJ ) = 5a2 · 

2 Thus, we may take go = a 2 · If we then choose g = fJ so that (gol g) 
2 I (a2 1 fJ ) = 1, we get A = 5 and gl = 2a l + fJ . It follows that 

1 3 2 
(log(Tp))(gl) = S(log(Tp)) (fJ ) = a 2 = go' 

which implies that m = 1. Using the relations (15) again, it follows that 
Yo = B2 , YI = 2BI - AI. Thus, t = (J2B'-A Q)/(JA2 Q). , 

We need to verify that our parameter t is the same one used by Candelas et 
al. Their parameter is defined in [6, (5.9)] by t = Wi /W2 , with Wi and vi 
determined by a pair of equations 

II=NfI, 

where7 

( ~l and N= (-H j !) 
w 2 0 1 0 0 

II= 

represent a vector II which is a sort of mirror analogue of the period vector fI, 
and a particular integral symplectic matrix N, respectively. (Sadly, the symbols 
fI and II were inadvertently identified in [6, section 5.2]; the correct symbols 
can be deduced from the brief version of [6] in Physics Letters.) It follows that 

as required. 

7We have taken the liberty of correcting a typographical error in N when transcribing it from 
[6]. 
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ABSTRACT. We give a mathematical account of a recent string theory calcula-
tion which predicts the number of rational curves on the generic quintic three-
fold. Our account involves the interpretation of Yukawa couplings in terms of 
variations of Hodge structure, a new q-expansion principle for functions on 
the moduli space of Calabi-Yau manifolds, and the "mirror symmetry" phe-
nomenon recently observed by string theorists. 

DEPARTMENT OF MATHEMATICS, DUKE UNIVERSITY, DURHAM, NORTH CAROLINA 27706 
E-mail address: drm@math.duke.edu 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


	0080225
	0080226
	0080227
	0080228
	0080229
	0080230
	0080231
	0080232
	0080233
	0080234
	0080235
	0080236
	0080237
	0080238
	0080239
	0080240
	0080241
	0080242
	0080243
	0080244
	0080245
	0080246
	0080247
	0080248
	0080249

