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Mirror Symmetry for Stable Quotients Invariants

Yaim Cooper & Aleksey Zinger

Abstract. The moduli space of stable quotients introduced by Mar-

ian, Oprea, and Pandharipande provides a natural compactification of

the space of morphisms from nonsingular curves to a nonsingular pro-

jective variety and carries a natural virtual class. We show that the

analogue of Givental’s J -function for the resulting twisted projective

invariants is described by the same mirror hypergeometric series as

the corresponding Gromov–Witten invariants (which arise from the

moduli space of stable maps), but without the mirror transform (in the

Calabi–Yau case). This implies that the stable quotients and Gromov–

Witten twisted invariants agree if there is enough “positivity,” but not

in all cases. As a corollary of the proof, we show that certain twisted

Hurwitz numbers arising in the stable quotients theory are also de-

scribed by a fundamental object associated with this hypergeometric

series. We thus completely answer some of the questions posed by

Marian, Oprea, and Pandharipande concerning their invariants. Our

results suggest a deep connection between the stable quotients invari-

ants of complete intersections and the geometry of the mirror families.

As in Gromov–Witten theory, computing Givental’s J -function (es-

sentially a generating function for genus 0 invariants with one marked

point) is key to computing stable quotients invariants of higher genus

and with more marked points; we exploit this in forthcoming papers.

1. Introduction

Gromov–Witten invariants of a smooth projective variety X are certain counts of

curves in X that arise from integrating against the virtual class of the moduli space

of stable maps. These are known to possess striking structures, which are often

completely unexpected from the classical point of view. For example, the genus 0

Gromov–Witten invariants of a quintic threefold, that is, a degree 5 hypersurface

in P4, are related by a so-called mirror formula to a certain hypergeometric series.

This relation was explicitly predicted in [2] and mathematically confirmed in [8]

and [13] in the 1990s. In fact, the prediction of [2] has been shown to be a special

case of mirror symmetry for certain twisted Gromov–Witten invariants of projec-

tive complete intersections of sufficiently small total multidegree [7; 14]; these

invariants are associated with direct sums of line bundles (positive and negative)

over Pn. This relation is often described by assembling two-point Gromov–Witten

invariants (but without constraints on the second marked point) into a generating
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function, known as Givental’s J -function. In most cases (in particular, when the

anticanonical class of the corresponding complete intersection is at least twice

the hyperplane class), the J -function is precisely equal to the appropriate hyper-

geometric series. In certain borderline cases, they differ by a simple exponential

factor. In the remaining Calabi–Yau cases, the correcting factors are more com-

plicated, and the two power series also differ by a change of the power series

variable, known as the mirror map.

The gauged linear σ -model of [23] counts rational curves in toric complete

intersections by integrating over the natural toric compactifications of the spaces

of rational maps into the ambient toric variety. Based on physical considerations,

it is shown in [19] that the (three-point) Gromov–Witten and gauged linear σ -

model generating functions for the well-studied quintic threefold are related by

the mirror map, with a minor additional adjustment; see [19, (4.24), (4.28)], for

example. This suggests that the mirror map relating the A (symplectic) side of

mirror symmetry to the B (complex geometric) side may be more reflective of the

choice of curve counting theory on the A-side than of the mirror symmetry itself.

Unfortunately, from the mathematical standpoint, the compactifying spaces in the

gauged linear σ -model do not possess many of the nice properties of the spaces

of stable maps and require fixing a complex structure on the domain of the maps.

The moduli spaces of stable quotients Qg,m(X,d), constructed in [17], provide

an alternative to the moduli spaces of stable maps Mg,m(X,d) for compactifying

spaces of degree d morphisms from genus g nonsingular curves with m marked

points to a projective variety X (with a choice of polarization).1 In this paper,

we show that the genus 0 stable quotients theory, just like the gauged linear σ -

model, of Calabi–Yau projective complete intersections is related to their genus

0 Gromov–Witten theory essentially by the mirror map; see (1.9). Based on the

approaches of [24] and [26], this relationship between the stable quotients and

Gromov–Witten invariants should extend to higher genera; we expect to confirm

this in the genus 1 case in the future. In [27], it is shown that the genus 0 three-

point stable quotients and Gromov–Witten invariants of Calabi–Yau projective

complete intersection threefolds are related precisely by the mirror map. The mir-

ror formula obtained in this paper is central to the computations in [27]. Thus, our

paper provides further evidence that the mirror map is an entirely A-side feature

and suggests that the stable quotients theory may be the curve counting theory

most directly related to the B-side of mirror symmetry. In light of the results in

this paper, we also hope that certain properties of the mirror map, such as the in-

tegrality of its coefficients [15; 12], can be explained geometrically by comparing

the stable quotients and Gromov–Witten invariants.

The moduli space Qg,m(Pn−1, d) consists of equivalence classes of tuples

(C, y1, . . . , ym;S ⊂ Cn ⊗OC),

1These “compactifications” Qg,m(X,d) and Mg,m(X,d) are generally just compact spaces contain-

ing the spaces of morphisms; the latter need not be dense in Qg,m(X,d) or Mg,m(X,d).
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where (C, y1, . . . , ym) is a genus g nodal curve with m marked points, and S ⊂

Cn ⊗ OC is a subsheaf of rank 1 and degree −d , that satisfy certain stability

and torsion properties; see Section 2. This moduli space is smooth if g = 0 or

(g,m) = (1,0) and carries a virtual class in all cases. There is a natural surjective

contraction morphism

c : Mg,m(Pn−1, d) −→ Qg,m(Pn−1, d),

which is not injective for d > 0 and generally contracts a lot of boundary strata.

For example, Q1,0(P
n−1, d) is irreducible and has Picard rank just 2; see [5, The-

orem 4.1]. Thus, the moduli spaces of stable quotients are much more efficient

compactifications than the moduli spaces of stable maps. However, in the case

X = Pn−1 and (g,m) = (0,3), this compactification is larger than the gauged

linear σ -model compactification; see [19, Section 3.7].

As in the case of stable maps, there are evaluation morphisms

evi : Qg,m(Pn−1, d) −→ Pn−1, i = 1,2, . . . ,m,

corresponding to each marked point.2 There is also a universal curve

π : U −→ Qg,m(Pn−1, d)

with m sections σ1, . . . , σm (given by the marked points) and a universal rank 1

subsheaf

S ⊂ Cn ⊗OU .

For each i = 1,2, . . . ,m, let

ψi = −π∗(σ
2
i ) ∈ H 2(Qg,m(Pn−1, d))

be the first Chern class of the universal cotangent line bundle, as usual. By [17,

Theorems 2,3], the moduli space Qg,m(Pn−1, d) carries a canonical virtual class,

and

c∗[Mg,m(Pn−1, d)]vir = [Qg,m(Pn−1, d)]vir. (1.1)

Since the evaluation morphisms evi and the ψ -classes on the two moduli spaces

commute with c and c∗, respectively, (1.1) implies that the (untwisted) Gromov–

Witten and stable quotients invariants of Pn−1, obtained by integrating pull-backs

of cohomology classes on Pn−1 by evi and powers of ψ -classes against the two

virtual classes, are the same; see [17, Theorem 3]. In this paper, we study twisted

invariants in genus 0, arising from sums of line bundles over Pn−1; they relate

invariants of projective complete intersections to the invariants of the ambient

space.

For l ∈ Z≥0 and l-tuple a = (a1, . . . , al) ∈ (Z∗)l of nonzero integers, let

|a| =

l∑

k=1

|ak|, 〈a〉 =
∏

ak>0

ak

/ ∏

ak<0

ak, a! =
∏

ak>0

ak!, aa =

l∏

k=1

a
|ak |
k ,

ℓ±(a) = |{k : (±1)ak > 0}|, ℓ(a) = ℓ+(a) − ℓ−(a).

2The morphism evi sends a tuple (C, y1, . . . , ym, S) to the line Syi
⊂ Cn if S is viewed as a line

subbundle of the trivial rank n bundle over C.
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If in addition n ∈ Z+ and d ∈ Z+, let

V̇
(d)
n;a =

⊕

ak>0

R0π∗(S
∗ak (−σ1)) ⊕

⊕

ak<0

R1π∗(S
∗ak (−σ1))

−→ Q0,2(P
n−1, d), (1.2)

where π : U −→ Q0,2(P
n−1, d) is the universal curve; this sheaf is locally free.

The Euler class of the analogue of this sheaf in Gromov–Witten theory describes

the genus 0 invariants of the total space of the vector bundle
⊕

ak<0

OPn−1(ak)|X(ak)ak>0
−→ X(ak)ak>0

, (1.3)

where X(ak)ak>0
⊂ Pn−1 is a nonsingular complete intersection of multidegree

(ak)ak>0. The situation in the stable quotients theory is similar. If ak > 0 for all

k, then the moduli space Q0,2(Xa, d) carries a natural virtual fundamental class,

and the resulting invariants of Xa are described by the Euler class of (1.2); see [4,

Theorem 4.5.2] and [4, Proposition 6.2.3], respectively.

The stable quotients analogue of Givental’s J -function is given by

Zn;a(x, h̄, q) ≡ 1 +

∞∑

d=1

qdev1∗

[
e(V̇

(d)
n;a)

h̄ − ψ1

]
∈ H ∗(Pn−1)[[h̄−1, q]], (1.4)

where ev1 : Q0,2(P
n−1, d) −→ Pn−1 is as before, and x ∈ H 2(Pn−1) is the hy-

perplane class. For example, if |a| = n, then this power series is equivalent to the

set of numbers∫

Q0,2(P
n−1,d)

e(V̇
(d)
n;a)ψ

p

1 ev∗
1x

n−2−p, d ∈ Z+,0 ≤ p ≤ n − 2.

By [4, Proposition 6.2.3],

SQ
(d)
n;a(τp(xn−2−ℓ(a)−p),1)

≡

∫

[Q0,2(Xn;a,d)]vir
ψ

p

1 ev∗
1x

n−2−ℓ(a)−p

= 〈a〉

∫

Q0,2(P
n−1,d)

e(V̇
(d)
n;a)ψ

p

1 ev∗
1x

n−2−p ∀p ≤ n − 2 − ℓ(a); (1.5)

in particular, these numbers vanish if p ≤ ℓ−(a)−2 (because xn−p = 0 on (1.3) if

p ≤ ℓ+(a)). The usual Givental’s J -function, which we denote by ZGW
n;a (x, h̄, q),

is defined as in (1.4) with Q0,2(P
n−1, d) replaced by M0,2(P

n−1, d).

The hypergeometric series describing Givental’s J -function in Gromov–

Witten theory is given by

Yn;a(x, h̄, q) ≡

∞∑

d=0

qd

∏
ak>0

∏akd
r=1(akx + rh̄)

∏
ak<0

∏−akd−1
r=0 (akx − rh̄)

∏d
r=1(x + rh̄)n

∈Q[x][[h̄−1, q]]. (1.6)
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In the pure Calabi–Yau case, that is, ak > 0 for all k and |a| = n, we also need the

power series

In;a(q) =

⎧
⎪⎨
⎪⎩

1 if |a| − ℓ−(a) < n,

Yn;a(0,1, q) =
∑∞

d=0 qd
∏l

k=1(akd)!/(d!)n

if |a| − ℓ−(a) = n.

(1.7)

By the following theorem, the stable quotients analogue of Givental’s J -function

is also described by the hypergeometric series (1.6), but in a more straightforward

way.

Theorem 1. If l ∈ Z≥0, n ∈ Z+, and a ∈ (Z∗)l are such that |a| ≤ n, then the

stable quotients analogue of Givental’s J -function satisfies

Zn;a(x, h̄, q) =
Yn;a(x, h̄, q)

In;a(q)
∈ H ∗(Pn−1)[[h̄−1, q]]. (1.8)

Corollary 1. If l ∈ Z≥0, n ∈ Z+, and a ∈ (Z∗)l are such that |a| ≤ n and |a| −

ℓ−(a) ≤ n − 2, then

ZGW
n;a (x, h̄, q) = Zn;a(x, h̄, q).

Corollary 2. If l ∈ Z≥0, n ∈ Z+, and a ∈ (Z∗)l are such that |a| = n, then

ZGW
n;a (x, h̄,Q) = e−Jn;a(q)x/h̄Zn;a(x, h̄, q), where Q = q · eJn;a(q), (1.9)

with the standard change of variables q −→ Q of Gromov–Witten theory de-

scribed by

〈a〉Jn;a(q) =

∞∑

d=1

qdSQ
(d)
n;a(τ0(x

n−2−ℓ(a)),1). (1.10)

If |a| ≤ n and |a|−ℓ−(a) ≤ n−2, (1.8) also holds with Zn;a(x, h̄,Q) replaced by

ZGW
n;a (x, h̄,Q); see [7, Theorem 9.1] for the ℓ−(a) = 0 case and [6, Theorem 5.1]

for the ℓ−(a) ≥ 1 case. Thus, Corollary 1 is an immediate consequence of Theo-

rem 1.

If |a| = n and ℓ−(a) ≤ 1, the Gromov–Witten analogue of (1.8) involves a

mirror transform between the power series variable on the left-hand side (now

denoted by Q) and the power series variable q on the right-hand side. It takes the

form

ZGW
n;a (x, h̄,Q) = e−Jn;a(q)x/h̄ Yn;a(x, h̄, q)

In;a(q)
, where Q = q · eJn;a(q), (1.11)

for an explicit power series Jn;a(q) ∈ q · Q[[q]]; see [7, Theorem 11.8] for the

ℓ−(a) = 0 case and [6, Theorem 5.1] for the ℓ−(a) = 1 case. Along with (1.11),

Theorem 1 immediately implies the ℓ−(a) ≤ 1 case of (1.9); the ℓ−(a) ≥ 2 case

of (1.9), where Jn;a(q) = 0, follows from Corollary 1. By (1.4) and (1.5), the

right-hand side of (1.10) is the coefficient of (h−1)0 in Zn;a(x, h̄, q) times 〈a〉. By

the string relation of Gromov–Witten theory [11, Section 26.3], the coefficient of

(h−1)0 in ZGW
n;a (x, h̄, q) is zero. Thus, (1.10) follows from (1.9).
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Table 1 Some genus 0 GW- and SQ-invariants of the quintic three-

fold X(5)

d
GW

(d)
5;(5)

(τ1(x),1)

d
SQ

(d)
5;(5)

(τ0(x2),1)
SQ

(d)
5;(5)

(τ1(x),1)

d
−

SQ
(d)
5;(5)

(τ2(1),1)

2

= −
GW

(d)
5;(5)

(τ2(1),1)

2

1 2,875 3,850 2,875 2,875

2
4,876,875

8
3,589,125

19,660,875
8

13,731,875
8

3
8,564,575,000

27
16,126,540,000

3
76,579,948,750

27
175,851,761,875

27

4
15,517,926,796,875

64
19,736,572,853,125

2
801,135,363,990,625

192
1,123,498,525,946,875

576

5 229,305,888,887,648 20,310,770,587,807,020
14,274,970,288,322,171

2
125,303,832,133,435,229

48

In the remaining case, that is, |a| = n − 1 and ℓ−(a) = 0, the Gromov–Witten

analogue of (1.8) is the relation

ZGW
n;a (x, h̄, q) = e−a!q/h̄ Yn;a(x, h̄, q)

In;a(q)
; (1.12)

see [7, Theorem 10.7]. Theorem 1 implies that (1.12) holds with Yn;a(x, h̄, q) re-

placed by Zn;a(x, h̄, q). The same comparisons apply to the equivariant versions

of Givental’s J -function for the stable quotients invariants, computed by Theo-

rem 3, and of Givental’s J -function for Gromov–Witten invariants computed by

[7, Theorems 9.5, 10.7, 11.8] in the ℓ−(a) = 0 case and [6, Theorem 5.3] in the

ℓ−(a) ≥ 1 case. Thus, the Gromov–Witten and stable quotients invariants are re-

lated essentially by the mirror map. By [27, Theorem 1], the primary (without

ψ -classes) genus 0 three-point Gromov–Witten and stable quotients invariants of

Calabi–Yau complete intersection threefolds are related precisely by the change

of variables Q −→ q , and the rescaling In;a(q), that is, the exponential factor in

(1.9), can be seen as an artifact of the presence of h̄.

Table 1 lists a few Gromov–Witten and stable quotients invariants of the quin-

tic threefold X(5) ⊂ P4 obtained from (1.11) and (1.8), respectively. In the first

column of this table,

GW
(d)
5;(5)

(τp(x2−p),1) ≡

∫

[M0,2(X(5),d)]vir
ψ

p

1 ev∗
1x

2−p

= 5

∫

M0,2(P
4,d)

e(V̇
(d)
5;(5)

)ψ
p

1 ev∗
1x

3−p,

where V̇
(d)
5;(5)

is the usual analogue of (1.2) over M0,2(P
4, d). By the string, dila-

ton, and divisor relations [11, Section 26.3],

GW
(d)
5;(5)

(τ1(x),1)

d
= deg[M0,0(X(5), d)]vir = −

GW
(d)
5;(5)

(τ2(1),1)

2
. (1.13)
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These relations are obtained using the forgetful maps

M0,2(X(5), d)
f2

−→M0,1(X(5), d)
f1

−→ M0,0(X(5), d),

which have no analogues in the stable quotients theory. The middle term in (1.13)

does not have an analogue in the stable quotients theory either, whereas the ana-

logues of the outer terms in (1.13) are not equal, as Table 1 illustrates. The num-

bers GWd(τ0(x
2),1) vanish since the classes ev∗

1x
3 on M0,2(P

4, d) are the pull-

backs by the forgetful morphisms f1 of the classes ev∗
1x

3 and M0,1(P
4, d). The

analogous stable quotients invariants do not vanish; see (1.10).

It is interesting to observe that the numbers dSQd(τ0(x
2),1) are integers if

(n,a) = (5, (5)) and d ≤ 1,000; as noted in [27, Section 1], the same is the case

for the numbers dSQd(τ0(x), τ0(x)). Two-point GW-invariants of such form are

equal to three-point primary GW-invariants, which are integers, when the target

is a Calabi–Yau, due to symplectic topology considerations; see [18, Section 7.3]

and [21], for example. Since the stable quotients invariants are purely algebro-

geometric objects, the apparent integrality of the primary invariants dSQd(·, ·)

suggests that there should be an algebro-geometric reason behind the integrality

of these numbers, as well as of the closely related three-point GW-invariants.

As in the case of mirror symmetry for Gromov–Witten invariants, Theorem 1

follows immediately from its Tn-equivariant version, Theorem 3 in Section 4. The

latter is proved using the Atiyah–Bott localization theorem [1] on Q0,2(P
n−1, d),

which reduces the equivariant version of the power series (1.4), the power series

Zn;a(x, h̄, q) defined by (4.1) below, to a sum of rational functions over certain

graphs. As in the case of Gromov–Witten invariants, Zn;a(x, h̄, q) is C-recursive

in the sense of Definition 5.1, with the collection C of structure coefficients given

by (5.6), and satisfies the self-polynomiality condition of Definition 5.2; the same

is the case of the equivariant version of the power series (1.6), the power series

Yn;a(x, h̄, q) defined by (4.2). Thus, the two power series

Yn;a(x, h̄, q),Zn;a(x, h̄, q) ∈ H ∗
T
(Pn−1)[[h̄−1, q]]

are determined by their mod (h̄−1)2 part; see Proposition 5.3. It is straightforward

to determine the mod (h̄−1)2-part of the power series Yn;a. The mod (h̄−1)2-part

of Givental’s J -function in Gromov–Witten theory is 1 in all cases for a simple

geometric reason. This approach thus confirms the analogue of Theorem 1 in

Gromov–Witten theory and thus mirror symmetry for the genus 0 Gromov–Witten

invariants of projective complete intersections.

In the stable quotients theory, the situation with the mod (h̄−1)2-part of Zn;a

is different. It is still 1, for dimensional reasons, if |a| ≤ n − 2. If |a| = n − 1,

the mod (h̄−1)2-part of Zn;a vanishes in the q-degrees 2 and higher; it is straight-

forward to see that the coefficient of q1 mod (h̄−1)2 is a!/h̄ if ℓ−(a) = 0 and 0

otherwise.3 So, in these cases, the proof of mirror symmetry for Gromov–Witten

invariants carries over to the stable quotients invariants. However, in the Calabi–

3Even this is not necessary due to our approach to the Calabi–Yau case.
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Yau case, |a| = n, the mod (h̄−1)2-part of Zn;a is not zero in all q-degrees if

ℓ−(a) ≤ 1, and we see no a priori reason for the coefficients of positive q-degrees

to vanish even if ℓ−(a) ≥ 2. Thus, the proof of mirror symmetry for Gromov–

Witten invariants cannot directly carry over to the stable quotients invariants in

the Calabi–Yau cases.

Since the coefficients of q0 on the two sides of the identity in Theorem 3 are the

same (both are 1), it is equivalent to the equality of the auxiliary coefficients Yr
i (d)

and Zr
i (d) in the recursions (5.4) for Yn;a and Zn;a, respectively. By a direct

algebraic computation, the coefficients Yr
i (d) are expressible in terms of certain

residues of Y ; see Lemma 5.4. Analyzing the relevant graphs, one can show that

the coefficients Zr
i (d) are likewise expressible in terms of certain residues of Z ,

but in a different way; see Proposition 6.1. Thus, for each pair (n,a) with |a| ≤ n,

the identity in Theorem 3 is equivalent to certain identities for the residues of

Yn;a; see Lemma 8.2. Since Yn;a = Zn;a whenever |a| ≤ n − 2, these identities

hold whenever |a| ≤ n − 2. By the proof of Proposition 8.3, the validity of these

identities is independent of n, and thus they hold for all pairs (n,a). This yields

Theorem 3 and thus Theorem 1.

The relations of Lemma 8.2 involve twisted Hurwitz numbers arising from cer-

tain moduli spaces of weighted stable curves M0,2|d ; see Section 2. These rela-

tions in turn uniquely determine the twisted Hurwitz numbers, even equivariantly,

in terms of a key power series associated with Yn;a; see Theorems 2 and 4 in Sec-

tions 2 and 4, respectively. Based on developments in Gromov–Witten theory, one

would expect these closed formulas to be a key ingredient in computing twisted

genus 1 stable quotients invariants and thus answering yet another question raised

in [17].

The proof that the equivariant version of Givental’s J -function in Gromov–

Witten theory satisfies the self-polynomiality condition of Definition 5.2 uses the

localization theorem [1] to compute integrals over the moduli space M0,2(P
1 ×

Pn−1, (1, d)). Our proof that the equivariant stable quotients analogue of Given-

tal’s J -function satisfies the self-polynomiality condition uses the moduli space of

stable pairs of quotients Q0,2(P
1 × Pn−1, (1, d)) in a similar way; see Section 7.

This moduli space is a special case of the moduli space

Qg,m(Pn1−1 × · · · × Pnp−1, (d1, . . . , dp))

of stable p-tuples of quotients, which we describe in Section 2 by extending the

notion of stable quotients introduced in [17].

The Gromov–Witten analogues of Theorem 1 and its equivariant version, The-

orem 3 in Section 4, extend to the so-called concavex bundles over products of

projective spaces, that is, vector bundles of the form

l⊕

k=1

O
Pn1−1×···×P

np−1(ak;1, . . . , ak;p) −→ Pn1−1 × · · · × Pnp−1,
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where for each given k = 1,2, . . . , l, either ak;1, . . . , ak;p ∈ Z≥0 or ak;1, . . . ,

ak;p ∈ Z−. The stable quotients analogue of these bundles are the sheaves

l⊕

k=1

S
∗ak;1

1 ⊗ · · · ⊗ S
∗ak;p
p

−→ U −→ Q0,2(P
n1−1 × · · · × Pnp−1, (d1, . . . , dp)) (1.14)

with the same condition on ak;i , where Si −→ U is the universal subsheaf cor-

responding to the ith factor; see Section 2. In this case, we compare two power

series

Yn1,...,np;a(x1, . . . , xp, h̄, q1, . . . , qp)

∈Q[x1, . . . , xp][[h̄−1, q1, . . . , qp]], (1.15)

Zn1,...,np;a(x1, . . . , xp, h̄, q1, . . . , qp)

∈ H ∗(Pn1−1 × · · · × Pnp−1)[[h̄−1, q1, . . . , qp]], (1.16)

where x1, . . . , xp ∈ H ∗(Pn1−1 × · · ·×Pnp−1) are the pullbacks of the hyperplane

classes by the projection maps. The coefficient of q
d1

1 · · ·q
dp
p in (1.16) is defined

by the same pushforward as in (1.4), with the degree d of the stable quotients

replaced by (d1, . . . , dp). The coefficient of q
d1

1 · · ·q
dp
p in (1.15) is given by

∏

ak;1≥0

∑p
s=1 ak;sds∏

r=1

( p∑

s=1

ak;sxs + rh̄

) ∏

ak;1<0

−
∑p

s=1 ak;sds−1∏

r=0

( p∑

s=1

ak;sxs − rh̄

)

/ p∏

s=1

ds∏

r=1

(xs + rh̄)ns .

The condition |a| ≤ n should be replaced by the conditions

|a1;s | + · · · + |al;s | ≤ ns ∀s = 1, . . . , p.

Our proof of Theorem 3 (and thus of Theorem 1) extends directly to this situation;

we will comment on the necessary modifications in each step of the proof.

Mirror formulas for the two-point versions of (1.4) and (4.1), that is, with ev1

and (h̄−ψ1) replaced by ev1 × ev2 and (h̄1 −ψ1)(h̄2 −ψ2), as well as their gen-

eralizations to products of projective spaces, can now be readily obtained using

the approaches of [25; 20] in Gromov–Witten theory; see [27]. They are related

to the corresponding formulas in Gromov–Witten theory in the same ways as the

one-point formulas; see the paragraph following Theorem 1. Similarly to devel-

opments in Gromov–Witten theory, these two-point genus 0 formulas are one of

the key steps in computing twisted genus 1 stable quotients invariants.

A notable feature of the mirror formula of Theorem 1 and its two-point

analogue is that they are invariant under replacing (n, (a1, . . . , ak)) by (n + 1,
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(a1, . . . , ak,1)); their extensions to products of projective spaces have a similar

feature.4 This is consistent with [4, Proposition 6.4.1].

2. Moduli Spaces of Stable Quotients

We begin this section by reviewing the notion of stable quotients for products of

projective spaces. Propositions 2.1 and 2.2 describing moduli spaces of such ob-

jects are a special case of [3, Theorems 3.2.1, 4.0.1] and precisely the statement of

[3, Example 7.2.6], respectively. We include proofs of these statements, extend-

ing [17] from the case of projective spaces, for the sake of completeness, since [3]

treats the general toric case and is thus more involved. We then introduce related

moduli spaces of weighted curves. We conclude this section with a closed formula

for twisted Hurwitz numbers arising from integrals over these moduli spaces of

curves; see Theorem 2.

By a nodal genus g curve we will mean a reduced connected scheme C over

C of pure dimension 1 with at worst nodal singularities and h1(C,OC) = g. Let

C∗ ⊂ C denote the nonsingular locus of such a curve. A quasi-stable genus g m-

marked curve is a tuple (C, y1, . . . , ym) consisting of a nodal genus g curve and

distinct points yi ∈ C∗. A (corank 1) quasi-stable quotient of the trivial rank n sheaf

on such a curve is a rank 1 subsheaf S ⊂ Cn ⊗ OC such that the corresponding

quotient sheaf Q, given by

0 −→ S −→ Cn ⊗OC −→ Q −→ 0,

is locally free on (C − C∗) ∪ {y1, . . . , ym}, that is, at the nodes and markings of C.

A tuple (S1, . . . , Sp) of quasi-stable quotients on (C, y1, . . . , ym) is stable if the

Q-line bundle

ωC(y1 + · · · + ym) ⊗ (S∗
1 ⊗ · · · ⊗ S∗

p)ε −→ C

is ample for all ε ∈ Q+; this implies that 2g − 2 + m ≥ 0. An isomorphism

φ : (C, y1, . . . , ym, S1, . . . , Sp) −→ (C′, y′
1, . . . , y

′
m, S′

1, . . . , S
′
p)

between tuples of quasi-stable quotients is an isomorphism φ : C −→ C′ such that

φ(yi) = y′
i ∀i = 1, . . . ,m, φ∗S′

j = Sj ⊂ Cnj ⊗OC ∀j = 1, . . . , p.

The automorphism group of any stable tuple of quotients is finite.

Proposition 2.1. If g,m,d1, . . . , dp ∈ Z≥0 and n1, . . . , np ∈ Z+, the moduli

space

Qg,m(Pn1−1 × · · · × Pnp−1, (d1, . . . , dp)) (2.1)

parameterizing the stable p-tuples of quotients

(C, y1, . . . , ym, S1, . . . , Sp), (2.2)

with h1(C,OC) = g, Si ⊂ Cni ⊗ OC , and deg(Si) = −di , is a separated and

proper Deligne–Mumford stack of finite type over C and carries a canonical two-

term obstruction theory.

4This replacement does not change the total space of the vector bundle (1.3).
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Proof. The construction of Qg,m(Pn−1, d) in [17] carries through with minor

changes. We sketch the modification here.

I. Construction of the moduli space. Let g,m,d1, . . . , dp satisfy

2g − 2 + m + ε(d1 + · · · + dp) > 0 ∀ε > 0.

Let d = d1 + · · · + dp . Fix a stable p-tuple of quotients (C, y1, . . . , ym, S1, . . . ,

Sp), where

0 −→ Si −→ Cni ⊗OC −→ Qi −→ 0. (2.3)

By assumption, the line bundle

Lε = ωC(y1 + · · · + ym) ⊗ (S∗
1 ⊗ · · · ⊗ S∗

p)ε

is ample for all ε > 0. Fix ε = 1/(d +1) and let f = 5(d +1). By [17, Lemma 5],

the line bundle L
f
ε is very ample and has no higher cohomology. Therefore,

h0(C,Lf
ε ) = 1 − g + 5(d + 1)(2g − 2 + m) + 5d

is independent of the choice of the stable p-tuple of quotients. Let

V = H 0(C,Lf
ε )∗.

The line bundle L
f
ε induces an embedding ι : C →֒ P(V ). Let Hilb denote the

Hilbert scheme of curves in P(V ) of genus g and degree

5(d + 1)(2g − 2 + m) + 5d = degLf
ε .

Each stable quotient gives rise to a point in

H = Hilb × P(V )m,

where the last factors record the locations of the markings y1, . . . , ym.

Points in H correspond to tuples (C, y1, . . . , ym). Denote by H′ ⊂ H the quasi-

projective subscheme consisting of the tuples such that

(i) the points y1, . . . , ym are contained in C,

(ii) the curve (C, y1, . . . , ym) is quasi-stable.

Let π : U ′ −→ H′ be the universal curve over H′. For i = 1, . . . , p, let

Quot(ni, di) −→H′

be the π -relative Quot scheme parameterizing rank ni − 1 degree di quotients

0 −→ Si −→ Cni ⊗OC −→ Qi −→ 0

on the fibers of π . Denote by Q the fiber product

Q = Quot(n1, d1) ×H′ · · · ×H′ Quot(np, dp) −→ H′

and by Q′ ⊂ Q the locally closed subscheme consisting of the tuples such that

(iii) Qi is locally free at the nodes and at the marked points of C,

(iv) the restriction of OP(V )(1) to C agrees with the line bundle

(ωC(y1 + · · · + ym))5(d+1) ⊗ (S∗
1 ⊗ · · · ⊗ S∗

p)5.
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The action of PGL(V ) on H induces actions on H′ and Q′. A PGL(V )-orbit

in Q′ corresponds to a stable quotient up to isomorphism. By stability, each orbit

has finite stabilizers. The moduli space (2.1) is the stack quotient [Q′/PGL(V )].

II. Separateness. We prove that the moduli stack (2.1) is separated by the valu-

ative criterion. Let (�,0) be a nonsingular pointed curve and �0 = �−{0}. Take

two flat families of quasi-stable pointed curves

X j −→ �, y
j

1 , . . . , y
j
m : � −→ X j ,

and two flat families of stable quotients

0 −→ S
j
i −→ Cni ⊗OXi

−→ Q
j
i −→ 0,

with j = 1,2 and i = 1, . . . , p. Assume that the two families are isomorphic away

from the central fiber. By [17, Section 6.2], an isomorphism between these two

families over � − 0 extends to the families of curves X j −→ � in a manner pre-

serving the sections and hence extends to each pair of families of stable quotients.

III. Properness. We prove that the moduli stack (2.1) is proper, again by the

valuative criterion. Let

π0 : X 0 −→ �0, y1, . . . , ym : �0 −→X 0

carry a flat family of stable p-tuples of quotients

0 −→ Si −→Cni ⊗OX 0 −→ Qi −→ 0.

By [17, Section 6.3], each stable quotient individually extends, possibly after

base-change, and hence the p-tuple extends. In particular, the blowup procedure

in [17, Section 6.3] yielding the sheaf S̃ in [17, (18)] can be applied to each sheaf

Si separately to yield sheaves S̃i over a flat family X̃ −→ � so that the corre-

sponding quotients Q̃i are locally free at the nodes and at the marked points of

the central fiber. After a base change and altering each quotient sheaf at finitely

points, we obtain a flat family of quasi-stable quotients Q′′
i over a flat family as

in [17, (19)]. The final blowdown step of [17, Section 6.3] is applied with the

unstable genus 0 curves P such that S′′
i |P = OP for all i = 1, . . . , p and the line

bundle L obtained from the one in [17] by replacing 
r(S′′) with S′′
1 ⊗ · · · ⊗ S′′

p .

The resulting p-tuple of push-forward sheaves over the central fiber is then stable.

IV. Obstruction theory. We follow the argument in [17, Section 3.2]. Let

φ : C −→ Mg,m be the universal curve over the Artin stack of pointed curves,

and Q(n, d) −→ Mg,m be the relative Quot scheme of rank n − 1 degree d quo-

tients of Cn ⊗OC along the fibers of φ. Denote by

Q′(n, d) ⊂ Q(n, d)

the locus consisting of locally free subsheaves and by

ν : Q′ ≡ Q′(n1, d1) ×Mg,m
· · · ×Mg,m

Q′(np, dp) ×Mg,m
C −→ Mg,m

the fiber product. The universal sequence of sheaves

0 −→ S −→ Cn ⊗OC −→ Q −→ 0
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over Q′(n, d) ×Mg,m
C gives rise to a universal sequence

0 −→

p⊕

i=1

Si −→

p⊕

i=1

(Cni ⊗OC) −→

p⊕

i=1

Qi −→ 0

over Q′ ×Mg,m
C. Let π : Q′ ×Mg,m

C −→ Q′ be the projection map. By [22,

Proposition 4.4.4] with

K =

p⊕

i=1

Si, H =

p⊕

i=1

Cni ⊗OC, and F =

p⊕

i=1

Qi

the relative deformation–obstruction theory of ν : Q′ −→ Mg,m is given by

RHomπ (S1,Q1) ⊕ · · · ⊕ RHomπ (Sp,Qp) =

p⊕

i=1

Rπ∗Hom(Si,Qi);

the equality above holds because each Si is a locally free sheaf. By [16, Section 2],

Rπ∗Hom(Si,Qi) can be resolved by a two-step complex of vector bundles. Thus,

νA : Qg,m(Pn1−1 × · · · × Pnp−1, (d1, . . . , dp)) −→Mg,m

admits a two-term relative deformation–obstruction theory. Along with the

smoothness of Mg,m, this induces an absolute two-term deformation–obstruction

theory of the moduli space (2.1); see [9, Appendix B]. �

Proposition 2.2 ([3, Example 7.2.6]). If g = 0 or (g,m) = (1,0) and d1, . . . , dp,

n1, . . . , np ≥ 1, the moduli space

Qg,m(Pn1−1 × · · · × Pnp−1, (d1, . . . , dp)) (2.4)

is a nonsingular irreducible Deligne–Mumford stack of the expected dimension.

Proof. By part IV in the proof of Proposition 2.1, the moduli space (2.4) is smooth

at a point (C, y1, . . . , ym, S1, . . . , Sp) if

p⊕

i=1

Ext1(Si,Qi) = 0. (2.5)

Since each Si is locally free, this is the case if

H 1(S∗
i ⊗ Qi) = 0 (2.6)

for each i = 1, . . . , p. From the cohomology long exact sequence for the short

exact sequence

0 −→OC −→ Cni ⊗ S∗
i −→ Qi ⊗ S∗

i −→ 0

we see that (2.6) holds if H 1(S∗
i ) = 0.

If g = 0, C is a rational curve, and thus there are no special line bundles on C

that have a nonnegative degree on every component of C. If (g,m) = (1,0), then

C is either a nonsingular curve of genus 1 or a cycle of rational curves; thus, there

are no special line bundles of positive degree on C that have nonnegative degree

on each component of C. In either case, we conclude that H 1(S∗
i ) = 0 for each i =
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1, . . . , p, and so (2.5) holds. Thus, the moduli space (2.4) is smooth at every point

and hence is a nonsingular Deligne–Mumford stack of the expected dimension.

It remains to show that it is also irreducible. Let U denote the open locus in

the moduli space where the domain curve is smooth. In the g = 0 case, U is dom-

inated by the product of projective spaces (P1)m ×
∏

i Proj(H 0(O(di))
ni ). In the

(g,m) = (1,0) case, U is dominated by the bundle
∏

i Proj(H 0(O(dp))ni ) over

M1,1, where p is the marked point. Thus, U is irreducible in both cases. Since

the moduli space (2.4) is unobstructed, U is dense in (2.4), and thus the latter is

also irreducible. �

A stable tuple as in (2.2) such that each quotient sheaf Qi = Cni ⊗ OC/Si is

locally free corresponds to a stable morphism

C −→ Pn1−1 × · · · × Pnp−1

with marked points y1, . . . , ym. As in the p = 1 case considered in [17, Sec-

tion 3.1], there are evaluation morphisms

evi : Qg,m(Pn1−1 × · · · × Pnp−1, (d1, . . . , dp)) −→ Pn1−1 × · · · × Pnp−1

with i = 1,2, . . . ,m. There is also a universal curve

π : U −→ Qg,m(Pn1−1 × · · · × Pnp−1, (d1, . . . , dp))

with m sections σ1, . . . , σm and universal rank 1 subsheaves Si ⊂ Cni ⊗OU .

We will also need a certain moduli space of weighted curves; this is the sta-

ble quotients counterpart of the Deligne–Mumford moduli space of stable genus

g marked curves in Gromov–Witten theory. A d-tuple of flecks on a quasi-

stable m-marked curve (C, y1, . . . , ym) is a d-tuple (ŷ1, . . . , ŷd) of points of

C∗ − {y1, . . . , ym}. Such a tuple is stable if the Q-line bundle

ωC(y1 + · · · + ym + ε(ŷ1 + · · · + ŷd)) −→ C

is ample for all ε ∈ Q+; this again implies that 2g − 2 + m ≥ 0. An isomorphism

φ : (C, y1, . . . , ym, ŷ1, . . . , ŷd) −→ (C′, y′
1, . . . , y

′
m, ŷ′

1, . . . , ŷ
′
d)

between curves with m marked points and d flecks is an isomorphism φ : C −→

C′ such that

φ(yi) = y′
i ∀i = 1, . . . ,m, φ(ŷj ) = ŷ′

j ∀j = 1, . . . , d.

The automorphism group of any stable curve with m marked points and d flecks

is finite.

Proposition 2.3. If g,m,d ∈ Z≥0, then the moduli space Mg,m|d parameterizing

the stable genus g curves with m marked points and d flecks,

(C, y1, . . . , ym, ŷ1, . . . , ŷd), (2.7)

is a nonsingular, irreducible, proper Deligne–Mumford stack.

Proof. The moduli space Mg,m|d is the moduli space of weighted pointed stable

curves, defined in [10, Section 2], with m points of weight 1 and d points of weight

1/d (if d > 0). Thus, this proposition is a special case of [10, Theorem 2.1]. �



Mirror Symmetry for Stable Quotients Invariants 585

Any tuple as in (2.7) induces a quasi-stable quotient

OC(−ŷ1 − · · · − ŷd) ⊂ OC ≡ C1 ⊗OC .

For any ordered partition d = d1 + · · · + dp with d1, . . . , dp ∈ Z≥0, this corre-

spondence gives rise to a morphism

Mg,m|d −→ Qg,m(P0 × · · · × P0, (d1, . . . , dp)).

In turn, this morphism induces an isomorphism

φ : Mg,m|d/Sd1
× · · · × Sdp

∼
−→ Qg,m(P0 × · · · × P0, (d1, . . . , dp)), (2.8)

with the symmetric group Sd1
acting on Mg,m|d by permuting the points

ŷ1, . . . , ŷd1
, Sd2

acting on Mg,m|d by permuting the points ŷd1+1, . . . , ŷd1+d2
,

and so on.

There is again a universal curve

π : U −→Mg,m|d

with sections σ1, . . . , σm and σ̂1, . . . , σ̂d . Let

ψi = −π∗(σ
2
i ), ψ̂j = −π∗(σ̂

2
j ) ∈ H 2(Mg,m|d) (2.9)

be the first Chern classes of the universal cotangent line bundles.

Lemma 2.4 ([17, Section 4.5]). If d ∈ Z+ and a1, a2, b1, . . . , bd ∈ Z≥0, then

∫

M0,2|d

ψ
a1

1 ψ
a2

2 ψ̂
b1

1 · · · ψ̂
bd

d =

(
d − 1

a1, a2

)
·

{
1 if b1, . . . , bd = 0,

0 otherwise.
(2.10)

Proof. If d > 1, then there is a forgetful morphism

f : M0,2|d −→M0,2|d−1,

dropping the fleck ŷd . For i = 1,2, let Di ⊂ M0,2|d denote the divisor whose

generic element consists of two components, with one of them containing yi and

ŷd (and no other marked points). By (2.9),

ψi = f ∗ψi + Di ∀i = 1,2, ψ̂j = f ∗ψj ∀j = 1, . . . , d − 1. (2.11)

Under the canonical identification of Di ≈ M0,2|d−1 ×M0,2|1 with M0,2|d−1,

Di |Di
= −ψi, D1 · D2 = 0, ψi |Di

, ψ̂d |Di
= 0,

ψ3−i |Di
= ψ3−i, ψ̂j |Di

= ψ̂j ∀j = 1, . . . , d − 1.
(2.12)

If the left-hand side of (2.10) is not zero, then the sum of the exponents is d − 1.

Thus, by symmetry, we can assume that bd = 0. By (2.11) and (2.12),
∫

M0,2|d

ψ
a1

1 ψ
a2

2 ψ̂
b1

1 · · · ψ̂
bd

d =

∫

M0,2|d−1

ψ
a1−1
1 ψ

a2

2 ψ̂
b1

1 · · · ψ̂
bd

d

+

∫

M0,2|d−1

ψ
a1

1 ψ
a2−1
2 ψ̂

b1

1 · · · ψ̂
bd

d .

This implies (2.10) by induction on d (if d = 1, M0,2|d is a single point). �
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Our proof of Theorems 1 and 3 immediately leads to a closed formula for certain

twisted equivariant Hurwitz numbers; see Theorem 4 in Section 4. We conclude

this section with a nonequivariant version of this formula.

Let x ∈ H 2(P∞) denote the hyperplane class. For any d ∈ Z+, let

S∗(x) ≡ π∗
P∞OP∞(1) ⊗ π∗

US
∗ −→ P∞ × U −→ P∞ ×M0,2|d ,

where πP∞,πU : P∞ × U −→ P∞,U are the two projections. In particular,

e(S∗(x)) = x × 1 + 1 × e(S∗) ∈ H ∗(P∞ × U) = Q[x] ⊗ H ∗(U).

Similarly to (1.2), let

V̇(d)
a (x) =

⊕

ak>0

R0π∗(S
∗(x)ak (−σ1)) ⊕

⊕

ak<0

R1π∗(S
∗(x)ak (−σ1))

−→M0,2|d , (2.13)

where π : U −→M0,2|d is the projection as before; this sheaf is locally free. We

define power series La, ξa ∈Q[x][[q]] by

La ∈ x + qQ[x][[q]], La(x, q) − qaaLa(x, q)|a| = xn,

ξa ∈ qQ[x][[q]], x + q
d

dq
ξa(x, q) = La(x, q).

Theorem 2. If l ∈ Z≥0 and a ∈ (Z∗)l , then

1 + (h̄1 + h̄2)

∞∑

d=1

qd

d!

∫

M0,2|d

e(V̇
(d)
a (x))

(h̄1 − ψ1)(h̄2 − ψ2)

= eξa(x,q)/h̄1+ξa(x,q)/h̄2 ∈ Q[x][[h̄−1
1 , h̄−1

2 , q]].

Proof. This is obtained from Theorem 4 by setting n = 1, i = 1, and α1 = x. �

In the case l = 0, the left-hand side of the expression in Theorem 2 reduces to

1 +
∑

a1,a2≥0

(h̄
−a1

1 h̄
−(a2+1)
1 + h̄

−(a1+1)
1 h̄

−a2

1 )
qa1+a2+1

(a1 + a2 + 1)!

∫

M0,2|a1+a2+1

ψ
a1

1 ψ
a2

2

= 1 +
∑

a1,a2≥0

(h̄
−a1

1 h̄
−(a2+1)
1 + h̄

−(a1+1)
1 h̄

−a2

1 )
qa1+a2+1

(a1 + a2 + 1)!

(
a1 + a2

a1

)

= eq/h̄1+q/h̄2;

the first equality above holds by Lemma 2.4. Since ξ(·)(x, q) = q , this agrees with

Theorem 2.

3. Equivariant Cohomology

In this section, we review the notion of equivariant cohomology and set up related

notation that will be used throughout the rest of the paper. For the most part, our

notation agrees with [11, Chapters 29, 30]; the main difference is that we work

with Pn−1 instead of Pn.
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For any n ∈ Z+, let

[n] = {1, . . . , n}.

We denote by T the n-torus (C∗)n. It acts freely on ET = (C∞)n − 0:

(t1, . . . , tn) · (z1, . . . , zn) = (t1z1, . . . , tnzn).

Thus, the classifying space for T and its group cohomology are given by

BT ≡ ET/T= (P∞)n and H ∗
T

≡ H ∗(BT;Q) = Q[α1, . . . , αn],

where αi = π∗
i c1(γ

∗) if

πi : (P∞)n −→ P∞ and γ −→ P∞

are the projection onto the ith component and the tautological line bundle, respec-

tively. Let

H∗
T

= Qα ≡ Q(α1, . . . , αn)

be the field of fractions of H ∗
T

.

A representation ρ of T, that is, a linear action of T on Ck , induces a vector

bundle over BT:

Vρ ≡ ET×T Ck.

If ρ is one-dimensional, we will call

c1(V
∗
ρ ) = −c1(Vρ) ∈ H ∗

T
⊂ Qα

the weight of ρ. For example, αi is the weight of the representation

πi : T −→C∗, (t1, . . . , tn) · z = tiz. (3.1)

More generally, if a representation ρ of T on Ck splits into one-dimensional rep-

resentations with weights β1, . . . , βk , we will call β1, . . . , βk the weights of ρ. In

such a case,

e(V ∗
ρ ) = β1 · · · · · βk. (3.2)

We will call the representation ρ of T on Cn with weights α1, . . . , αn the standard

representation of T.

If T acts on a topological space M , let

H ∗
T
(M) ≡ H ∗(BM;Q), where BM = ET×T M,

denote the corresponding equivariant cohomology of M . The projection map

BM −→ BT induces an action of H ∗
T

on H ∗
T
(M). Let

H∗
T
(M) = H ∗

T
(M) ⊗H ∗

T
H∗

T
.

If the T-action on M lifts to an action on a (complex) vector bundle V −→ M ,

then

BV ≡ ET×T V

is a vector bundle over BM . Let

e(V ) ≡ e(BV ) ∈ H ∗
T
(M) ⊂ H∗

T
(M)

denote the equivariant Euler class of V .
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Throughout the paper, we work with the standard action of T on Pn−1, that is,

the action induced by the standard action ρ of T on Cn:

(t1, . . . , tn) · [z1, . . . , zn] = [t1z1, . . . , tnzn].

Since BPn−1 = PVρ ,

H ∗
T
(Pn−1) ≡ H ∗(PVρ;Q) = Q[x, α1, . . . , αn]/(x

n +c1(Vρ)xn−1 +· · ·+cn(Vρ)),

where x = c1(γ̃
∗) and γ̃ −→ PVρ is the tautological line bundle. Since

c(Vρ) = (1 − α1) · · · (1 − αn),

it follows that

H ∗
T
(Pn−1) = Q[x, α1, . . . , αn]/(x − α1) · · · (x − αn),

H∗
T
(Pn−1) = Qα[x]/(x − α1) · · · (x − αn). (3.3)

The standard action of T on Pn−1 has n fixed points:

P1 = [1,0, . . . ,0], P2 = [0,1,0, . . . ,0], . . . , Pn = [0, . . . ,0,1].

For each i = 1,2, . . . , n, let

φi =
∏

k �=i

(x − αk) ∈ H ∗
T
(Pn−1). (3.4)

By equation (3.9) below, φi is the equivariant Poincaré dual of Pi . We also note

that γ̃ |BPi
= Vπi

, where πi is as in (3.1). Thus, the restriction map on the equi-

variant cohomology induced by the inclusion Pi −→ Pn−1 is given by

H ∗
T
(Pn−1) = Q[x, α1, . . . , αn]

/ k=n∏

k=1

(x − αk) −→ H ∗
T
(Pi) = Q[α1, . . . , αn],

x −→ αi .

In particular, if F ∈ H ∗
T
(Pn−1), then

F = 0 ∈ H ∗
T
(Pn−1) ⇐⇒ F(x = αi) ≡ F |Pi

= 0 ∈ Q[α1, . . . , αn] ⊂ Qα

∀i ∈ [n]. (3.5)

The tautological line bundle γn−1 −→ Pn−1 is a subbundle of Pn−1 ×Cn pre-

served by the diagonal action of T. Thus, the action of T on Pn−1 naturally lifts

to an action on γn−1, and

e(γ ∗
n−1)|Pi

= αi ∀i = 1,2, . . . , n. (3.6)

The T-action on Pn−1 also has a natural lift to the vector bundle T Pn−1 −→ Pn−1

so that there is a short exact sequence

0 −→ γ ∗
n−1 ⊗ γn−1 −→ γ ∗

n−1 ⊗Cn −→ T Pn−1 −→ 0

of T-equivariant vector bundles on Pn−1. By (3.2), (3.6), and (3.4),

e(T Pn−1)|Pi
=

∏

k �=i

(αi − αk) = φi |Pi
∀i = 1,2, . . . , n. (3.7)
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If T acts smoothly on a smooth compact oriented manifold M , then there is a

well-defined integration-along-the-fiber homomorphism
∫

M

: H ∗
T
(M) −→ H ∗

T

for the fiber bundle BM −→ BT. The classical localization theorem of [1] relates

it to integration along the fixed locus of the T-action. The latter is a union of

smooth compact orientable manifolds F ; T acts on the normal bundle NF of

each F . Once an orientation of F is chosen, there is a well-defined integration-

along-the-fiber homomorphism
∫

F

: H ∗
T
(F ) −→ H ∗

T
.

The localization theorem states that∫

M

η =
∑

F

∫

F

η|F

e(NF)
∈Qα ∀η ∈ H ∗

T
(M), (3.8)

where the sum is taken over all components F of the fixed locus of T. Part of

the statement of (3.8) is that e(NF) is invertible in H∗
T
(F ). In the case of the

standard action of T on Pn−1, (3.8) implies that

η|Pi
=

∫

Pn−1
ηφi ∈ Qα ∀η ∈ H∗

T
(Pn−1), i = 1,2, . . . , n; (3.9)

see also (3.7).

Finally, if f : M −→ M ′ is a T-equivariant map between two compact ori-

ented manifolds, there is a well-defined pushforward homomorphism

f∗ : H ∗
T
(M) −→ H ∗

T
(M ′).

It is characterized by the property that
∫

M ′
(f∗η)η′ =

∫

M

η(f ∗η′) ∀η ∈ H ∗
T
(M),η′ ∈ H ∗

T
(M ′). (3.10)

The homomorphism
∫
M

of the previous paragraph corresponds to M ′ being a

point. It is immediate from (3.10) that

f∗(η(f ∗η′)) = (f∗η)η′ ∀η ∈ H ∗
T
(M),η′ ∈ H ∗

T
(M ′). (3.11)

4. Equivariant Mirror Theorem

In this section, we state an equivariant version of Theorem 1, Theorem 3, which

immediately implies Theorem 1. It is proved in the rest of this paper, as outlined

in Section 1 after the statement of Theorem 1. We then formulate an equivariant

version of Theorem 2, Theorem 4, providing a closed formula for equivariant

Hurwitz numbers. This theorem immediately implies Theorem 2 and is obtained

in Section 8 by combining Proposition 8.3 in this paper with some results from

[26]. Throughout the paper, we use calligraphic letters, for example, Y and Z , for

equivariant generating functions.
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The standard T-representation on Cn (as well as any other representation)

induces a T-action on the trivial rank n sheaf over any quasi-stable curve

(C, y1, . . . , ym),

T ·Cn ⊗OC −→ Cn ⊗OC, (t1, . . . , tn) · (f1, . . . , fn) = (t1f1, . . . , tnfn),

and thus on the rank 1 subsheaves of this sheaf. This action preserves the degree

of the subsheaf and the torsion and stability properties of Section 2 and thus in-

duces a T-action on the moduli space Qg,m(Pn−1, d), with respect to which the

evaluation maps

evi : Qg,m(Pn−1, d) −→ Pn−1, i = 1,2, . . . ,m,

are T-equivariant. This action lifts to a T-action on the universal subsheaf S −→

U and thus to T-actions on the locally free sheaves

π∗(σ
2
i ) −→ Qg,m(Pn−1, d), V̇

(d)
n;a −→ Q0,2(P

n−1, d).

This gives rise to T-equivariant cohomology classes

ψi ∈ H ∗
T
(Qg,m(Pn−1, d)), e(V̇

(d)
n;a) ∈ H ∗

T
(Q0,2(P

n−1, d)).

The stable quotients analogue of the equivariant version of Givental’s J -function

is given by

Zn;a(x, h̄, q) ≡ 1 +

∞∑

d=1

qdev1∗

[
e(V̇

(d)
n;a)

h̄ − ψ1

]
∈ H ∗

T
(Pn−1)[[h̄−1, q]], (4.1)

where ev1 : Q0,2(P
n−1, d) −→ Pn−1 is as before. The equivariant analogue of

the power series (1.6) is given by

Yn;a(x, h̄, q) ≡

∞∑

d=0

qd

∏
ak>0

∏akd
r=1(akx + rh̄)

∏
ak<0

∏−akd−1
r=0 (akx − rh̄)

∏d
r=1

∏n
k=1(x − αk + rh̄)

∈ Q[α1, . . . , αn,x][[h̄−1, q]]. (4.2)

We view (4.1) and (4.2) as power series in h̄−1 and q , by expanding around h̄ = ∞

and q = 0. The coefficients of powers of h̄−1 and q in (4.2) are polynomials in

α1, . . . , αn and x; the coefficients in (4.2) are T-equivariant cohomology classes

on Pn−1, which can also be represented by polynomials.

Theorem 3. If l ∈ Z≥0, n ∈ Z+, and a ∈ (Z∗)l are such that |a| ≤ n, then the

equivariant stable quotients analogue of Givental’s J -function satisfies

Zn;a(x, h̄, q) =
Yn;a(x, h̄, q)

In;a(q)
∈ H ∗

T
(Pn−1)[[h̄−1, q]]. (4.3)

Restricting to a fiber of the projection

BPn−1 ≡ ET×T Pn−1 −→ Pn−1,
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we send x to x and αi to 0; this gives Theorem 1. The relation of Theorem 3 to its

Gromov–Witten analogue is the same as the relation of Theorem 1 to its Gromov–

Witten analogue; see the paragraph following the statement of Theorem 1 in Sec-

tion 1. In particular, the twisted equivariant stable quotients invariants of Pn−1

determined by a tuple a are the same as the corresponding Gromov–Witten in-

variants if |a| − ℓ−(a) ≤ n − 2, but not if |a| − ℓ−(a) = n − 1, n.

We prove Theorem 3 through a two-pronged approach. We show that the power

series Yn;a and Zn;a are C-recursive in the sense of Definition 5.1 with the col-

lection C given by (5.6) and satisfy the self-polynomiality condition of Defini-

tion 5.2; see Lemma 5.4 and Propositions 6.1 and 7.1. Proposition 5.3 then implies

that these power series are determined by their mod h̄−2-parts, that is, the coeffi-

cients of h̄0 and h̄−1 in this case. It is straightforward to determine the mod h̄−2-

part of Yn;a in all cases (Yn;a is given by an explicit algebraic expression) and

the mod h̄−2-part of Zn;a if |a| ≤ n − 2, thus establishing Theorem 3 whenever

|a| ≤ n − 2; see Corollary 8.1.

In order to establish Theorem 3 in all cases, we show that the secondary coef-

ficients Yr
i (d) and Zr

i (d), instead of F r
i (d), in the recursions (5.4) for Yn;a and

Zn;a are the same. By induction on d , this implies that the coefficients of qd on the

two sides of (4.3) are the same because this is the case for d = 0 (when both coef-

ficients are 1). As part of the proof of C-recursivity for Yn;a, we show that Yr
i (d)

is determined by the expansion of Yn;a(αi, h̄, q) around h = 0; see Lemma 5.4.

As part of the proof of C-recursivity for Zn;a, we show that Zr
i (d) is also de-

termined by the expansion of Zn;a(αi, h̄, q) around h = 0; see Proposition 6.1.

In contrast to Yr
i (d), Zr

i (d) is determined by lower-degree coefficients of Zn;a or

equivalently by Zs
j (d

′) with d ′ < d ; this relation thus completely determines Zn;a

(assuming C-recursivity). It follows that (4.3) holds if and only if the coefficients

Yr
i (d) for Yn;a satisfy the same relation; see Lemma 8.2. The coefficients in this

relation involve twisted Hurwitz numbers over the moduli spaces M0,2|d . These

are not easy to compute, but they can be described qualitatively in a way indepen-

dent of n. This implies that the validity of the desired recursion for the secondary

coefficients Yr
i (d) for Yn;a is independent of n. Since this recursion is equivalent

to (4.3) whenever |a| ≤ n and (4.3) holds whenever |a| ≤ n−2 (by Corollary 8.1),

it follows that the recursion holds in all cases (see Proposition 8.3) and (4.3) holds

whenever |a| ≤ n, as claimed.

As stated in Section 1, Theorem 3 extends to products of projective spaces

and concavex sheaves (1.14). The relevant torus action is then the product of the

actions on the components described in Section 3. If its weights are denoted by

αs;k , with s = 1, . . . , p and k = 1, . . . , ns , then

Yn1,...,np;a(x1, . . . ,xp, h̄, q1, . . . , qp)

∈ Q[α1;1, . . . , αp;np
,x1, . . . ,xp][[h̄−1, q1, . . . , qp]], (4.4)

Zn1,...,np;a(x1, . . . ,xp, h̄, q1, . . . , qp)

∈ H ∗
T
(Pn1−1 × · · · × Pnp−1)[[h̄−1, q1, . . . , qp]], (4.5)
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and x1, . . . ,xp ∈ H ∗(Pn1−1 × · · · × Pnp−1) correspond to the pullbacks of

the equivariant hyperplane classes by the projection maps. The coefficient of

q
d1

1 · · ·q
dp
p in (4.5) is defined by the same pushforward as in (4.1), with the degree

d of the stable quotients replaced by (d1, . . . , dp). The coefficient of q
d1

1 · · ·q
dp
p

in (4.4) is given by

∏

ak;1≥0

∑p
s=1 ak;sds∏

r=1

( p∑

s=1

ak;sxs + rh̄

) ∏

ak;1<0

−
∑p

s=1 ak;sds−1∏

r=0

( p∑

s=1

ak;sxs − rh̄

)

/ p∏

s=1

ds∏

r=1

ns∏

k=1

(xs − αs;k + rh̄).

Our proof of Theorem 3 extends directly to this situation.

We conclude this section with an equivariant version of Theorem 2. For any

d ∈ Z+ and β ∈ H 2
T

, denote by

S∗(β) −→ U −→M0,2|d (4.6)

the universal sheaf with the T-action so that

e(S∗(β)) = β × 1 + 1 × e(S∗) ∈ H ∗
T
(U) = H ∗

T
⊗ H ∗(U).

Similarly to (1.2), let

V̇(d)
a (β) =

⊕

ak>0

R0π∗(S
∗(β)ak (−σ1)) ⊕

⊕

ak<0

R1π∗(S
∗(β)ak (−σ1))

−→ M0,2|d , (4.7)

where π : U −→ M0,2|d is the projection as before; this sheaf is locally free. The

bundle

V̇
(d)
1 (β) ≡ V̇

(d)
(1) (β) = R0π∗(S

∗(β)(−σ1)) −→ M0,2|d (4.8)

plays a central role in the deformation theory of stable quotients as explained in

Section 6. We define the power series Ln;a, ξn;a ∈Qα[x][[q]] by

Ln;a ∈ x + qQα[x][[q]],

n∏

k=1

(Ln;a(x, q) − αk) − qaaLn;a(x, q)|a| =

n∏

k=1

(x − αk),

ξn;a ∈ qQα[x][[q]], x + q
d

dq
ξn;a(x, q) = Ln;a(x, q).

Theorem 4. If l ∈ Z≥0, n ∈ Z+, and a ∈ (Z∗)l , then

1 + (h̄1 + h̄2)

∞∑

d=1

qd

d!

∫

M0,2|d

e(V̇
(d)
a (αi))∏

k �=i e(V̇
(d)
1 (αi − αk))(h̄1 − ψ1)(h̄2 − ψ2)

= eξn;a(αi ,q)/h̄1+ξn;a(αi ,q)/h̄2 ∈Qα[[h̄−1
1 , h̄−1

2 , q]]

for every i = 1, . . . , n.
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5. Algebraic Observations

In this section, we describe a number of properties of power series, such as Yn;a

in (4.2) and Zn;a in (4.1), that determine them completely. We also show that Yn;a

indeed satisfies these properties.

If R is a ring, then denote by

R⌈⌈h̄⌉⌉ ≡ R[[h̄−1]] + R[h̄]

the R-algebra of Laurent series in h̄−1 (with finite principal part). If f ∈ R[[q]]

and d ∈ Z≥0, then let [[f ]]q;d ∈ R denote the coefficient of qd in f . If p ∈ Z≥0

and

F(h̄, q) =

∞∑

d=0

( ∞∑

r=−Nd

F
(r)
d h̄−r

)
qd ∈ R⌈⌈h̄⌉⌉[[q]]

for some F
(r)
d ∈ R, we define

F(h̄, q) ∼=

∞∑

d=0

( p−1∑

r=−Nd

F
(r)
d h̄−r

)
qd (mod h̄−p),

that is, we drop h̄−p and higher powers of h̄−1 instead of higher powers of h̄. If

R is a field, let

R(h̄) −֒→ R⌈⌈h̄⌉⌉

be the embedding given by taking the Laurent series of rational functions at

h̄−1 = 0.

If f = f (z) is a rational function in z and possibly some other variables, for

any z0 ∈ P1 ⊃ C, let

R
z=z0

f (z) ≡
1

2π i

∮
f (z)dz, (5.1)

where the integral is taken over a positively oriented loop around z = z0 with no

other singular points of f dz, denote the residue of the 1-form f dz. If z1, . . . , zk ∈

P1 is any collection of points, let

R
z=z1,...,zk

f (z) ≡

i=k∑

i=1

R
z=zi

f (z). (5.2)

By the residue theorem on S2,

∑

x0∈S2

R
x=x0

{f (x)} = 0

for every rational function f = f (x) on S2 ⊃ C. If f is regular at z = 0, let

[[f ]]z;p denote the coefficient of zp in the power series expansion of f around

z = 0.
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Definition 5.1. Let C ≡ (C
j
i (d))d,i,j∈Z+ be any collection of elements of Qα .

A power series F ∈ H ∗
T
(Pn−1)⌈⌈h̄⌉⌉[[q]] is C-recursive if the following holds: if

d∗ ∈ Z≥0 is such that

[[F(x = αi, h̄, q)]]q;d∗−d ∈Qα(h̄) ⊂ Qα⌈⌈h̄⌉⌉ ∀d ∈ [d∗], i ∈ [n],

and [[F(αi, h̄, q)]]q;d is regular at h̄ = (αi −αj )/d for all d < d∗ and i �= j , then

[[F(αi, h̄, q)]]q;d∗ −

d∗∑

d=1

∑

j �=i

C
j
i (d)

h̄ − (αj − αi)/d
[[F(αj , z, q)]]q;d∗−d |z=(αj −αi )/d

∈Qα[h̄, h̄−1] ⊂ Qα⌈⌈h̄⌉⌉. (5.3)

Thus, if F ∈ H ∗
T
(Pn−1)⌈⌈h̄⌉⌉[[q]] is C-recursive for any collection C, then

F(x = αi, h̄, q) ∈Qα(h̄)[[q]] ⊂ Qα⌈⌈h̄⌉⌉[[q]] ∀i ∈ [n],

as can be seen by induction on d , and

F(αi, h̄, q) =

∞∑

d=0

Nd∑

r=−Nd

F r
i (d)h̄rqd +

∞∑

d=1

∑

j �=i

C
j
i (d)qd

h̄ − (αj − αi)/d

×F(αj , (αj − αi)/d, q) ∀i ∈ [n], (5.4)

for some F r
i (d) ∈ Qα . The nominal issue with defining C-recursivity by (5.4), as

is normally done, is that a priori the evaluation of F(αj , h̄, q) at h̄ = (αj − αi)/d

need not be well defined since F(αj , h̄, q) is a power series in q with coefficients

in the Laurent series in h̄−1; a priori they may not converge anywhere. However,

taking the coefficient of each power of q in (5.4) shows by induction on the degree

d that this evaluation does make sense; this is the substance of Definition 5.1.

Definition 5.2. For any F ≡ F(x, h̄, q) ∈ H ∗
T
(Pn−1)⌈⌈h̄⌉⌉[[q]], let

�F (h̄, z, q) ≡

n∑

i=1

〈a〉α
ℓ(a)
i eαiz

∏
k �=i(αi − αk)

F(αi, h̄, qeh̄z)F(αi,−h̄, q)

∈ Qα⌈⌈h̄⌉⌉[[z, q]]. (5.5)

A power series F ∈ H ∗
T
(Pn−1)⌈⌈h̄⌉⌉[[z, q]] satisfies the self-polynomiality condi-

tion if �F ∈Qα[h̄][[z, q]].

Proposition 5.3 ([11, Lemma 30.3.2]). Let F ,F ′ ∈ H ∗
T
(Pn−1)⌈⌈h̄⌉⌉[[q]]. If F

and F ′ are C-recursive for some collection C ≡ (C
j
i (d))d,i,j∈Z+ of elements of

Qα , satisfy the self-polynomiality condition, and

F(x = αi, h̄, q),F ′(x = αi, h̄, q) ∈Q∗
α + q ·Qα⌈⌈h̄⌉⌉[[q]] ⊂ Qα⌈⌈h̄⌉⌉[[q]]

∀i ∈ [n],

then F ∼= F ′ (mod h̄−2) if and only if F = F ′.
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Let

C
j

i (d) ≡
∏

ak>0

akd∏

r=1

(
akαi + r

αj − αi

d

) ∏

ak<0

−akd−1∏

r=0

(
akαi − r

αj − αi

d

)

/(
d

d∏

r=1

n∏

k=1
(r,k)�=(d,j)

(
αi − αk + r

αj − αi

d

))
∈Qα. (5.6)

Lemma 5.4. If l ∈ Z≥0, n ∈ Z+, and a ∈ (Z∗)l are such that |a| ≤ n, the power

series Yn;a(x, h̄, q) given by (4.2) is C-recursive, with the auxiliary coefficients in

the recursion (5.4) for Yn;a given by

∞∑

d=0

Yr
i (d)qd =

⎧
⎪⎪⎨
⎪⎪⎩

R
h=0

{h̄−r−1Yn;a(αi, h̄, q)} if r < 0,

In;a(q) if r = 0;

0 if r > 0.

(5.7)

Furthermore, Yn;a(x, h̄, q) satisfies the self-polynomiality condition.

Proof. This is well known from the various proofs of mirror symmetry for

Gromov–Witten invariants (e.g., [7, Section 11], [11, Chapter 30], [6, Section 4]);

we include a proof for the sake of completeness.

We first view Yn;a as an element of Qα(x, h̄)[[q]]. Splitting the coefficient of

qd+d ′
in (4.2) into the factors with r ≤ d and r > d , plugging in (αj − αi)/d into

all factors other than the (r, k) = (d, j) factor in the denominator, and simplifying,

we obtain

R
z=(αj −αi )/d

{
1

h̄ − z
Yn;a(αi, z, q)

}
=

C
j

i (d)qd

h̄ − (αj − αi)/d
Yn;a(αj , (αj − αi)/d, q).

By the residue theorem on S2,

∞∑

d=1

∑

j �=i

C
j

i (d)qd

h̄ − (αj − αi)/d
Yn;a(αj , (αj − αi)/d, q)

= − R
z=h̄,0,∞

{
1

h̄ − z
Yn;a(αi, z, q)

}

= Yn;a(αi, h̄, q) − R
z=0,∞

{
1

h̄ − z
Yn;a(αi, z, q)

}
. (5.8)

Since the coefficients of (h̄−1)0 in Yn;a(αi, h̄, q) and Yn;a(αi, h̄, q) are the same,

R
z=∞

{
1

h̄ − z
Yn;a(αi, z, q)

}
= In;a(q)
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by (1.7). Since the coefficient of qd in Yn;a(αi, h̄, q) has a pole of order d at

h̄ = 0,

R
z=0

{
1

h̄ − z
[[Yn;a(αi, z, q)]]q;d

}

=

[[
1

h̄ − z

∏
ak>0

∏akd
r=1(akαi + rz)

∏
ak<0

∏−akd−1
r=0 (akαi − rz)

d!
∏d

r=1

∏
k �=i(αi − αk + rz)

]]

z;d−1

;

the last expression is a polynomial in h̄−1 with coefficients in Qα of degree at

most d . This establishes that Yn;a is C-recursive and (5.7) holds; the r < 0 case

of (5.7) follows from (5.4) with F replaced by Yn;a.

We now expand Yn;a as a power series in h̄−1 and q with coefficients in Qα[x].

Thus,

〈a〉α
ℓ(a)
i exz

∏n
k=1(x − αk)

Yn;a(x, h̄, qeh̄z)Yn;a(−x, h̄, q) ∈Qα(x)[[h̄−1, z, q]]

viewed as a function of x has residues only at x = αi with i ∈ [n] and x = ∞. By

(4.2),

〈a〉α
ℓ(a)
i eαiz

∏
k �=i(αi − αk)

Yn;a(αi, h̄, qeh̄z)Yn;a(αi,−h̄, q)

= R
x=αi

{
〈a〉xℓ(a)exz

∏n
k=1(x − αk)

Yn;a(x, h̄, qeh̄z)Yn;a(x,−h̄, q)

}
.

Thus, by the residue theorem on S2,

�Yn;a
(h̄, z, q) = − R

x=0,∞

{
〈a〉xℓ(a)exz

∏n
k=1(x − αk)

Yn;a(x, h̄, qeh̄z)Yn;a(x,−h̄, q)

}

≡ −R0 −R∞.

Since the coefficients of positive powers of q in Yn;a are divisible by xℓ−(a),

R0 = 〈a〉

[[
exz

∏n
k=1(x − αk)

]]

x;−ℓ(a)−1

∈ Qα[z] ⊂ Qα[h̄][[z, q]].

The residue R∞ is computed by replacing x with 1/w and simplifying. Since

the coefficient of qd in Yn;a(1/w, h̄, qd) vanishes to order (n − |a|)d at w = 0, a

direct computation gives

−R∞ = 〈a〉

∞∑

d1,d2=0

∞∑

p=0

zn−1−ℓ(a)+p+(n−|a|)(d1+d2)

(n − 1 − ℓ(a) + p + (n − |a|)(d1 + d2))!
qd1+d2 eh̄d1z

×

[[∏
ak>0

∏akd1

r=1 (ak + rh̄w)
∏

ak<0

∏−akd1−1
r=0 (ak − rh̄w)

∏n
k=1(1 − αkw)

·

∏
ak>0

∏akd2

r=1 (ak − rh̄w)
∏

ak<0

∏−akd2−1
r=0 (ak + rh̄w)

∏d1

r=1

∏n
k=1(1 − (αk − rh̄)w)

∏d2

r=1

∏n
k=1(1 − (αk + rh̄)w)

]]

w;p

.
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The (d1, d2,p)-summand above is qd1+d2 times an element of Qα[h̄][[z]]. �

In the case of products of projective spaces and concavex sheaves (1.14), Defini-

tion 5.1 becomes inductive on the total degree d1 + · · · + dp of q
d1

1 · · ·q
dp
p . The

power series F is evaluated at (x1, . . . ,xp) = (α1;i1 , . . . , αp;ip ) for the purposes

of the C-recursivity condition (5.3) and (5.4). The relevant primary structure co-

efficients are of the form

C
j
i1···ip

(s;d) ≡
∏

ak;1≥0

ak;sd∏

r=1

( p∑

t=1

ak;tαt;it + r
αs;j − αs;is

d

)

×

∏
ak;1<0

∏−ak;sd−1

r=0 (
∑p

t=1 ak;tαt;it − r(αs;j − αs;is )/d)

d
∏d

r=1

∏ns

k=1
(r,k)�=(d,j)

(αs;is − αs;k + r(αs;j − αs;is )/d)

with s ∈ [p] and j �= is . The double sums in these equations are then replaced by

triple sums over s ∈ [p], j ∈ [ns] − is , and d ∈ Z+, and with F evaluated at

xt =

{
αs;j if t = s,

αt;it if t �= s,
z =

αs;j − αs;is

d
.

The secondary coefficients F r
i (d) in (5.4) now become F r

i1···ip
(d1, . . . , dp), with

is ∈ [ns] and ds ∈ Z≥0. In the analogue of Definition 5.2, �F is a power series

in z1, . . . , zp and q1, . . . , qp , the sum taken is over all elements (i1, . . . , ip) of

[n1] × · · · × [np], the leading fraction is replaced by

∏
ak;1≥0

∑p

s=1 ak;sαs;is∏
ak;1<0

∑p

s=1 ak;sαs;is

·
e
α1;i1

z1+···+αp;ip zp

∏p

s=1

∏
k �=is

(αs;is − αs;k)
,

and the qeh̄z-insertion in the first power series is replaced by the insertions

q1eh̄z1 , . . . , qpeh̄zp . The conclusion of Lemma 5.4 holds with i, d , and qd re-

placed by (i1, . . . , ip), (d1, . . . , dp), and q
d1

1 · · ·q
dp
p , respectively. The proof is

nearly identical, except that the last claim involves p applications of the residue

theorem on S2. Instead of the residue at x = 0 of the coefficient of q0, there may

be a residue at a value of xs dependent on the values of the other variables xt , but

it again would not involve h̄.

6. Recursivity for Stable Quotients

In this section, we use the classical localization theorem [1] to show that the equi-

variant stable quotients analogue of Givental’s J -function, the power series Zn;a

given by (4.1), is C-recursive with the collection C
j
i (d) given by (5.6). We also

describe the secondary terms Zr
i (d) in the recursion (5.4) for Zn;a, establishing

the following statement.
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d

(i,0) (j,0)

1 2

Ŵij (d)

d

(i,0) (j,2)

1 2

d d ′

(i, d0)

d0 ∈ Z+
(j,0) (k,5)

1 2

Figure 1 Two strands with d(vmin) = 0 and a strand with d(vmin) > 0

Proposition 6.1. If l ∈ Z≥0, n ∈ Z+, and a ∈ (Z∗)l , then the power series

Zn;a(x, h̄, q) is C-recursive, with the auxiliary coefficients in the recursion (5.4)

for Zn;a given by

Zr
i (d) = 0 ∀r ∈ Z+, Z0

i (d) = δ0d ,

and for all r ∈ Z−,

∞∑

d=1

Zr
i (d)qd =

∞∑

d=1

qd

d!

d+r∑

b=0

((∫

M0,2|d

e(V̇
(d)
a (αi))ψ

−r−1
1 ψb

2∏
k �=i e(V̇

(d)
1 (αi − αk))

)

× R
h̄=0

{
(−1)b

h̄b+1
Zn;a(αi, h̄, q)

})
.

The proof involves a localization computation on Q0,2(P
n−1, d). Thus, we need

to describe the fixed loci of the T-action on Q0,2(P
n−1, d), their normal bundles,

and the restrictions of the relevant cohomology classes to these fixed loci.

As in the case of stable maps described in [11, Section 27.3], the fixed loci of

the T-action on Q0,m(Pn−1, d) are indexed by connected decorated graphs that

have no loops. However, in the case m = 2, the relevant graphs consist of a single

strand (possibly consisting of a single vertex) with the two marked points attached

at the opposite ends of the strand. Such a graph can be described by an ordered

set (Ver,<) of vertices, where < is a strict order on the finite set Ver. Given such

a strand, denote by vmin and vmax its minimal and maximal elements and by Edg

its set of edges, that is, of pairs of consecutive elements. A decorated strand is a

tuple

Ŵ = (Ver,<;μ,d), (6.1)

where (Ver,<) is a strand as above, and

μ : Ver −→ [n] and d : Ver ⊔ Edg −→ Z≥0

are maps such that

μ(v1) �= μ(v2) if {v1, v2} ∈ Edg, d(e) �= 0 ∀e ∈ Edg. (6.2)

In Figure 1, the vertices of a decorated strand Ŵ are indicated by dots in the in-

creasing order, with respect to <, from left to right. The values of the map (μ,d)

on some of the vertices are indicated next to those vertices. Similarly, the values

of the map d on some of the edges are indicated next to them. By (6.2) no two

consecutive vertices have the same first label, and thus j �= i.
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d

(i,0) (j,0)

1 2

d ′

(j,0) (k,0)

1 2

Figure 2 The substrands corresponding to the edges of the last graph

in Figure 1

With Ŵ as in (6.1), let

|Ŵ| ≡
∑

v∈Ver

d(v) +
∑

e∈Edg

d(e)

be the degree of Ŵ. If e = {v1, v2} ∈ Edg is any edge in Ŵ, let Ŵe denote the

single-edge graph with vertices v1 and v2, which are ordered in the same way as

in Ŵ and assigned values (μ(v1),0) and (μ(v2),0), and with the edge assigned

the value d(e) as in the original graph; see Figure 2.

As described in [17, Section 7.3], the fixed locus QŴ of Q0,2(P
n−1, |Ŵ|) cor-

responding to a decorated strand Ŵ consists of the stable quotients

(C, y1, y2, S ⊂ Cn ⊗OC)

over quasi-stable rational 2-marked curves that satisfy the following conditions.

The components of C on which the corresponding quotient is torsion-free are

rational and correspond to the edges of Ŵ; the restriction of S to any such com-

ponent corresponds to a morphism to Pn−1 of the opposite degree to that of the

subsheaf. Furthermore, if e = {v1, v2} is an edge, the corresponding morphism fe

is a degree-d(e) cover of the line

P1
μ(v1),μ(v2)

⊂ Pn−1

passing through the fixed points Pμ(v1) and Pμ(v2); it is ramified only over Pμ(v1)

and Pμ(v2). In particular, fe is unique up to isomorphism. The remaining compo-

nents of C are indexed by the vertices v ∈ Ver with d(v) ∈ Z+. The restriction of

S to such a component Cv of C (or possibly a connected union of irreducible com-

ponents) is a subsheaf of the trivial subsheaf Pμ(v) ⊂ Cn ⊗OCv
of degree −d(v);

thus, the induced morphism takes Cv to the fixed point Pμ(v) ∈ Pn−1. Each such

component Cv also carries two distinguished marked points corresponding to the

nodes and/or the marked points of C; if neither of the marked points of C lies on

Cv , we denote the marked point corresponding to the node of Cv separating Cv

from the first marked point by 1 and the other marked point by 2. Thus, as stacks,

QŴ ≈
∏

v∈Ver
d(v)>0

Q0,2(P
0,d(v)) ×

∏

e∈Edg

QŴe ≈
∏

v∈Ver
d(v)>0

M0,2|d(v)/Sd(v) ×
∏

e∈Edg

QŴe

≈

( ∏

v∈Ver
d(v)>0

M0,2|d(v)/Sd(v)

)/ ∏

e∈Edg

Zd(e), (6.3)
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with each cyclic group Zd(e) acting trivially. For example, in the case of the last

diagram in Figure 1,

QŴ ≈ (M0,2|d0
/Sd0

×M0,2|5/S5)/Zd ×Zd ′

is a fixed locus in Q0,2(P
n−1, d0 + 5 + d + d ′).

If Ŵ is a decorated strand as above and e ∈ Edg, let

πe : QŴ −→ QŴe ⊂ Q0,2(P
n−1,d(e))

be the projection in the decomposition (6.3). Similarly, for each v ∈ Ver such that

d(v) > 0, let

πv : QŴ −→ M0,2|d(v)/Sd(v)

be the corresponding projection. If e = {v1, v2} ∈ Edg with v1 < v2, let

ωe;v1
= −π∗

e ψ1,ωe;v2
= −π∗

e ψ2,ψv1;e = π∗
v1

ψ2,ψv2;e = π∗
v2

ψ1 ∈ H 2(QŴ).

(6.4)

By [11, Section 27.2],

ωe;vi
=

αμ(vi) − αμ(v3−i)

d(e)
, i = 1,2. (6.5)

For each v ∈ Ver−{vmin}, let e−(v) = {v−, v} ∈ Edg denote the edge with v− < v;

for each v ∈ Ver−{vmax}, let e+(v) = {v, v+} ∈ Edg denote the edge with v < v+.

By [17, Section 7.4] the Euler class of the normal bundle of QŴ in Q0,2(P
n−1,

|Ŵ|) is given by

e(NQŴ)

e(Tμ(vmin)P
n−1)

=
∏

v∈Ver
d(v)>0

∏

k �=μ(v)

π∗
v e(V̇

(d(v))
1 (αμ(v) − αk))

×
∏

e∈Edg

π∗
e e(H 0(f ∗

e T Pn ⊗O(−y1))/C)

×
∏

v∈Ver−vmin−vmax
d(v)=0

(ωe−(v);v + ωe+(v);v)

×
∏

v∈Ver−vmin
d(v)>0

(ωe−(v);v − ψv;e−(v))

×
∏

v∈Ver−vmax
d(v)>0

(ωe+(v);v − ψv;e+(v)), (6.6)

where V̇
(d(v))
1 (αμ(v) − αk) is as in (4.8), and C ⊂ H 0(f ∗

e T Pn ⊗ O(−y1)) is the

trivial T-representation. The terms on the second line in (6.6) describe the stan-

dard deformations of the domain; they are given by the direct sum of the ten-

sor products of the tangent line bundles at the two branches of each node. The

terms on the first line in (6.6) correspond to the deformations of the sheaf without

changing the domain C; they are obtained by relating these deformations to the
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deformations on each component of C and applying (3.7) to the deformations over

the components Cv corresponding to the vertices. The first term on the right-hand

side of (6.6) and the first two terms on the second line of (6.6) are the contribu-

tions of nondegenerate vertices described in [17, Section 7.4.2]. The second term

on the right-hand side of (6.6) is the edge contributions, which are the same as in

Gromov–Witten theory. Finally, by (1.2) and (4.7),

e(V̇
(|Ŵ|)
n;a )|QŴ =

∏

v∈Ver
d(v)>0

π∗
v e(V̇(d(v))

a (αμ(v))) ·
∏

e∈Edg

π∗
e e(V̇

d(e)
n;a ). (6.7)

Lemma 6.2. For every edge e = {v1, v2} with v1 < v2 in Ŵ as above,

∫

QŴe

e(V̇
d(e)
n;a )

e(H 0(f ∗
e T Pn ⊗O(−y1))/C)

= C
μ(v2)

μ(v1)
(d(e)) (6.8)

with C
μ(v2)

μ(v1)
(d(e)) given by (5.6).

Proof. Since the edge contributions are the same as in Gromov–Witten theory,

(6.8) is standard; we recall its derivation for the sake of completeness. Let i =

μ(v1), j = μ(v2), and d = d(e).

By [11, Exercise 27.2.3],

e(H 0(f ∗
e OPn−1(ak))) =

akd∏

r=0

(akd − r)αi + rαj

d
∀ak ∈ Z≥0. (6.9)

Since e(OPn−1(ak))|Pi
= akαi and the sequence

0 −→ H 0(f ∗
e OPn−1(ak) ⊗O(−y1)) −→ H 0(f ∗

e OPn−1(ak))

−→ OPn−1(ak)|Pi
−→ 0

is exact, the product of (6.9) without the r = 0 factor over k with ak > 0, that

is, the first product in the numerator of (5.6), is the equivariant Euler class of the

first summand in (1.2) restricted to fe. By Serre duality and [11, Exercises 27.2.2,

27.2.3],

e(H 1(f ∗
e OPn−1(ak))) =

−akd−1∏

r=1

(akd + r)αi − rαj

d
∀ak ∈ Z−. (6.10)

Since the sequence

0 −→OPn−1(ak)|Pi
−→ H 1(f ∗

e OPn−1(ak) ⊗O(−y1))

−→ H 1(f ∗
e OPn−1(ak)) −→ 0

is exact, the product of (6.10) with the extra r = 0 factor over k with ak < 0, that

is, the second product in the numerator of (5.6), is the equivariant Euler class of

the second summand in (1.2) restricted to fe. Thus, the numerators in (6.8) and

(5.6) are the same.
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The denominator in (6.8) is computed using the exact sequence

0 −→ H 0(f ∗
e T P1

i,j ⊗O(−y1))/C −→ H 0(f ∗
e T Pn ⊗O(−y1))/C

−→
⊕

k �=i,j

H 0(f ∗
e OPn−1(1) ⊗Cαi−αk

⊗O(−y1)) −→ 0, (6.11)

where Cαi−αk
is the topologically trivial line bundle with equivariant Euler class

αi − αk ; this sequence is obtained from the equivariant Euler sequence for Pn−1.

The equivariant Euler class of each summand on the second line of (6.11) is given

by (6.9) with ak = 1, each factor increased by αi − αk (because of the tensor

product with the line bundle Cαi−αk
), and the r = 0 factor again dropped. Thus,

the equivariant Euler class of the vector space on the second line of (6.11) is the

product of the factors in the denominator of (5.6) with k �= i, j . By [11, Exercise

27.2.3],

e(H 0(f ∗
e T P1

i,j )) =

2d∏

r=0

(d − r)(αi − αj ) + r(αj − αi)

d
. (6.12)

Since e(T P1
i,j )|Pi

= αi − αj and the sequence

0 −→ H 0(f ∗
e T P1

i,j ⊗O(−y1)) −→ H 0(f ∗
e T P1

i,j ) −→ T P1
i,j |Pi

−→ 0

is exact, (6.11) and (6.12) give

e(H 0(f ∗
e T P1

i,j ⊗O(−y1))/C) =

d∏

r=1

r(αj − αi)

d
·

d−1∏

r=1

r(αi − αj )

d
.

Thus, the denominator in (6.8) equals to the product in the denominator of (5.6).

The remaining factor d in the denominator of (5.6) accounts for the automorphism

group of QŴe . �

Proposition 6.1 is proved by applying the localization theorem to

Zn;a(x = αi, h̄, q) = 1 +

∞∑

d=1

qd

∫

Q0,2(P
n−1,d)

e(V̇
(d)
n;a)ev∗

1φi

h̄ − ψ1

∈ Qα[[h̄−1, q]], (6.13)

where φi is the equivariant Poincaré dual of the fixed point Pi ∈ Pn−1; see (3.4),

(3.9), and (3.10). Since φi |Pj
= 0 unless j = i, a decorated strand as in (6.1)

contributes to (6.13) only if the first marked point is attached to a vertex labeled i,

that is, μ(vmin) = i for the smallest element vmin ∈ Ver. We show that, just as with

Givental’s J -function, the (d, j)-summand in (5.4) with C = C and F = Zn;a,

that is,

C
j
i (d)qd

h̄ − (αj − αi)/d
Zn;a(αj , (αj − αi)/d, q),

is the sum over all strands such that μ(vmin) = i, that is, the first marked point is

mapped to the fixed point Pi ∈ Pn−1, vmin is a bivalent vertex, that is, d(vmin) = 0,

the only edge leaving this vertex is labeled d , and the other vertex of this edge is

labeled j . We also show that the first sum on the right-hand side of (5.4) is 1
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d

(i,0) (j,0)

1 2

Ŵ1

(j,2)

1 2

Ŵ2

Figure 3 The two substrands of the second strand in Figure 1

(for the degree 0 term) plus the sum over all strands such that μ(vmin) = i and

d(vmin) > 0.

If Ŵ is a decorated strand with μ(vmin) = i as above,

ev∗
1φi |QŴ =

∏

k �=i

(αi − αk) = e(Tμ(vmin)P
n−1). (6.14)

Suppose in addition that d(vmin) = 0. Let v1 ≡ (vmin)+ be the immediate succes-

sor of vmin in Ŵ, and e1 = {vmin, v1} be the edge leaving vmin. If |Edg| > 1 or

d(v1) > 0 (i.e., Ŵ is not as in the first diagram in Figure 1), we break Ŵ at v1 into

two “substrands”:

(i) Ŵ1 = Ŵe1
consisting of the vertices vmin < v1, the edge {vmin, v1}, and the

d-value of 0 at both vertices;

(ii) Ŵ2 consisting all vertices and edges of Ŵ, other than the vertex vmin and the

edge {vmin, v1};

see Figure 3. By (6.3),

QŴ ≈ QŴ1
× QŴ2

.

Let π1,π2 : QŴ −→ QŴ1
,QŴ2

be the two component projection maps. By (6.7)

and (6.6),

e(V̇
(|Ŵ|)
n;a )|QŴ = π∗

1 e(V̇
(|Ŵ1|)
n;a ) · π∗

2 e(V̇
(|Ŵ2|)
n;a ),

e(NQŴ)

e(TPi
Pn−1)

= π∗
1

(
e(NQŴ1

)

e(TPi
Pn−1)

)

· π∗
2

(
e(NQŴ2

)

e(TPμ(v1)
Pn−1)

)
· (ωe1;v1

− π∗
2 ψ1).

Combining this with (6.5), (6.8), and (6.14), we find that

q |Ŵ|

∫

QŴ

e(V̇
(|Ŵ|)
n;a )ev∗

1φi

(h̄ − ψ1)e(NQŴ)

=
C

μ(v1)
i (d(e1))q

d(e1)

h̄ − (αμ(v1) − αi)/d(e1)

·

(
q |Ŵ2|

{∫

QŴ2

e(V̇
(|Ŵ2|)
n;a )ev∗

1φμ(v1)

(h̄ − ψ1)e(NQŴ2
)

}∣∣∣∣
h̄=(αμ(v1)−αi )/d(e1)

)
. (6.15)
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(i, d0)

1 2

Ŵ0

d d ′

(i,0) (j,0) (k,5)

1 2

Ŵc

Figure 4 The two substrands of the last strand in Figure 1

By (6.13) with i replaced by μ(v1) and the localization formula (3.8), the sum of

the last factors over all possibilities for Ŵ2, with Ŵ1 held fixed, is

Zn;a(αμ(v1), (αμ(v1) − αi)/d(e1), q) − 1.

On the other hand, the contribution of the graph Ŵiμ(v1)(d(e1)) as in the first dia-

gram in Figure 1 is precisely the first factor on the right-hand side of (6.15). Thus,

the contribution to (6.13) from all strands Ŵ such that μ(v1) = j and d(e1) = d is

C
j

i (d)qd

h̄ − (αj − αi)/d
Zn;a(αj , (αj − αi)/d, q),

that is, the (d, j)-summand in the recursion (5.4) for Zn;a.

Suppose next that Ŵ is a strand such that μ(vmin) = i and d(vmin) > 0. If

|Ver| > 1, that is, Ŵ is not as in the first diagram in Figure 4, we break Ŵ at

vmin into two “substrands”:

(i) Ŵ0 consisting of the vertex {vmin} only, with the same μ and d-values as in Ŵ;

(ii) Ŵc consisting all vertices and edges of Ŵ, but with the d-value of vmin replaced

by 0;

see Figure 4. By (6.3),

QŴ ≈ QŴ0
× QŴc = (M0,2|d(vmin)/Sd(vmin)) × QŴc ; (6.16)

if |Ver| = 1, then this decomposition holds with QŴc ≡ {pt} and d(vmin) = |Ŵ|.

Let π0, πc be the two component projection maps in (6.16). Since

ψ1|QŴ = π∗
0 ψ1,

T acts trivially on M0,2|d(vmin),

ψ1 = 1 × ψ1 ∈ H ∗
T
(M0,2|d(vmin)) = H ∗

T
⊗ H ∗(M0,2|d(vmin)),

that is, T acts trivially on the universal cotangent line bundle for the first marked

point on M0,2|d(vmin), and the dimension of M0,2|d(vmin) is d(vmin) − 1,

1

h̄ − ψ1

∣∣∣∣
QŴ

=

d(vmin)−1∑

r=0

h̄−(r+1)π∗
0 ψ r

1 . (6.17)

Since |d(vmin)| ≤ |Ŵ| and Ŵ contributes to the coefficient of q |Ŵ| in (6.13), it fol-

lows that Zn;a satisfies (5.4) with F = Zn;a, C
j
i (d) = C

j
i (d), Nd = d , Zr

i (d) = 0

for r ∈ Z+, and Z0
i (d) = δ0d . In particular, Zn;a is C-recursive.
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It remains to verify the last identity in Proposition 6.1. We continue with the

notation as in the previous paragraph. If |Ver| = 1, then the second factor in (6.16)

is trivial; in this case, (6.7) and (6.6) immediately give

q |Ŵ|

∫

QŴ

e(V̇
(|Ŵ|)
n;a )ev∗

1φi

(h̄ − ψ1)e(NQŴ)

=

|Ŵ|−1∑

r=0

h̄−(r+1) q |Ŵ|

(|Ŵ|)!

∫

M0,2||Ŵ|

e(V̇
(|Ŵ|)
a (αi))ψ

r
1∏

k �=i e(V̇
(|Ŵ|)
1 (αi − αk))

. (6.18)

Suppose next that |Ver| > 1. By (6.7) and (6.6),

e(V̇
(|Ŵ|)
n;a )|QŴ = π∗

0 e(V̇
(|Ŵ0|)
a (αi)) · π∗

c e(V̇
(|Ŵc|)
n;a ),

e(NQŴ)

e(TPi
Pn−1)

= π∗
0

∏

k �=i

e(V̇
(|Ŵ0|)
1 (αi − αk))

· π∗
c

(
e(NQŴc )

e(TPi
Pn−1)

)
· (ωe1;vmin

− π∗
0 ψ2),

where e1 is the edge leaving vmin. By (6.4),

1

ωe1;vmin
− π∗

0 ψ2
=

∞∑

b=0

π∗
0 ψb

2 (−π∗
c ψ1)

−(b+1).

Combining the last four identities, we find that

q |Ŵ|

∫

QŴ

e(V̇
(|Ŵ|)
n;a )ev∗

1φi

(h̄ − ψ1)e(NQŴ)

=

d0−1∑

r=0

d0−1−r∑

b=0

h̄−(r+1)

(
qd0

d0!

∫

M0,2|d0

e(V̇
(d0)
a (αi))ψ

r
1ψb

2∏
k �=i e(V̇

(d0)
1 (αi − αk))

× (−1)b+1q |Ŵc|

∫

QŴc

ψ
−(b+1)
1

e(V̇
(|Ŵc|)
n;a )ev∗

1φi

e(NQŴc )

)
, (6.19)

where d0 = d(vmin) = |Ŵ0|.

We now sum up the last factors in (6.19) over all possibilities for Ŵc with

|Ŵc| > 0 by decomposing Ŵc into substrands Ŵ1 = Ŵij (d), for some j ∈ [n] − i

and d ∈ Z+, and Ŵ2, as in the case d(vmin) = 0 above. If Ŵc �= Ŵ1, (6.15) with Ŵ

replaced by Ŵc gives

q |Ŵc|

∫

QŴc

ψ
−(b+1)
1

e(V̇
(|Ŵc|)
n;a )ev∗

1φi

e(NQŴc )

= C
μ(v1)
i (d(e1))q

d(e1)

(
αμ(v1) − αi

d(e1)

)−(b+1)

×

(
q |Ŵ2|

{∫

QŴ2

e(V̇
(|Ŵ2|)
n;a )ev∗

1φμ(v1)

h̄ − ψ1

1

e(NQŴ2
)

}∣∣∣∣
h̄=(αμ(v1)−αi )/d(e1)

)
.
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The sum of the last factors above over all possibilities for Ŵ2, with Ŵ1 held fixed,

including the case Ŵ2 is empty (when this factor is taken to be 1 for the equality

to hold), is

Zn;a(αμ(v1), (αμ(v1) − αi)/d(e1), q),

as before. Comparing with the recursion (5.4) for Zn;a, we conclude

∑

Ŵc,|Ŵc|>0
μ(v1)=j,d(e1)=d

q |Ŵc|

∫

QŴc

ψ
−(b+1)
1

e(V̇
(|Ŵc|)
n;a )ev∗

1φi

e(NQŴc )

= C
j

i (d)qd

(
αj − αi

d

)−(b+1)

Zn;a(αj , (αj − αi)/d, q)

= R
h̄=(αj −αi )/d

{h̄−(b+1)Zn : a(αi, h̄, q)}.

Thus, by the recursion (5.4) for Zn;a and the residue theorem on S2,

∑

Ŵc,|Ŵc|>0

q |Ŵc|

∫

QŴc

ψ
−(b+1)
1

e(V̇
(|Ŵc|)
n;a )ev∗

1φi

e(NQŴc )

= − R
h̄=0,∞

{h̄−(b+1)Zn;a(αi, h̄, q)}

= − R
h̄=0

{h̄−(b+1)Zn;a(αi, h̄, q)} + δ0b.

Combining this with (6.19) and (6.18), we obtain

∑

Ŵ,d(vmin)>0

q |Ŵ|

∫

QŴ

e(V̇
(|Ŵ|)
n;a )ev∗

1φi

h̄ − ψ1

∣∣∣∣
QŴ

1

e(NQŴ)

=

∞∑

d=1

qd

d!

d−1∑

r=0

h̄−(r+1)

d−1−r∑

b=0

((∫

M0,2|d

e(V̇
(d)
a (αi))ψ

r
1ψb

2∏
k �=i e(V̇

(d)
1 (αi − αk))

)

× R
h̄=0

{
(−1)b

h̄b+1
Zn;a(αi, h̄, q)

})
.

This concludes the proof of Proposition 6.1.

In the case of products of projective spaces and concavex sheaves (1.14), we

need analogues of (4.6) and (4.7) for every pair of tuples

d ≡ (d1, . . . , dp) ∈ (Z≥0)p − 0, β = (β1, . . . , βp) ∈ H 2
T
.

Thus, we define the sheaves S∗
1 , . . . ,S∗

p over the universal curve U −→ M0,2||d|

by

S∗
1 ≡ OU (σ1 + · · · + σd1

),S∗
2 ≡ OU (σd1+1 + · · · + σd1+d2

), . . . −→ U

and denote by S∗
i (βi), with i = 1, . . . , p, the sheaves such that

e(S∗
i (βi)) = βi × 1 + 1 × e(S∗

i ) ∈ H ∗
T
(U) = H ∗

T
⊗ H ∗(U).
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Similarly to (4.7), let

V̇(d)
a (β) =

⊕

ak;1≥0

R0π∗(S
∗
1 (β1)

ak;1 ⊗ · · · ⊗ S∗
1 (βp)ak;p (−σ1))

⊕
⊕

ak;1<0

R1π∗(S
∗
1 (β1)

ak;1 ⊗ · · · ⊗ S∗
1 (βp)ak;p (−σ1)) −→ M0,2||d|.

The fixed points of the T-action on Pn1−1 × · · · × Pnp−1 are

Pi1···ip ≡ Pi1 × · · · × Pip , is ∈ [ns];

thus, the function μ on vertices now takes values in the tuples (i1, . . . , ip). The

function d on vertices now takes values in (Z≥0)p , with the space M0,2|d(v)/Sd(v)

above replaced by

M0,2|d1(v)+···+dp(v)/Sd1(v) × · · · × Sdp(v),

in light of (2.8). The T-fixed curves are the lines between the points Pi1···ip and

Pj1···jp such that

|{s ∈ [p] : is �= js}| = 1;

thus, the vertices of any edge now differ by precisely one of the indices

(i1, . . . , ip), with the ω-classes in (6.5) described by the difference in the weights

of this index. The strands with d(vmin) = 0 now give rise to a triple sum, with

the summation index s ∈ [p] on the outer sum indicating which of the indices

(i1, . . . , ip) changes. The computation of the contribution from the strands with

d(vmin) > 0 proceeds exactly as above, but the denominator in the integrand for

M0,2|d0
above is replaced by the product of factors corresponding to each of the

p factors. This results in a similar formula for the secondary coefficients Zr
i1···ip

in (5.4):

∞∑

(d1,...,dp)∈(Z≥0)−0

Zr
i1···ip

(d1, . . . , dp)q
d1

1 · · ·q
dp
p

=
∑

d∈(Z≥0)−0

q
d1

1 · · ·q
dp
p

d1! · · ·dp!

×

|d|+r∑

b=0

((∫

M0,2||d|

e(V̇
(d)
a (αi1 , . . . , αip ))ψ−r−1

1 ψb
2∏p

s=1

∏
k �=is

e(V̇
(ds )
es

(αs;is − αs;k))

)

× R
h̄=0

{
(−1)b

h̄b+1
Zn;a(αi1 , . . . , αip , h̄, q1, . . . , qp)

})
, (6.20)

whenever r ∈ Z− and is ∈ [ns], if es ∈ (Z+)p is the sth coordinated vector.
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7. Polynomiality for Stable Quotients

In this section, we adopt the argument in [11, Section 30.2], showing that the

equivariant version of Givental’s J -function satisfies the self-polynomiality con-

dition of Definition 5.2, to show that the equivariant stable quotients analogue

of Givental’s J -function, the power series Zn;a defined by (4.1), also satisfies

the self-polynomiality condition. Proposition 7.1 is an immediate consequence of

Lemma 7.2 below, which provides a geometric description of the power series

�Zn;a
.

Proposition 7.1. If l ∈ Z≥0, n ∈ Z+, and a ∈ (Z∗)l , then the power series

Zn;a(x, h̄, q) satisfies the self-polynomiality condition.

The proof involves applying the classical localization theorem [1] with (n + 1)-

torus

T̃ ≡ C∗ ×T,

where T = (C∗)n as before. We denote the weight of the standard action of the

one-torus C∗ on C by h̄. Thus, by Section 3,

H ∗
C∗ ≈ Q[h̄], H ∗

T̃
≈ Q[h̄, α1, . . . , αn] �⇒ H∗

T̃
≈ Qα(h̄).

Throughout this section, V = C ⊕ C denotes the representation of C∗ with the

weights 0 and −h̄. The induced action on PV has two fixed points:

q1 ≡ [1,0], q2 ≡ [0,1].

With γ1 −→ PV denoting the tautological line bundle,

e(γ ∗
1 )|q1

= 0, e(γ ∗
1 )|q2

= −h̄, e(Tq1
PV ) = h̄, e(Tq2

PV ) = −h̄; (7.1)

this follows from our definition of the weights in Section 3.

For each d ∈ Z≥0, the action of T̃ on Cn ⊗ SymdV ∗ induces an action on

Xd ≡ P(Cn ⊗ SymdV ∗).

It has (d + 1)n fixed points:

Pi(r) ≡ [P̃i ⊗ ud−rvr ], i ∈ [n], r ∈ {0} ∪ [d],

where (u, v) are the standard coordinates on V and P̃i ∈ Cn is the ith coordinate

vector (so that [P̃i] = Pi ∈ Pn−1). Let

� ≡ e(γ ∗) ∈ H ∗
T̃
(Xd)

denote the equivariant hyperplane class.
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For all i ∈ [n] and r ∈ {0} ∪ [d],

�|Pi (r) = αi + rh̄,

e(TPi (r)Xd) =

{ d∏

s=0

n∏

k=1
(s,k)�=(r,i)

(� − αk − sh̄)

}∣∣∣∣
�=αi+rh̄

.5 (7.2)

Since

BXd = P(B(Cn ⊗ SymdV ∗)) −→ BT̃ and

c(B(Cn ⊗ SymdV ∗)) =

d∏

s=0

n∏

k=1

(1 − (αk + sh̄)) ∈ H ∗(BT̃),6

the T̃-equivariant cohomology of Xd is given by

H ∗

T̃
(Xd) ≡ H ∗(BXd) = H ∗(BT̃)[�]

/ d∏

s=0

n∏

k=1

(� − (αk + sh̄))

≈ Q[�, h̄,α1, . . . , αn]
/ d∏

s=0

n∏

k=1

(� − αk − sh̄)

⊂ Qα[h̄,�]
/ d∏

s=0

n∏

k=1

(� − αk − sh̄).

In particular, every element of H ∗

T̃
(Xd) is a polynomial in � with coefficients in

Qα[h̄] of degree at most (d + 1)n − 1.

By [13, Lemma 2.6], there is a natural T̃-equivariant morphism

� : M0,m(PV × Pn−1, (1, d)) −→ Xd .

A general element of b of M0,m(PV × Pn−1, (1, d)) determines a morphism

(f, g) : P1 −→ (PV,Pn−1),

up to an automorphism of the domain P1. Thus, the morphism

g ◦ f −1 : PV −→ Pn−1

is well defined and determines an element �(b) ∈ Xd . Let

Xd = {b ∈M0,2(PV × Pn−1, (1, d)) :

ev1(b) ∈ q1 × Pn−1, ev2(b) ∈ q2 × Pn−1},

X
′
d = {b′ ∈ Q0,2(PV × Pn−1, (1, d)) :

ev1(b
′) ∈ q1 × Pn−1, ev2(b

′) ∈ q2 × Pn−1}. (7.3)

5The weight (i.e., negative first Chern class) of the T̃-action on the line Pi (r) ⊂ Cn ⊗ SymdV ∗ is

αi + rh̄. The tangent bundle of Xd at Pi (r) is the direct sum of the lines Pi (r)
∗ ⊗ Pk(s) with

(k, s) �= (i, r).
6The vector space Cn ⊗SymdV ∗ is the direct sum of the one-dimensional representations Pk(s) of T̃.
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Since the morphism to P1 corresponding to any element of b′ ∈ X
′
d takes the

two marked points to q1 and q2, it is not constant. Thus, the restriction of the

morphism � to Xd is constant along the fibers of the natural surjective morphism

c : Xd −→ X
′
d .7 It follows that the restriction of � to Xd descends via c to a

morphism

θ = θd : X′
d −→ Xd .

For d > 0, there is also a natural forgetful morphism

F : Q0,2(PV × Pn−1, (1, d)) −→ Q0,2(P
n−1, d),

which drops the first sheaf in the pair and contracts one component of the domain

if necessary. Similarly to (1.2), for each d ∈ Z+, let

V
(d)
n;a =

⊕

ak>0

R0π∗(S
∗ak ) ⊕

⊕

ak<0

R1π∗(S
∗ak ) −→ Q0,2(P

n−1, d).

From the usual short exact sequence for the restriction along σ1, we find that

e(V
(d)
n;a) = 〈a〉ev∗

1xℓ(a)e(V̇
(d)
n;a) ∈ H ∗

T
(Q0,2(P

n−1, d)). (7.4)

In the case d = 0, we set

F ∗e(V
(0)
n;a) = 〈a〉ev∗

1(1 × xℓ(a)) ∈ H ∗(Q0,2(PV × Pn−1, (1,0)));

this is used in Lemma 7.2 below.

Lemma 7.2. If l ∈ Z≥0, n ∈ Z+, and a ∈ (Z∗)l , then

�Zn;a
(h̄, z, q) =

∞∑

d=0

qd

∫

X
′
d

e(θ∗�)zF ∗e(V
(d)
n;a)

∈ H ∗
T̃
[[z, q]] ⊂ Qα[h̄][[z, q]]. (7.5)

We prove Lemma 7.2 in the remainder of this section by applying the localiza-

tion theorem of [1] to the T̃-action on X
′
d . We show that each fixed locus of

the T̃-action on X
′
d contributing to the right-hand side of (7.5) corresponds to

a pair (Ŵ1,Ŵ2) of decorated strands as in (6.1), with Ŵ1 and Ŵ2 contributing to

Zn;a(αi, h̄, qeh̄z) and Zn;a(αi,−h̄, q), respectively, for some i ∈ [n].

Similarly to Section 6, the fixed loci of the T̃-action on Q0,2(PV × Pn−1,

(d ′, d)) correspond to decorated strands Ŵ with two marked points at the opposite

ends. The map d should now take values in pairs of nonnegative integers, indicat-

ing the degrees of the two subsheaves. The map μ should similarly take values

in the pairs (i, j) with i ∈ [2] and j ∈ [n], indicating the fixed point (qi,Pj ) to

7For a stable map b, �(b) depends only on the restriction of b to the irreducible component Cb;1 of its

domain Cb on which the degree of the map to P1 is not zero, the nodes of Cb;1, and the degrees

of the restrictions of b to the connected components of Cb − Cb;1 . In contrast, c(b) depends on

the restriction of b to the minimal connected union (chain) of irreducible components C′
b

of its

domain that contains the two marked points, the nodes of C′
b

, and the degrees of the restrictions

of b to the connected components of Cb −C′
b

. Whenever b ∈ Xd , Cb;1 ⊂ C′
b

. Thus, the restriction

of � to Xd contracts everything that the restriction of c contracts.
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1

2

(1,4) (i,0)

2

(i,2) (3,0) (1,3)

4 6

Figure 5 A strand representing a fixed locus in X
′
d

; i �= 1,3

which the vertex is mapped. The μ-values on consecutive vertices must differ by

precisely one of the two components.

The situation for the T̃-action on

X
′
d ⊂ Q0,2(PV × Pn−1, (1, d))

is simpler, however. There is a unique edge of positive PV -degree; we draw it

as a thick line in Figure 5. The first component of the value of d on all other

edges and on all vertices must be 0; so we drop it. The first component of the

value of μ on the vertices changes only when the thick edge is crossed. Thus, we

drop the first components of the vertex labels as well, with the convention that

these components are 1 on the left side of the thick edge and 2 on the right. In

particular, the vertices to the left of the thick edge (including the left endpoint)

lie in q1 × Pn−1, and the vertices to its right lie in q2 × Pn−1. Thus, by (7.3),

the marked point 1 is attached to a vertex to the left of the thick edge, and the

marked point 2 is attached to a vertex to the right. Finally, the remaining second

component of μ takes the same value i ∈ [n] on the two vertices of the thick edge.

Let Ai denote the set of strands as above so that the μ-value on the two end-

points of the thick edge is labeled i; see Figure 5. We break each strand Ŵ ∈ Ai

into three substrands:

(i) Ŵ1 consisting of all vertices of Ŵ to the left of the thick edge, including its

left vertex v1 with its d-value, but in the opposite order, and a new marked

point attached to v1;

(ii) Ŵ0 consisting of the thick edge e0, its two vertices v1 and v2, with d-values

set to 0, and new marked points 1 and 2 attached to v1 and v2, respectively;

(iii) Ŵ2 consisting of all vertices to the right of the thick edge, including its right

vertex v2 with its d-value, and a new marked point attached to v2;

see Figure 6. From (6.3) we then obtain a splitting of the fixed locus in X
′
d corre-

sponding to Ŵ:

QŴ ≈ QŴ1
× QŴ0

× QŴ2

⊂ Q0,2(P
n−1, |Ŵ1|) × Q0,2(PV,1) × Q0,2(P

n−1, |Ŵ2|). (7.6)

The exceptional cases are |Ŵ1| = 0 and |Ŵ2| = 0; the above isomorphism then

holds with the corresponding component replaced by a point.

Let π1, π0, and π2 denote the three component projection maps in (7.6). By

(7.4), (6.7), and (6.6),

F ∗e(V
(|Ŵ|)
n;a )|QŴ = 〈a〉α

ℓ(a)
i · π∗

1 e(V̇
(|Ŵ1|)
n;a ) · π∗

2 e(V̇
(|Ŵ2|)
n;a ),
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2

(1,4) (i,0)

2 1

Ŵ1

1 2

(i,0) (i,0)

Ŵ0

(i,2) (3,0) (1,3)

1 2

4 6

Ŵ2

Figure 6 The three substrands of the strand in Figure 5

e(NQŴ)

e(TPi
Pn−1)

= π∗
1

(
e(NQŴ1

)

e(TPi
Pn−1)

)
· π∗

2

(
e(NQŴ2

)

e(TPi
Pn−1)

)

· (ωe0;v1
− π∗

1 ψ1)(ωe0;v2
− π∗

2 ψ1). (7.7)

Since QŴ0
consists of a degree 1 map, by the last two identities in (7.1)

ωe0;v1
= h̄, ωe0;v2

= −h̄. (7.8)

The morphism θ takes the locus QŴ to a fixed point Pk(r) ∈ Xd . It is immediate

that k = i. By continuity considerations, r = |Ŵ1|. Thus, by the first identity in

(7.2),

θ∗�|QŴ = αi + |Ŵ1|h̄. (7.9)

Combining (7.7)–(7.9), we obtain

q |Ŵ|

∫

QŴ

e(θ∗�)zF ∗e(V
(|Ŵ|)
n;a )|QŴ

e(NQŴ)

=
〈a〉α

ℓ(a)
i eαiz

∏
k �=i(αi − αk)

{
e|Ŵ1|h̄zq |Ŵ1|

∫

QŴ1

e(V̇
(|Ŵ1|)
n;a )ev∗

1φi

h̄ − ψ1

∣∣∣∣
QŴ1

1

e(NQŴ1
)

}

×

{
q |Ŵ2|

∫

QŴ2

e(V̇
(|Ŵ2|)
n;a )ev∗

1φi

(−h̄) − ψ1

∣∣∣∣
QŴ2

1

e(NQŴ2
)

}
. (7.10)

This identity remains valid with |Ŵ1| = 0 and/or |Ŵ2| = 0 if we set the correspond-

ing integral to 1.

We now sum up (7.10) over all Ŵ ∈ Ai . This is the same as summing over all

pairs (Ŵ1,Ŵ2) of decorated strands such that:

(1) Ŵ1 is a 2-point strand of degree d1 ≥ 0 such that the marked point 1 is attached

to a vertex labeled i;

(2) Ŵ2 is a 2-point strand of degree d2 ≥ 0 such that the marked point 1 is attached

to a vertex labeled i.

By the localization formula (3.8),

1 +
∑

Ŵ1

(qeh̄z)|Ŵ1|

{∫

QŴ1

e(V̇
(|Ŵ1|)
n;a )ev∗

1φi

h̄ − ψ1

∣∣∣∣
QŴ1

1

e(NQŴ1
)

}

= 1 +

∞∑

d=1

(qeh̄z)d
∫

Q0,2(P
n−1,d)

e(V̇
(d)
n;a)ev∗

1φi

h̄ − ψ1
= Zn;a(αi, h̄, qeh̄z);
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1 +
∑

Ŵ2

q |Ŵ2|

{∫

QŴ2

e(V̇
(|Ŵ2|)
n;a )ev∗

1φi

(−h̄) − ψ1

∣∣∣∣
QŴ2

1

e(NQŴ2
)

}

= 1 +

∞∑

d=0

qd

∫

Q0,2(P
n−1,d)

e(V̇
(d)
n;a)ev∗

1φi

(−h̄) − ψ1
= Zn;a(αi,−h̄, q). (7.11)

Finally, by (3.8), (7.10), and (7.11),

∞∑

d=0

qd

∫

X
′
d

e(θ∗�)zF ∗e(V
(d)
n;a)

=

n∑

i=1

〈a〉α
ℓ(a)
i eαiz

∏
k �=i(αi − αk)

Zn;a(αi, h̄, qeh̄z)Zn;a(αi,−h̄, q)

= �Zn;a
(h̄, z, q),

as claimed in (7.5).

In the case of products of projective spaces and concavex sheaves (1.14), the

spaces

Q0,2(PV × Pn−1, (1, d)) and Xd = P(Cn ⊗ SymdV ∗)

are replaced by

Q0,2(PV × Pn1−1 × · · · × Pnp−1, (1, d1, . . . , dp)) and

P(Cn1 ⊗ Symd1V ∗) × · · · × P(Cnp ⊗ SymdpV ∗),

respectively. Lemma 7.2 then becomes

�Zn1,...,np ;a
(h̄, z1, . . . , zp, q1, . . . , qp)

=
∑

d1,...,dp≥0

q
d1

1 · · ·q
dp
p

∫

X
′
d1,...,dp

e(θ∗�1)z1+···+(θ∗�p)zpπ∗
1 e(V

(d1,...,dp)

n1,...,np;a).

The vertices of the thick edge in Figure 5 are now labeled by a tuple (i1, . . . , ip)

with is ∈ [ns], as needed for the extension of (5.5) described at the end of Sec-

tion 5. Relation (7.9) becomes

θ∗�s |QŴ = αs;is + |Ŵ1|s h̄,

where |Ŵ1|s is the sum of the sth components of the values of d on the vertices

and edges of Ŵ1 (corresponding to the degree of the maps to Pns−1). Otherwise,

the proof is identical.

8. Proof of Theorems 3 and 4

This section concludes the proof of Theorem 3 stated in Section 4. Sections 5–7

reduce this theorem to conditions on the power series Yn;a defined in (4.2); see

Lemma 8.2. Based on qualitative, primarily algebraic, considerations, we show

in the proof of Proposition 8.3 that this power series does indeed satisfy these

conditions and thus establish Theorem 3. The only geometric considerations en-

tering the proof of Proposition 8.3 concern moduli spaces of stable curves M0,2|d ,
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not moduli spaces of stable quotients Q0,2(P
n−1, d). We conclude this section by

showing that these conditions on Yn;a determine certain integrals on M0,2|d and

finish the proof of Theorem 4 stated in Section 4.

Corollary 8.1. Let l ∈ Z≥0, n ∈ Z+ and a ∈ (Z∗)l . If |a| ≤ n − 2, then

Zn;a(x, h̄, q) = Yn;a(x, h̄, q) ∈ H ∗
T
(Pn−1)[[h̄−1, q]].

Proof. Both sides of this identity are C-recursive and satisfy the self-polynomi-

ality condition (no matter what n and a are); see Lemma 5.4 and Propositions 6.1

and 7.1. By (4.2),

Yn;a(x, h̄, q) ∼= 1 mod h̄−2

whenever |a| ≤ n − 2. If in addition d ∈ Z+, then

dimQ0,2(P
n−1, d) − rk V̇

(d)
n;a = (n − |a|)d + (n − 2) > n − 1 = dimPn−1.

Thus,

Zn;a(x, h̄, q) ∼= 1 mod h̄−2

whenever |a| ≤ n − 2. The claim now follows from Proposition 5.3. �

Lemma 8.2. If l ∈ Z≥0, n ∈ Z+, and a ∈ (Z∗)l are such that |a| ≤ n, then

Zn;a(x, h̄, q) =
Yn;a(x, h̄, q)

In;a(q)
∈ H ∗

T
(Pn−1)[[h̄−1, q]] (8.1)

if and only if

R
h̄=0

{h̄rYn;a(αi, h̄, q)}

=

∞∑

d=1

qd

d!

d−1−r∑

b=0

((∫

M0,2|d

e(V̇
(d)
a (αi))ψ

r
1ψb

2∏
k �=i e(V̇

(d)
1 (αi − αk))

)

× R
h̄=0

{
(−1)b

h̄b+1
Yn;a(αi, h̄, q)

})
(8.2)

for all i ∈ [n] and r ∈ Z≥0.

Proof. Since both sides of (8.1) are C-recursive with the same collection (5.6) of

the primary coefficients (see Lemma 5.4 and Proposition 6.1) and have the same

q0-coefficients, (8.1) holds if and only if the secondary coefficients

1

In;a(q)

∞∑

d=0

Yr
i (d)qd and

∞∑

d=0

Zr
i (d)qd ,

instead of F r
i (d), in the recursions (5.4) for Yn;a/In;a and Zn;a are the same

(this would make the two recursions the same). Since Proposition 6.1 describes

the coefficients Zr
i (d) recursively on d , (8.1) holds if and only if the coefficients

Yr
i (d) satisfy the same description. By Lemma 5.4 and Proposition 6.1, this is the

case if and only if (8.2) holds (r in Lemma 5.4 and Proposition 6.1 corresponds

to −r − 1 in the notation of (8.2)). �
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Proposition 8.3. If l ∈ Z≥0, n ∈ Z+, and a ∈ (Z∗)l , then

R
h̄=0

{h̄rYn;a(αi, h̄, q)}

=

∞∑

d=1

qd

d!

d−1−r∑

b=0

((∫

M0,2|d

e(V̇
(d)
a (αi))ψ

r
1ψb

2∏
k �=i e(V̇

(d)
1 (αi − αk))

)

× R
h̄=0

{
(−1)b

h̄b+1
Yn;a(αi, h̄, q)

})
(8.3)

for all i ∈ [n] and r ∈ Z≥0.

Proof. Let i ∈ [n] be fixed throughout the proof.

(1) Whenever d ∈ Z+ and s, t ∈ [d], where [d] = {1, . . . , d} as before, let

�st = {[C, y1, y2, ŷ1, . . . , ŷd ] ∈M0,2|d : ŷs = ŷt } ∈ H 2(M0,2|d)

denote the class of the corresponding “diagonal” and define

�s =

d∑

t=s+1

�st ∈ H 2(M0,2|d).

For any ak > 0, s ∈ [d], and r ∈ [ak], there is a short exact sequence

0 −→ R0π∗O

(
(r − 1)σ̂s +

d∑

t=s+1

akσ̂t − σ1

)

−→ R0π∗O

(
rσ̂s +

d∑

t=s+1

ak σ̂t − σ1

)

−→ R0π∗O

((
rσ̂s +

d∑

t=s+1

akσ̂t − σ1

)∣∣∣∣
σ̂s

)

−→ 0.

This gives

ak > 0 �⇒ e(V̇(d)
ak

(αi)) =

d∏

s=1

ak∏

r=1

(akαi − rψ̂s + ak�s)

= a
akd
k α

akd
i

×

d∏

s=1

ak∏

r=1

(
1 −

r

ak

α−1
i ψ̂s + α−1

i �s

)
. (8.4)

For any ak < 0, s ∈ [d], and r = 0,1, . . . ,−ak − 1, there is a short exact sequence

0 −→ R0π∗O

((
−rσ̂s +

d∑

t=s+1

ak σ̂t − σ1

)∣∣∣∣
σ̂s

)
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−→ R1π∗O

(
(−r − 1)σ̂s +

d∑

t=s+1

ak σ̂t − σ1

)

−→ R1π∗O

(
−rσ̂s +

d∑

t=s+1

akσ̂t − σ1

)
−→ 0.

This gives

ak < 0 �⇒ e(V̇(d)
ak

(αi)) =

d∏

s=1

−ak−1∏

r=0

(akαi + rψ̂s + ak�s)

= a
−akd
k α

−akd
i

×

d∏

s=1

ak−1∏

r=0

(
1 +

r

ak

α−1
i ψ̂s + α−1

i �s

)
. (8.5)

Similarly to (8.4),

e(V̇
(d)
1 (αi − αk)) = (αi − αk)

d

d∏

s=1

(1 − (αi − αk)
−1ψ̂s + (αi − αk)

−1�s). (8.6)

(2) For d ∈ Z≥0, let

Ci(α) =

∏
ak>0(a

ak

k α
ak

i )
∏

ak<0(a
−ak

k α
−ak

i )
∏

k �=i(αi − αk)
.

We denote by s1, s2, . . . the elementary symmetric polynomials in

{βk} = {(αi − αk)
−1 : k �= i}

for any given number of formal variables βk . Note that

(−1)b

d!

∫

M0,2|d

∏

ak>0

d∏

s=1

ak∏

r=1

(
1 −

r

ak

yψ̂s + y�s

)

×
∏

ak<0

d∏

s=1

ak−1∏

r=0

(
1 +

r

ak

yψ̂s + y�s

)
ψ r

1ψb
2

/ n−1∏

k=1

d∏

s=1

(1 − βkψ̂s + βk�s)

= H
r,b
a;d(y, s1, . . . , sd−1) ∈ Q[y,β1, . . . , βn−1] (8.7)

for some H
r,b
a;d ∈ Q[y, s1, . . . , sd−1] independent of n. Such H

r,b
a;d exists because

the integrand on the left-hand side of (8.7) is symmetric in {βk} and whatever

H
r,b
a;d works for n ≥ d − r − b works for all n (this can be seen by setting the extra
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βk to 0). By (8.4)–(8.7),

(−1)b

d!

∫

M0,2|d

e(V̇
(d)
a (αi))ψ

r
1ψb

2∏
k �=i e(V̇

(d)
1 (αi − αk))

= Ci(α)dH
r,b
a;d(α−1

i , s1, . . . , sd−1) ∀d ∈ Z≥0. (8.8)

Similarly, for any d, d ′ ∈ Z≥0, there exists Ya;d,d ′ ∈ Q[y, s1, . . . , sd ′ ], indepen-

dent of n, such that

[[∏
ak>0

∏akd
r=1(1 + (r/ak)yh̄)

∏
ak<0

∏−akd−1
r=0 (1 − (r/ak)ryh̄)

d!
∏d

r=1

∏n−1
k=1(1 + rβkh̄)

]]

h̄;d ′

= Ya;d,d ′(y, s1, . . . , sd ′). (8.9)

By (4.2) and (8.9),

[[h̄d [[Yn;a(αi, h̄, q)]]q;d ]]h̄;d ′

= Ci(α)dYa;d,d ′(α−1
i , s1, . . . , sd ′) ∀d, d ′ ∈ Z≥0. (8.10)

(3) By (8.8) and (8.10), (8.3) is equivalent to

Ya;d,d−1−r(y, s1, s2, . . .)

=
∑

d1+d2=d
d1≥1

d1−1−r∑

b=0

H
r,b
a;d1

(y, s1, s2, . . .)

×Ya;d2,d2+b(y, s1, s2, . . .) ∀d ∈ Z+. (8.11)

This equivalence is obtained by taking the coefficients of qd of the two sides of

(8.3), factoring out Ci(α)d , and replacing α−1
i by y and {(αi − αk)

−1 : k �= i} by

{β1, . . . , βn−1}. By Lemma 8.2 and Corollary 8.1, (8.11) holds whenever |a| ≤

n − 2. Since (8.11) does not involve n, it holds for all a. Thus, (8.3) holds for all

pairs (n,a). �

Proof of Theorem 4. For each d ∈ Z+, denote by D
11̂;2

⊂ M0,2|d the divisor

whose general element is a two-component rational curve, with one of the com-

ponents carrying the marked point 1 and the fleck 1̂ and the other component

carrying the marked point 2. The second component must then carry at least one

of the remaining flecks. The irreducible components D
11̂;2I

of D
11̂;2

thus corre-

spond to the nonempty subsets I of {2, . . . , d} indexing the flecks on the second

component. There is a natural isomorphism

D
11̂;2I

≈M0,2|(d−|I |) ×M0,2||I |. (8.12)

If π1, π2 are the two component projection maps, then

ψi |D
11̂;2I

= π∗
i ψi, i = 1,2,

e(V̇(d)
a (β))|D

11̂;2I
= π∗

1 e(V̇
(d−|I |)
a (β)) · π∗

2 e(V̇
(|I |)
a (β)). (8.13)
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On the other hand, by the first identity in (2.11) and induction on d ,

ψ2 = D
11̂;2

∈ H 2(M0,2|d). (8.14)

By (8.12)–(8.14),

∫

M0,2|d

e(V̇
(d)
a (αi))ψ

b1

1 ψ
b2

2∏
k �=i e(V̇

(d)
1 (αi − αk))

=

∫

D
11̂;2

e(V̇
(d)
a (αi))ψ

b1

1 ψ
b2−1
2∏

k �=i e(V̇
(d)
1 (αi − αk))

=
∑

d1,d2≥1
d1+d2=d

(
d − 1

d1 − 1

)(∫

M0,2|d1

e(V̇
(d1)
a (αi))ψ

b1

1∏
k �=i e(V̇

(d1)
1 (αi − αk))

)

×

(∫

M0,2|d2

e(V̇
(d2)
a (αi))ψ

b2−1
2∏

k �=i e(V̇
(d2)
1 (αi − αk))

)
(8.15)

whenever b2 ∈ Z+.

For any b1, b2 ∈ Z≥0, let

F
(b1,b2)
n;a (αi, q) =

∞∑

d=1

qd

d!

∫

M0,2|d

e(V̇
(d)
a (αi))ψ

b1

1 ψ
b2

2∏
k �=i e(V̇

(d)
1 (αi − αk))

∈ qQα[[q]].

By (8.15),

DF
(b1,b2)
n;a (αi, q) = DF

(b1,0)
n;a (αi, q) ·F

(0,b2−1)
n;a (αi, q) ∀b2 ∈ Z+, (8.16)

where DF ≡ q d
dq
F . By induction on b2 this gives

F
(0,b2)
n;a (αi, q) =

1

(b2 + 1)!
F

(0,0)
n;a (αi, q)b2+1.

Combining this with (8.16) and using symmetry, we obtain

DF
(b1,b2)
n;a (αi, q) =

1

b1!
F

(0,0)
n;a (αi, q)b1DF

(0,0)
n;a (αi, q) ·

1

b2!
F

(0,0)
n;a (αi, q)b2

�⇒ F
(b1,b2)
n;a (αi, q) =

1

(b1 + b2 + 1)!

(
b1 + b2

b1

)
F

(0,0)
n;a (αi, q)b1+b2+1.

(8.17)

Thus, the r = 0 case of (8.3) is equivalent to

R
h̄=0

{e
−F

(0,0)
n;a (αi ,q)/h̄

Yn;a(αi, h̄, q)} = 0. (8.18)

By [24, Section 2.1], this relation determines F
(0,0)
n;a (αi, q) ∈ qQα[[q]] uniquely.

Thus, by [26, Remark 4.5], F
(0,0)
n;a (αi, q) = ξn;a(αi;q).8 It follows that (8.17) is

equivalent to the identity in Theorem 4. �

8Only the case ℓ−(a) = 0 is considered in [26], but the same reasoning applies in all cases.
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Remark 8.4. By (8.17), for any r∗ ∈ Z≥0, the set of equations (8.3) with r =

0,1, . . . , r∗ is an invertible linear combination of the set of relations

R
h̄=0

{h̄re
−F

(0,0)
n;a (αi ,q)/h̄

Yn;a(αi, h̄, q)} = 0, r = 0,1, . . . , r∗.

Thus, by (8.17), the statement of Proposition 8.3 is equivalent to the condition

that the coefficients of the power series

e
−F

(0,0)
n;a (αi ,q)/h̄

Yn;a(αi, h̄, q) ∈Qα(h̄)[[q]]

are regular at h̄ = 0. This is indeed the case for F
(0,0)
n;a (αi, q) = ξn;a(αi;q) by [26,

Remark 4.5].

Remark 8.5. The above approach can be used to eliminate ψ -classes from

twisted integrals over M0,m|d with m ≥ 3. For example, let

F
(b1,b2,b3)
n;a (αi, q) =

∞∑

d=0

qd

d!

∫

M0,3|d

e(V̇
(d)
a (αi))ψ

b1

1 ψ
b2

2 ψ
b3

3∏
k �=i e(V̇

(d)
1 (αi − αk))

.

Using ψ3 = D12;3 on M0,3|d , we find that

F
(b1,b2,b3)

n;a (αi, q) = F
(b1,b2,0)
n;a (αi, q) ·F

(0,b3−1)

n;a (αi, q) ∀b3 ∈ Z+

�⇒ F
(b1,b2,b3)
n;a (αi, q) =

ξn;a(αi, q)b1+b2+b3

b1!b2!b3!
F

(0,0,0)
n;a (αi, q).

Multiplying the last equation by h̄
−b1−1
1 h̄

−b2−1
2 h̄

−b3−1
3 and summing over

b1, b2, b3 ≥ 0, we obtain

∞∑

d=0

qd

d!

∫

M0,3|d

e(V̇
(d)
a (αi))∏

k �=i e(V̇
(d)
1 (αi − αk))(h̄1 − ψ1)(h̄2 − ψ2)(h̄3 − ψ3)

=
1

h̄1h̄2h̄3

eξn;a(αi ,q)/h̄1+ξn;a(αi ,q)/h̄2+ξn;a(αi ,q)/h̄3F
(0,0,0)
n;a (αi, q)

∈ Qα[[h̄−1
1 , h̄−1

2 , h̄−1
3 , q]].

The power series F
(0,0,0)
n;a is described in [27, Section 3].

In the case of products of projective spaces and concavex sheaves (1.14), αi and

q in (8.2) and (8.3) are replaced by (αi1, . . . , αip ) with is ∈ [ns] and (q1, . . . , qp)

with the right-hand sides modified as in (6.20). In the proof of Proposition 8.3, we

then obtain relations between elementary symmetric polynomials in

{α1;1, . . . , α1;n1
}, . . . , {αp;1, . . . , αp;np

}

that depend on a, but not on n1, . . . , np . They again hold if |a1;s | + · · · + |al;s | ≤

ns − 2 for all s ∈ [p] and thus in all cases.
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