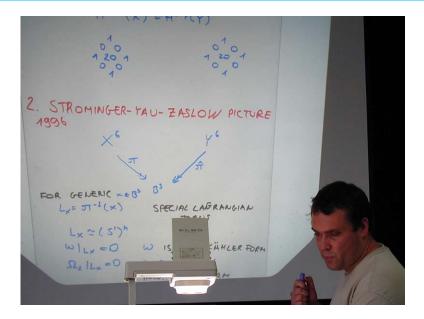
Mirror symmetry, Langlands duality and the Hitchin system

Tamás Hausel

Royal Society URF at University of Oxford http://www.maths.ox.ac.uk/~hausel/talks.html

> April 2010 Colloquium, Utrecht

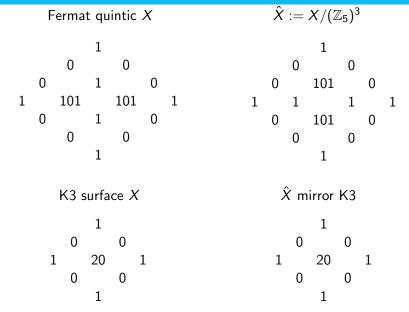
Talk with same title in RIMS, Kyoto 6 September 2001



Mirror Symmetry

- phenomenon first arose in various forms in string theory
- mathematical predictions (Candelas-de la Ossa-Green-Parkes 1991)
- mathematically it relates the symplectic geometry of a Calabi-Yau manifold X^d to the complex geometry of its mirror Calabi-Yau Y^d
- first aspect is the topological mirror test $h^{p,q}(X) = h^{d-p,q}(Y)$
- compact hyperkähler manifolds satisfy $h^{p,q}(X) = h^{d-p,q}(X)$
- (Kontsevich 1994) suggests homological mirror symmetry $\mathcal{D}^{b}(Fuk(X, \omega)) \cong \mathcal{D}^{b}(Coh(Y, I))$
- (Strominger-Yau-Zaslow 1996) suggests a geometrical construction how to obtain Y from X
- many predictions of mirror symmetry have been confirmed no general understanding yet

Hodge diamonds of mirror Calabi-Yaus



Langlands duality

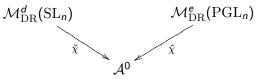
- the Langlands program aims to describe $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ via representation theory
- $\bullet~{\rm G}$ reductive group, ${}^L{\rm G}$ its Langlands dual
- e.g ${}^{L}\operatorname{GL}_{n} = \operatorname{GL}_{n}$; ${}^{L}\operatorname{SL}_{n} = \operatorname{PGL}_{n}$, ${}^{L}\operatorname{PGL}_{n} = \operatorname{SL}_{n}$
- [Langlands 1967] conjectures that {homs $Gal(\overline{\mathbb{Q}}/\mathbb{Q}) \rightarrow G(\mathbb{C})$ } \leftrightarrow {automorphic reps of ${}^{L}G(\mathcal{A}_{\mathbb{Q}})$ }
- $G = GL_1 \rightsquigarrow$ class field theory $G = GL_2 \rightsquigarrow$ Shimura-Taniyama-Weil
- function field version: replace \mathbb{Q} with $\mathbb{F}_q(X)$, where X/\mathbb{F}_q is algebraic curve
- [Ngô, 2008] proves fundamental lemma for $\mathbb{F}_q(X) \rightsquigarrow$ FL for \mathbb{Q}
- geometric version: replace $\mathbb{F}_q(X)$ with $\mathbb{C}(X)$ for X/\mathbb{C}
- [Laumon 1987, Beilinson–Drinfeld 1995] Geometric Langlands conjecture {G-local systems on X} ↔ {Hecke eigensheaves on Bun_{ℓG}(X)}
- [Kapustin–Witten 2006] deduces this from reduction of S-duality (electro-magnetic duality) in N = 4 SUSY YM in 4d

Hitchin system

- Hamiltonian system: (X^{2d}, ω) symplectic manifold
 H : X → ℝ Hamiltonian function X_H Hamiltonian vector field
 (dH = ω(X_H, .))
- $f: X \to \mathbb{R}$ is a first integral if $X_H f = \omega(X_f, X_H) = 0$
- the Hamiltonian system is *completely integrable* if there is $f = (H = f_1, \dots, f_d) : X \to \mathbb{R}^d$ generic such that $\omega(X_{f_i}, X_{f_j}) = 0$
- the generic fibre of f has an action of $\mathbb{R}^d = \langle X_{f_1}, \ldots, X_{f_d} \rangle \rightsquigarrow$ when f is proper generic fibre is a torus $(S^1)^d$
- examples include: Euler and Kovalevskaya tops and the spherical pendulum
- algebraic version when replacing ℝ by ℂ → many examples can be formulated as a version of the *Hitchin system*
- a Hitchin system is associated to a complex curve *C* and a complex reductive group *G*
- it arose in the study [Hitchin 1987] of the 2-dimensional reduction of the Yang-Mills equations

Mirror symmetry for Langlands dual Hitchin systems

- The mirror symmetry proposal of [Hausel–Thaddeus 2003]: "Hitchin systems for Langlands dual groups satisfy Strominger-Yau-Zaslow, so could be considered mirror symmetric; in particular they should satisfy the *topological mirror tests*:"
- the Hitchin systems for SL_n and PGL_n become dual special Lagrangian fibrations \Leftrightarrow SYZ



Theorem (Hausel-Thaddeus 2003, "Topological mirror test")

 $n = 2, 3; d, e \in \mathbb{Z}$, s.t. (d, n) = (e, n) = 1, we have agreement of certain Hodge numbers of $\mathcal{M}^d_{\mathrm{DR}}(\mathrm{SL}_n)$ and $\mathcal{M}^e_{\mathrm{DR}}(\mathrm{PGL}_n)$

$$E\left(\mathcal{M}^{d}_{\mathrm{DR}}(\mathrm{SL}_{n}); x, y\right) = E^{\hat{B}^{d}}_{\mathrm{st}}\left(\mathcal{M}^{e}_{\mathrm{DR}}(\mathrm{PGL}_{n}); x, y\right).$$

Diffeomorphic spaces in non-Abelian Hodge theory

• C genus g curve; $\mathrm{G} = \mathrm{GL}_n(\mathbb{C})$ or $\mathrm{SL}_n(\mathbb{C})$

$$\mathcal{M}^{d}_{\mathrm{Dol}}(\mathrm{G}) := \left\{ \begin{array}{c} \mathrm{moduli\ space\ of\ stable\ rank\ } n \\ \mathrm{degree\ } d\ \mathrm{G}\text{-Higgs\ bundles\ } (E,\phi) \\ \mathrm{i.e.\ } E\ \mathrm{rank\ } n\ \mathrm{degree\ } d\ \mathrm{bundles\ } n \\ \phi \in H^{0}(C, ad(E) \otimes K)\ \mathrm{Higgs\ field\ } \end{array} \right\}$$

 $\mathcal{M}_{\mathrm{DR}}^{d}(\mathrm{G}) := \left\{ \begin{array}{c} \text{moduli space of flat G-connections} \\ \text{on } C \setminus \{p\}, \text{ with holonomy } e^{\frac{2\pi i d}{n}} Id \text{ around } p \end{array} \right\}$ $\mathcal{M}_{\mathrm{B}}^{d}(\mathrm{G}) := \{A_{1}, B_{1}, ..., A_{g}, B_{g} \in \mathrm{G} | \prod_{i=1}^{g} A_{i}^{-1} B_{i}^{-1} A_{i} B_{i} = e^{\frac{2\pi i d}{n}} Id \} /\!\!/ \mathrm{G}$ • when (d, n) = 1 these are smooth non-compact varieties • $\Gamma = Jac_{C}[n] \cong \mathbb{Z}_{n}^{2g}$ acts on $\mathcal{M}^{d}(\mathrm{SL}_{n})$ by tensoring \Rightarrow $\mathcal{M}^{d}(\mathrm{PGL}_{n}) := \mathcal{M}^{d}(\mathrm{SL}_{n})/\Gamma$ is an orbifold

Theorem (Non-Abelian Hodge Theorem)

$$\mathcal{M}^{d}_{\mathrm{Dol}}(\mathrm{G}) \stackrel{diff}{\cong} \mathcal{M}^{d}_{\mathrm{DR}}(\mathrm{G}) \stackrel{diff}{\cong} \mathcal{M}^{d}_{\mathrm{B}}(\mathrm{G})$$

 the characteristic polynomial of φ ∈ H⁰(C, End(E) ⊗ K) χ(φ) ∈ H⁰(C, K) ⊕ H⁰(C, K²) ⊕ · · · ⊕ H⁰(C, Kⁿ) defines Hitchin map

$$\chi_{\mathrm{GL}_n}: \mathcal{M}^d_{\mathrm{Dol}}(\mathrm{GL}_n) \to \mathcal{A}_{\mathrm{GL}_n} = \oplus_{i=1}^n H^0(\mathcal{C}, \mathcal{K}^i)$$

$$\chi_{\mathrm{SL}_n}: \mathcal{M}^d_{\mathrm{Dol}}(\mathrm{SL}_n) \to \mathcal{A}_{\mathrm{SL}_n} = \oplus_{i=2}^n H^0(\mathcal{C}, \mathcal{K}^i)$$

$$\chi_{\mathrm{PGL}_n} : \mathcal{M}^d_{\mathrm{Dol}}(\mathrm{PGL}_n) \to \mathcal{A}_{\mathrm{PGL}_n} = \oplus_{i=2}^n H^0(\mathcal{C}, \mathcal{K}^i)$$

Theorem (Hitchin 1987, Nitsure 1991, Faltings 1993)

 χ is proper and a completely integrable Hamiltonian system. $(\omega(X_{\chi_i}, X_{\chi_j}) = 0)$ Over a generic point $a \in A$ the fibre $\chi^{-1}(a)$ is a torsor for an Abelian variety.

Theorem (Hausel, Thaddeus 2003)

For a generic $a \in A_{SL_n} \cong A_{PGL_n}$ the fibres $\chi_{SL_n}^{-1}(a)$ and $\chi_{PGL_n}^{-1}(a)$ are torsors for dual Abelian varieties.

$$egin{array}{rcl} \mathcal{M}^d_{\mathrm{Dol}}(\mathrm{PGL}_n) &\leftarrow & \mathcal{M}^d_{\mathrm{Dol}}(\mathrm{SL}_n) \ && & \downarrow^{\chi_{\mathrm{PGL}_n}} & & \downarrow^{\chi_{\mathrm{SL}_n}} \ && \mathcal{A}_{\mathrm{PGL}_n} &\cong & \mathcal{A}_{\mathrm{SL}_n}. \end{array}$$

 $\Rightarrow \mathcal{M}_{\mathrm{DR}}^{d}(\mathrm{PGL}_{n})$ and $\mathcal{M}_{\mathrm{DR}}^{d}(\mathrm{SL}_{n})$ satisfy the SYZ construction for a pair of mirror symmetric Calabi-Yau manifolds.

- (Kontsevich 1994)'s homological mirror symmetry proposal $\Rightarrow \mathcal{D}^{b}(Coh(\mathcal{M}_{\mathrm{DR}}^{d}(\mathrm{SL}_{n}))) \sim \mathcal{D}^{b}(Fuk(\mathcal{M}_{\mathrm{DR}}^{d}(\mathrm{PGL}_{n})))$
- \sim Geometric Langlands program of (Beilinson-Drinfeld 1995)
- (Kapustin-Witten 2007) \Rightarrow above from reduction of S-duality (electro-magnetic duality) in N = 4 SUSY YM in 4d
- $\overset{semi-classical}{\leadsto} \mathcal{D}^{b}(Coh(\mathcal{M}^{d}_{\mathrm{Dol}}(\mathrm{SL}_{n}))) \sim \mathcal{D}^{b}(Coh(\mathcal{M}^{d}_{\mathrm{Dol}}(\mathrm{PGL}_{n})))$ \sim fibrewise Fourier-Mukai transform?

Topological mirror tests

(Deligne 1971) → weight filtration for any complex algebraic variety X: W₀ ⊂ · · · ⊂ W_k ⊂ · · · ⊂ W_{2d} = H^d_c(X; Q), plus a pure Hodge structure on W_k/W_{k-1} of weight k

• define
$$E(X; x, y) = \sum_{\gamma \in [\Gamma]} (-1)^d x^i y^j h^{i,j} (W_k/W_{k-1}(H_c^d(X, \mathbb{C})))$$

 $E_{st}^B(M/\Gamma) = \sum_{\gamma \in [\Gamma]} E(M^{\gamma}; L_{\gamma}^B)^{C(\gamma)} (uv)^{F(\gamma)}$
• if $Y \to X/\Gamma$ is crepant then (Kontsevich 1996) \rightsquigarrow
 $E_{st}(X/\Gamma; x, y) = E(Y; x, y)$

Conjecture (Hausel–Thaddeus 2003, "DR-TMS", "Dol-TMS")

For all
$$d, e \in \mathbb{Z}$$
, satisfying $(d, n) = (e, n) = 1$, we have

$$\begin{split} E^{B^e}_{\mathrm{st}}\Big(\mathcal{M}^d_{\mathrm{DR}}(\mathrm{SL}_n(\mathbb{C})); x, y\Big) &= E^{\hat{B}^d}_{\mathrm{st}}\Big(\mathcal{M}^e_{\mathrm{DR}}(\mathrm{PGL}_n(\mathbb{C})); x, y\Big) \\ E^{B^e}_{\mathrm{st}}\Big(\mathcal{M}^d_{\mathrm{Dol}}(\mathrm{SL}_n(\mathbb{C})); x, y\Big) &= E^{\hat{B}^d}_{\mathrm{st}}\Big(\mathcal{M}^e_{\mathrm{Dol}}(\mathrm{PGL}_n(\mathbb{C})); x, y\Big) \end{split}$$

Conjecture (Hausel-Villegas 2004,"B-TMS")

$$E_{\mathrm{st}}^{B^{e}}\left(\mathcal{M}_{\mathrm{B}}^{d}(\mathrm{SL}_{n}(\mathbb{C})); x, y\right) = E_{\mathrm{st}}^{\hat{B}^{d}}\left(\mathcal{M}_{\mathrm{B}}^{e}(\mathrm{PGL}_{n}(\mathbb{C})); x, y\right)$$

Results-Problems

- (Hausel–Thaddeus 2003) Dol-TMS (\Leftrightarrow DR-TMS) for n = 2, 3and (d, n) = 1 using description of $H^*(\mathcal{M}^1_{\text{Dol}}(\text{SL}_n))$ of (Hitchin 1987) for n = 2 and of (Gothen 1994) for n = 3
- (Hausel–Villegas ≥ 2004, Mereb ≥ 2009) B-TMS for n is prime and n = 4 using arithmetic techniques and character tables of GL_n(𝔅_q) and SL_n(𝔅_q)
- Three main problems with this picture
 - Why two different topolocial mirror symmetry conjectures (Dol-TMS & DR-TMS vs. B-TMS)?
 - 2 Why the same Hodge numbers, why not mirrored ones?
 - Why geometric Langlands and not classical Langlands?

Hard Lefschetz for Weight and Perverse Filtrations

- Weight filtration: $W_0 \subset \cdots \subset W_i \subset \cdots \subset W_{2k} = H^k(X)$
- Alvis-Curtis duality in R(GL_n(𝔽_q))
 → Curious Hard Lefschetz Conjecture (theorem for PGL₂):

$$\begin{array}{rccc} L': & Gr^W_{d-2l}(H^{i-l}(\mathcal{M}_{\mathrm{B}})) & \xrightarrow{\cong} & Gr^W_{d+2l}H^{i+l}(\mathcal{M}_{\mathrm{B}}) \\ & x & \mapsto & x \cup \alpha' \end{array},$$

where $\alpha \in W_4 H^2(\mathcal{M}_B)$

• Perverse filtration: $P_0 \subset \cdots \subset P_i \subset \ldots P_k(X) \cong H^k(X)$ for $f : X \to Y$ proper X smooth Y affine (de Cataldo-Migliorini, 2008): take $Y_0 \subset \cdots \subset Y_i \subset \ldots Y_d = Y$ s.t. Y_i generic with dim $(Y_i) = i$ then

$$P_{k-i-1}H^k(X) = \ker(\operatorname{H}^k(X) \to \operatorname{H}^k(f^{-1}(Y_i)))$$

• the Relative Hard Lefschetz Theorem holds:

$$L^{I}: Gr_{d-l}^{P}(H^{*}(X)) \xrightarrow{\cong} Gr_{d+l}^{P}H^{*+2l}(X)$$
$$x \mapsto x \cup \alpha^{l}$$

where $\alpha \in H^2(X)$ is a relative ample class

P = W conjecture

• recall Hitchin map
$$\begin{array}{ccc} \chi : & \mathcal{M}_{\mathrm{Dol}} & \rightarrow & \mathcal{A} \\ & (E,\phi) & \mapsto & \mathrm{charpol}(\phi) \end{array}$$
 is proper, thus induces perverse filtration on $H^*(\mathcal{M}_{\mathrm{Dol}})$

Conjecture ("P=W", de Cataldo-Hausel-Migliorini 2008)

 $P_k(\mathcal{M}_{\mathrm{Dol}}) \cong W_{2k}(\mathcal{M}_{\mathrm{B}})$ under the isomorphism $H^*(\mathcal{M}_{\mathrm{Dol}}) \cong H^*(\mathcal{M}_{\mathrm{B}})$ from non-Abelian Hodge theory.

Theorem (de Cataldo-Hausel-Migliorini 2009)

P = W when $G = GL_2, PGL_2$ or SL_2 .

- Define $PE(\mathcal{M}_{\mathrm{Dol}}; x, y, q) := \sum q^k E(Gr_k^P(\mathcal{H}^*(\mathcal{M}_{\mathrm{Dol}})); x, y)$
- $PE(\mathcal{M}_{\mathrm{Dol}}; x, y, 1) = E(\mathcal{M}_{\mathrm{Dol}}; x, y) = E(\mathcal{M}_{\mathrm{DR}}; x, y)$
- Conjecture $P = W \Rightarrow PE(\mathcal{M}_{\text{Dol}}; 1, 1, q) = E(\mathcal{M}_{\text{B}}; q)$
- RHL \rightsquigarrow $PE(\mathcal{M}_{\text{Dol}}; x, y, q) = (xyq)^d PE(\mathcal{M}_{\text{Dol}}; x, y; \frac{1}{qxy}) \rightsquigarrow$

Conjecture (Topological Mirror test, TMS)

$$PE_{\rm st}^{B^e} \left(\mathcal{M}_{\rm Dol}^d({\rm SL}_n); x, y, q \right) = (xyq)^d PE_{\rm st}^{\hat{B}^d} \left(\mathcal{M}_{\rm Dol}^e({\rm PGL}_n); x, y, \frac{1}{qxy} \right)$$

Conclusion

- The TMS above unifies the previous Dol,DR,B-TMS conjectures (Theorem when *n* = 2)
- Fibrewise Fourier-Mukai transform aka S-duality should identify

 $S: H_p^{r,s}(\mathcal{M}_{\mathrm{Dol}}(\mathrm{SL}_n)) \cong H_{st,d-p}^{r+d/2-p,s+d/2-p}(\mathcal{M}_{\mathrm{Dol}}(\mathrm{PGL}_n))$ this solves the mirror problem (Theorem over regular locus of χ)

 (Ngô 2008) proves the fundamental lemma in the Langlands program by proving "geometric stabilisation of the trace formula" which for SL_n and PGL_n can be reformulated to prove TMS over integral spectral curves, which when n is a prime, can be extended to a proof of TMS everywhere.

Example

- let $\check{\mathcal{M}}$ be moduli space of SL_2 parabolic Higgs bundles on elliptic curve E with one parabolic point
- \mathbb{Z}_2 acts on E and \mathbb{C} as additive inverse $x\mapsto -x$
- $\check{\mathcal{M}} \to E \times \mathbb{C}/\mathbb{Z}_2$ blowing up; $\chi : \check{\mathcal{M}} \to \mathbb{C}/\mathbb{Z}_2 \cong \mathbb{C}$ is elliptic fibration with \hat{D}_4 singular fiber over 0
- $\Gamma = E[2] \cong \mathbb{Z}_2^2$ acts on $\check{\mathcal{M}}$ by multiplying on E
- $\hat{\mathcal{M}}$ the PGL₂ moduli space is $\check{\mathcal{M}}/\Gamma$ an orbifold, elliptic fibration over \mathbb{C} with A_1 singular fiber with three $\mathbb{C}^2/\mathbb{Z}_2$ -orbifold points on one of the components
- blowing up the three orbifold singularities is crepant gives $\check{\mathcal{M}}$
- the topological mirror test: $E_{st}(\hat{\mathcal{M}}; x, y) \stackrel{Kontsevich}{=} E(\check{\mathcal{M}}; x, y)$
- $P_1(H^2(\check{\mathcal{M}})) = \ker(H^2(\check{\mathcal{M}}) \to H^2(\chi^{-1}(pt)) \cong \operatorname{im}(H^2_{cpt}(\check{\mathcal{M}}) \to H^2(\check{\mathcal{M}}))$ has dimension 4
- $E(\check{\mathcal{M}}; x, y) = 1 + 5xy$ non-symmetric but $PE(\check{\mathcal{M}}; q, x, y) = 1 + 4xyq + xyq^2$ symmetric by RHL $PE(\check{\mathcal{M}}; x, y, q) = (xyq)^2 PE(\check{\mathcal{M}}; x, y; \frac{1}{qxy})$