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1 Introduction

A remarkable feature of supersymmetric gauge theories is the existence of infrared dualities:

two seemingly different gauge theories become equivalent at low energies. One of the most

important properties of these correspondences is the fact that quantities which are hard to

compute in one thery due to nonperturbative effects are often mapped to easier problems

in the dual description. One well-known example is the structure of the Coulomb branch of

three-dimensional N = 4 theories, which is subject to quantum corrections. Using mirror

symmetry [1], one can argue that this is equivalent to the Higgs branch of the mirror

theory, which instead can be reliably studied using the classical equations of motion due

to a nonrenormalization theorem.

By now we have many examples of this phenomenon and this led to many new insights

about the dynamics of supersymmetric gauge theories. On the other hand, at present we

do not have a systematic understanding of infrared dualities and an algorithm to extract

them is not available (yet). Ideally, we may wish to have the following result: starting

from a small set of prototypical examples, such as Seiberg duality in four dimensions [2] or

mirror symmetry for three-dimensional theories with eight supercharges [1], one is allowed

to modify the matter content and superpotential interactions of the theory by applying a

“canonical” set of operations. If on top of this we are able to map these operations on the

dual side, then we can systematically extract dual descriptions for other gauge theories.

The purpose of this paper is to make some progress in this direction in the context of

mirror symmetry in three dimensions: as is well known, the mirror map is understood for

a very large class of theories, especially those with eight supercharges. This was achieved

with a variety of arguments including stringy-inspired constructions [3–9]. One natural

question is then whether this family of dualities can be extended to more general 3d N = 2

theories. This is rather well understood in the case of abelian theories, since the required

modification of the matter content is rather easy to implement: in the N = 2 language a

N = 4 vector multiplet includes a chiral multiplet Φ in the adjoint representation of the

gauge group (hence we are dealing with gauge singlets in the abelian case) and extended

supersymmetry implies the presence of cubic suerpotential terms involving these chiral

multiplets in the adjoint. In order to derive a mirror dual for the pure N = 2 abelian

theory (see [10, section 4]), it is enough to introduce by hand a gauge singlet S and turn

on the superpotential term SΦ. This makes both singlets massive and removes all cubic

superpotential terms, so at low energy we are left with the pure N = 2 theory. This

procedure can be implemented on the mirror side as-well: since in the abelian case Φ is a

gauge invariant chiral operator, it should have a counterpart in the mirror description so

it is enough to add by hand a singlet S′ in the mirror theory and couple it to the mirror

image of Φ.

This construction does not extend to the nonabelian case since in this case Φ is no

longer gauge invariant and it is not obvious how introducing a second chiral multiplet in

the adjoint representation affects the dual theory. This is precisely the problem we will
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discuss in the present note. Our basic observation is that the N = 4 linear quiver

◦
1
− ◦

2
− · · · − ◦

N−1
−�

N
, (1.1)

usually called T (SU(N)) in the literature [11], flows in the IR to a free theory consisting of

a chiral multiplet in the adjoint of the SU(N) global symmetry upon a certain monopole

superpotential deformation we will describe in detail. The idea is then the following: in

order to extract the mirror dual of a N = 2 SU(N) theory with zero superpotential, we

start from its N = 4 counterpart and we couple to it T (SU(N)). In many cases the

mirror of this N = 4 theory can be extracted using the methods already available in the

literature (see e.g. [10–13]). Then we activate the suitable monopole superpotential for

T (SU(N)), which reduces (due to our observation) to a chiral multiplet in the adjoint of

the now gauged SU(N) symmetry. The ordinary N = 4 superpotential coupling reduces

to a quadratic term which makes both the adjoint in the N = 4 vector multiplet and

the newly-created adjoint massive, so the theory becomes equivalent at low energy to

a pure N = 2 theory. The monopole superpotential is mapped on the mirror side to

superpotential terms involving the off-diagonal components of the meson (or more precisely

the SU(N) moment map) so in this way we extract the candidate mirror dual for the

N = 2 theory.

In principle this procedure can be repeated multiple times, allowing to vary at will

the number of adjoint chiral multiplets in the theory. We will see that for USp(2N) gauge

theories this procedure allows to vary both the number of adjoints and also the number of

traceless antisymmetric chiral multiplets. The main issue is that, when this procedure is

used to introduce new matter fields, the theory frequently exhibits emergent symmetries

in the infrared which do mix with the R-symmetry and these are not manifest in the dual

description. One should then also understand how to detect them in order to extract

information about the infrared fixed point.

The paper is organized as follows. In section 2 we show that upon a suitable monopole

superpotential deformation T (SU(N)) reduces to a chiral multiplet in the adjoint repre-

sentation of SU(N). We first present a field-theoretic argument using a recently discovered

duality for U(N) SQCD with monopole superpotential and then match partition functions

on the squashed sphere. In section 3 we use this observation to extract the mirror dual

of SU(2) SQCD. Since in this case the dual model is relatively simple, we can perform a

detailed match of the chiral ring of the dual theories. In section 4 we generalize the result

to SQCD with gauge group U(N) and SU(N). We also discuss the matching of squashed-

sphere partition functions. In section 5 we discuss the brane interpretation of our results

and in section 6 we apply the same idea to extract the mirror dual of USp(2N) SQCD

with fundamental and antisymmetric matter. In appendix B we provide a proposal for

the mirror dual of SQCD with orthogonal and symplectic gauge groups, finding nontrivial

agreement at the level of the chiral ring. The derivation in this case would require the

generalization of the arguments presented in section 2 to T (SO(2N)) theory.
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2 Monopole superpotentials and confinement

2.1 U(N) SQCD and the monopole duality

The main tool used in this paper is the monopole duality found in [14]: the following gauge

theories

• Theory A. U(Nc) SQCD with Nf flavors and monopole superpotential W = V +

(where V + of course denotes the monopole operator with magnetic flux +1),

• Theory B. U(Nf−Nc−1) SQCD withNf flavors and superpotentialW = MijQ̃
iQj+

V − + XV +, where Mij and X are gauge singlets

flow to the same IR fixed point. This is derived by reducing to 3d the 4d Intriligator-

Pouliot duality for Usp(2Nc) SQCD and turning on real masses to break the gauge group

to U(Nc). We will be primarily interested in the special case Nf = Nc + 1, in which theory

B reduces to a Wess-Zumino model and the duality becomes

U(Nc) with Nf = Nc + 1 with W = V +

←→ N2
f singlets M and a singlet γ

with W = γ det(M) ,

(2.1)

where γ is dual to the monopole V − in theory A and M is the counterpart of the meson

Q̃iQj in theory A. For Nc = 1 (2.1) can also be extracted from mirror symmetry (see [15]).

We will now see that by turning on a suitable monopole superpotential and repeatedly

using (2.1), T (SU(N)) can be converted into a single chiral multiplet in the adjoint of

SU(N). Our construction is essentially a variant of the method described in [16].

2.2 Monopole deformation of T (SU(N))

Let us start from the simplest case, namely T (SU(2)) which is just N = 4 SQED with two

flavors. We now introduce a singlet X and turn on two monopole superpotential terms:

δW = V + + XV −. The full superpotential of the theory is now (we denote with φ the

chiral mutiplet in the N = 4 vector multiplet)

W = φQ̃iQ
i + V + + XV − (2.2)

Using now (2.1) we conclude that this theory is equivalent to a WZ model with super-

potential

W = γ det(M) + φ tr(M) + Xγ. (2.3)

We immediately see that φ, γ, X and tr(M) are massive and at low energy we are left with

the traceless part of M (i.e. an adjoint of SU(2)) and zero superpotential. This is precisely

the claim made above.

The idea for the general case is simply to iterate the above steps. In order to understand

how this works, let us discuss T (SU(3)), which is the following N = 4 linear quiver with

two gauge nodes:

◦
1
− ◦

2
−�

3
. (2.4)
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In N = 2 notation, the above quiver can be written as

φ1∩•
1

Q
−→
←−
Q̃

φ2∩•
2

P−→
←−
P̃

�
3
. (2.5)

We denote with φ1 and φ2 the adjoint chirals in the U(1) and U(2) vector multiplets

respectively. We denote the U(1)×U(2) bifundamental hypermultiplet with Q and Q̃ and

the three U(2) doublets with Pi and P̃i. We denote with V a,b the monopoles with magnetic

flux a relative to the U(1) gauge group and magnetic flux (b, 0) under the U(2) group. The

superpotential of the theory is

W = φ1Q̃Q+ tr[φ2(P̃iP
i −QQ̃)]. (2.6)

As in the previous case, we turn on superpotential terms involving the monopoles charged

under the U(1) group: δW = V +0 + X1V
−0. From (2.1) we conclude that the U(1) node

confines and is traded for an adjoint of SU(2). The resulting theory is U(2) SQCD with 3

flavors, two chirals in the adjoint and superpotential

W = X1γ + γ det(M) + φ1 trM + tr[φ2(PiP̃
i −M)]. (2.7)

Because of the mass terms both adjoints can be integrated out and we are left with U(2)

SQCD with three flavors and the singlet tr φ2. The superpotential is simply

W = trφ2 tr P̃iP
i. (2.8)

Since this theory has no adjoints, we are in the position to apply (2.1) again, provided we

add the superpotential terms δW = W+ +X2W
− (where W± are the U(2) monopoles with

topological charge ±1). Once this deformation is turned on, the U(2) group confines and

we are left with an adjoint of SU(3) (the trace part becomes massive due to (2.8)) and zero

superpotential as desired.

Our goal is then to find the proper monopole superpotential which reduces, once the

U(1) group is confined, to W+ + X2W
−. A very similar setup was already considered

in [16], where it was observed that V 0+ is mapped to W+ after confinement of the U(1)

and analogously V −− is mapped to W−. This prompts us to turn on the superpotential

terms V 0+ + X2V
−−. V 0− instead becomes equivalent in the chiral ring to V −0 (or more

precisely γ appearing in (2.7)) once the U(2) node as well is confined (see the discussion

around [16, eq. (3.9)]). In conclusion, our prescription is to deform T (SU(3)) by turning

on the superpotential

δW = V +0 + V 0+ + X1(V
−0 + V 0−) + X2V

−−. (2.9)

At this stage it should be clear how to proceed in general: we deform T (SU(N)) by

adding singlets X1, . . . ,XN−1 and turning on the following superpotential

δW = (V +00···0 + V 0+0···0 + V 00+···0 + . . .+ V 000···+)

+ X1[V
−00···0 + V 0−0···0 + V 00−···0 + . . . (terms with one minus)]

+ X2[V
−−0···0 + V 0−−···0 + . . . (terms with two minuses)] + . . .

+ XN−1V −−−···− ,

(2.10)
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where V j1j2j3···jN−1 are (the notation is the same as before) the monopole operators car-

rying flux (j1, (j2, 0), . . . , (jN−1, . . . , 0)) under U(1), U(2), · · · , U(N − 1) gauge groups.

Repeatedly applying the monopole duality (2.1) and integrating out massive fields, we

conclude that all the gauge nodes confine and the SU(N) moment map turns into a free

chiral multiplet in the adjoint of SU(N). This observation constitutes the main tool of the

present paper.

2.2.1 The mirror dual of monopole deformed T (SU(N))

It is instructive to analyze the mirror dual of the superpotential deformation (2.10) to get

a better insight into our procedure. As is well known, T (SU(N)) is self-mirror and the

monopole operators appearing in (2.10) are mapped to components of the Higgs branch

SU(N) moment map. As a result, the superpotential deformation (2.10) is equivalent to

introducing a field-dependent mass matrix (which depends on the singlets Xi) of the form:

M =



0 1 0 . . . 0

X1 0 1 0

X2 X1
. . .

. . .
...

. . .
. . . 0 1

XN−1 . . . X2 X1 0


. (2.11)

We can now make the following observation: introducing a field-dependent mass of this

type is equivalent to coupling to the moment map a chiral multiplet in the adjoint of SU(N)

and turning on a principal nilpotent vev for it. As a result, all the flavors become massive

except one (which we call q, q̃) and integrating out massive fields we are left with (see the

appendix A of [16])

W = q̃φNq +

N−1∑
i=1

Xiq̃φN−i−1q, (2.12)

where φ is the chiral multiplet in the N = 4 U(N − 1) vector multiplet. We shall discuss

further details regarding the first term of this superpotential in section 4 and in appendix A.

This type of superpotential will appear several times below.

2.3 The S3
b partition function

The purpose of this section is to test our dual description of T (SU(N)) at the level of

squashed sphere partition function. Our conventions are as follows: the contribution of

each chiral is [17, 18]

Zχ = sb

(
i
Q

2
− m̃χ

)
, (2.13)

where sb(x) is the double sine function (b denotes the squashing parameter):

sb(x) ≡
∏

n,m∈Z≥0

bm+ nb−1 +Q/2− ix
bm+ nb−1 +Q/2 + ix

; Q ≡ b+
1

b
. (2.14)

m̃χ denotes the following quantity: for every U(1) symmetry Ri we can turn on a real mass

mi and consider its mixing with the R-symmetry R = R0 +
∑

i ciRi. Here R0 denotes

– 5 –
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some R-symmetry and ci is the mixing coefficient. An important observation is that the

partition function on the squashed sphere is holomorphic in mi + iQ2 ci for every U(1)

symmetry including topological symmetries (in the latter case the real mass is identified

with the FI parameters ξ) [19]. We then define

m̃χ ≡
∑
i

qiχ

(
mi + i

Q

2
ci

)
, (2.15)

where qiχ denotes the charge of the chiral multiplet under Ri. Notice that m0 = 0 (there is

no real mass relative to the R-symmetry R0) and c0 = 1.

Using this notation the partition function of T (SU(2)), i.e. SQED with two flavors,

can be written as follows:

Z = sb(mA)

∫ ∞
−∞

due2πiuξsb

(
i
Q

4
− mA

2
+ u± mF

2

)
sb

(
i
Q

4
− mA

2
− u∓ mF

2

)
, (2.16)

where ξ denotes the FI parameter, mF is the fugacity for the SU(2) symmetry acting on

the two flavors and mA is the real mass associated with the U(1) “axial” symmetry H −C
(C and H denote respectively the Cartan generators of the SU(2)C ×SU(2)H R-symmetry

of the N = 4 theory). This real mass term breaks SO(4)R, hence extended supersymmetry

and is usually neglected in writing down the partition function of a theory with eight

supercharges and actually several simplifications occur if we set mA = 0. However, this

parameter will play an important role in the present paper so we prefer keeping it from

the start. The partition function of T (SU(N)) can then be written recursively as follows:

ZT (SU(N)) =
1

(N − 1)!

∫ N−1∏
i=1

duie
2πiξN−1(

∑
i ui)ZT (SU(N−1))(ui, ξi,mA)× (2.17)

∏N−1
i,j=1 sb(ui − uj +mA)

∏N−1
i=1

∏N
j=1 sb

(
iQ4 ± ui ∓mj − mA

2

)
∏N−1
i<j sb

(
iQ2 ± (ui − uj)

) ,

where the factor
∏N−1
i<j sb

(
iQ2 ± (ui − uj)

)
denotes the contribution from the U(N − 1)

gauge group, the factor
∏N−1
i,j=1 sb(ui − uj +mA) denotes the contribution from the adjoint

chiral field under the U(N − 1) gauge group, and
∏N
j=1 sb

(
iQ4 ± ui ∓mj − mA

2

)
denotes

the contribution from the bifundamental hypermultiplet between the U(N−1) gauge group

and the U(N) flavour symmetry. In the above formula ξN−1 denotes the FI parameter of

the U(N − 1) gauge symmetry, the parameters mj (subject to the constraint
∑

jmj = 0)

are the SU(N) real masses and mA is again the real mass for the “axial” U(1) symmetry

described before. The parameters ξi (i = 1, . . . , N − 2) denote instead the FI parameters

of the gauge groups inside T (SU(N − 1)). All these parameters can be complexified and

the imaginary part describes the mixing with the R-symmetry.

In order to write down the partition function of the monopole deformed T (SU(N))

theory, we need first of all to identify the R-symmetry of the theory. The effect of the

monopole superpotential is to break N = 4 supersymmetry to N = 2 and to mix the

– 6 –
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R-symmetry with the topological symmetries Ti of the theory: our monopole deformation

breaks completely the SU(N) Coulomb branch symmetry and the corresponding N − 1

Cartan generators mix with the R-symmetry. The mixing coefficients are determined de-

manding that the monopole operators V +0...0 . . . appearing in (2.10) have R-charge 2. The

monopole operator with magnetic flux (1, 0 . . . , 0) under U(k) and trivial flux under all

other gauge groups has charge one under Tk and zero charge under all other topological

symmetries. Apart from the Ti’s, we have to take into account the two U(1) symmetries

C and H. Our trial R-symmetry can be parametrized as follows:

Rα = C +H + α(C −H) + (1− α)
∑
i

Ti. (2.18)

Under this combination,

• the adjoint chirals in the N = 4 vector multiplets have C = 1, H = 0, Ti = 0 and

thus have charge Rα = 1 + α,

• the bifundamental hypermultiplets have C = 0, H = 1
2 , Ti = 0 and thus have charge

Rα = 1−α
2 ; and

• the monopole operators with charge +1 under one Ti generator, i.e. those appearing

in the first line of (2.10), have C = 1, H = 0; hence they carry charge Rα = 2.

As a result, all superpotential terms in (2.10) have R-charge exactly 2 provided we assign

charge (i + 1)(1 − α) to the singlets Xi. The parameter α cannot be determined with

these considerations alone and we need to perform Z-extremization in order to fix the R-

symmetry [19]. In the rest of this section we will work in terms of the trial R-symmetry

Rα.1 Notice that, since the superpotential (2.10) breaks all the topological symmetries and

C −H except the combination C −H −∑i Ti, all the FI parameters and the real mass for

H − C are identified. Throughout this section we will call the resulting parameter ξ.

The strategy is to prove our claim by induction: we first check the claim is true for

N = 2 and then show that it holds for T (SU(N + 1)) assuming it holds for T (SU(N)). Let

us start by analyzing the T (SU(2)) case: the theory is simply SQED with two flavors and

monopole superpotential V + +X1V
−. The singlet X1 has charge 2− 2α under (2.18). The

partition function then reads:

Z = sb

(
iQα− iQ

2
− 2ξ

)
sb

(
ξ − iQ

2
α

)∫ ∞
−∞

dueπiu(2ξ+iQ(1−α))×

sb

(
i
Q

4
(1 + α)− ξ

2
+ u± mF

2

)
sb

(
i
Q

4
(1 + α)− ξ

2
− u∓ mF

2

)
.

Here mF denotes again the fugacity for the SU(2) symmetry acting on the two flavors.

The first term on the r.h.s. represents the contribution from the singlet X1. Our claim

is now a straightforward consequence of the results presented in [20], where it was shown

1We would like to notice that in the N = 4 theory without the superpotential (2.10), the mixing with

the topological symmetries can be discarded and we are left with Rα = C +H + α(C −H). The result of

Z-extremization is α = 0 for all good or ugly theories.

– 7 –
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that applying twice the pentagon identity for the double sine function (see e.g. [21]) the

partition function (without the contribution from X1) is identical to that of three chiral

multiplets of charge 1 − α (under (2.18)) and one chiral of charge 2α. More precisely, we

find the identity

Z = sb

(
iQα− iQ

2
− 2ξ

)
sb

(
2ξ + i

Q

2
− iQα

)
sb

(
i
Q

2
α− ξ

)
sb

(
±mF − ξ + i

Q

2
α

)
where we recognize in the last two terms the contribution of an SU(2) adjoint with charge

1−α under (2.18) and real mass ξ under the unbroken U(1) symmetry H−C+T . The first

two terms cancel out simply because of the identity sb(x)sb(−x) = 1, which is manifest from

the definition of the double sine function. We thus conclude that the partition function

of the monopole deformed T (SU(2)) is equivalent to that of an SU(2) adjoint. From this

observation it is clear that the partition function is extremized at α = 1
2 , contrary to the

N = 4 case in which α = 0.

We would now like to make the following observation: instead of the SU(2) fugacity

mF we could have used two fugacities m1,2 satisfying the relation m1+m2 = 0. By formally

dropping this constraint, the partition function picks a phase

Z −→ eπim(2ξ+iQ(1−α))Z,

where m = m1+m2
2 . This fact can be simply understood as a shift of the integration variable

in the partition function. This observation will be relevant below.

We now set up the inductive step. To this purpose, it is useful to notice that

T (SU(N + 1)) is equivalent to a U(N) gauge theory with N + 1 flavors and coupled to

T (SU(N)). Using (2.17) we then conclude that the partition function of the monopole

deformed TM (SU(N + 1)) theory can be written as follows:

ZTM (SU(N+1)) =
s
(XN )
b

N !

∫ N∏
i=1

duie
2πi(ξ+iQ

2
(1−α))(

∑
i ui)ZTM (SU(N))(ui, ξ)× (2.19)

∏
i,j sb

(
ui − uj + ξ − iQ2 α

)∏N
i=1

∏N+1
j=1 sb

(
iQ4 (1 + α)± ui ∓mj − ξ

2

)
∏N
i<j sb

(
iQ2 ± (ui − uj)

)
where mj (subject to the constraint

∑
jmj = 0) denote real masses associated with the

Higgs Branch SU(N+1) symmetry rotating the N+1 flavors and s
(XN )
b is the contribution

from the singlet XN , which reads

s
(XN )
b = sb

(
−NiQ

2
− (N + 1)ξ + i

Q

2
(N + 1)α

)
.

As explained above, once we have turned on (2.10), the only unbroken U(1) symmetry for

which we can turn on a real mass is C−H−∑i Ti (apart from the HB SU(N+1) symmetry

rotating the N + 1 flavors), so the corresponding real mass and the N FI parameters are

identified. This is the reason why the parameter ξ enters in ZTM (SU(N)) as well.
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By induction, we have the identity

ZTM (SU(N)) = e(N−1)πi(ξ+i
Q
2
(1−α))(

∑
i ui)

∏
i 6=j

sb

(
ui − uj − ξ + i

Q

2
α

)
sN−1b

(
i
Q

2
α− ξ

)
where we included the phase mentioned before due to the fact that the fugacities ui do not

satisfy the constraint
∑

i ui = 0. Plugging this in (2.19), we find that the contribution from

ZTM (SU(N)) neatly cancels against the contribution from the adjoint in the N = 4 U(N)

vector multiplet, leaving just one singlet ϕ of charge 1 + α under (2.18). This is simply

because of the identity sb(x)sb(−x) = 1. Therefore, the final result for ZTM (SU(N+1)) is

1

N !

∫ N∏
i=1

duie
(N+1)πi(ξ+iQ

2
(1−α))(

∑
i ui)sb

(
(N + 1)

(
i
Q

2
α− ξ

)
−NiQ

2

)
×

sb

(
ξ − iQ

2
α

) ∏N
i=1

∏N+1
j=1 sb

(
iQ4 (1 + α)± ui ∓mj − ξ

2

)
∏N
i<j sb

(
iQ2 ± (ui − uj)

)
=

1

N !

∫ N∏
i=1

duie
(N+1)πi(ξ+iQ

2
(1−α))(

∑
i ui)s

(XN )
b s

(ϕ)
b × (2.20)

∏N
i=1

∏N+1
j=1 sb

(
iQ4 (1 + α)± ui ∓mj − ξ

2

)
∏N
i<j sb

(
iQ2 ± (ui − uj)

)
where

s
(ϕ)
b = sb

(
ξ − iQ

2
α

)
. (2.21)

We can now observe that (2.20) can be interpreted as the partition function of a U(N)

theory with N+1 flavors, two singlets (XN and ϕ) and superpotential V ++XNV −. Notice

that this theory actually has a SU(N)2 global symmetry rotating Q’s and Q̃’s independently

and we are considering real masses only for their diagonal combination, under which Qi
and Q̃i have opposite charge.

The desired conclusion can now be obtained simply by exploiting the monopole dual-

ity (2.1). At the level of S3
b partition functions, the result follows by noticing that (2.20)

(with the contributions from XN and ϕ removed) is equivalent to the l.h.s. of equation (8.7)

of [14], once we impose on the fugacities µa the constraint µa = ξ
2 + iQ4 (1 − α) for every

a,2 we set xi = −ui and we identify the fugacities Ma with mj appearing in (2.20). Using

the integral identity (8.7) of [14] (notice that in the case Nf = Nc + 1 we should neglect

the last line of the integral identity), we then conclude that

ZTM (SU(N+1)) = s
(XN )
b sb

(
i
Q

2
N+(N+1)

(
ξ−iQ

2
α

))
s
(ϕ)
b

N+1∏
i,j=1

sb

(
mi−mj−ξ+i

Q

2
α

)
,

(2.22)

2At first sight it might look strange to trade a real mass such as µa for a complex parameter. However,

this is just a manifestation of the fact that we are mixing the axial U(1) (in our notation H − C, which

assigns charge 1/2 to all Q’s and Q̃’s) with the R-symmetry. As we have already explained around (2.15),

this operation is precisely equivalent to “complexifying” the real mass.
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The result can be simplified by noticing that the first two terms cancel out and s
(ϕ)
b cancels

against one of the Cartan components of the meson, leaving just an adjoint of SU(N) with

trial R-charge 1− α. This is precisely the desired conclusion:

The S3
b partition function of the monopole deformed T (SU(N)) theory is

identical to that of a chiral multiplet in the adjoint of SU(N).

It is also instructive to look at the mirror dual theory, in which U(1)C and U(1)H
are interchanged. This amounts to flipping the sign of α in (2.18). As is well known,

T (SU(N)) is self-mirror and the partition function is symmetric under exchange of FI

parameters and SU(N) real masses [22]. As we have already mentioned, the monopole

operators appearing in (2.10) are mapped to meson components in the mirror theory. In

particular, the monopoles with magnetic flux (1, 0, . . . 0) under a single gauge group are

mapped (in our convention) to the off-diagonal meson components Q̃iQ
i+1. This forces us

to mix the R-symmetry with a certain combination of the Cartan components of the (now

broken) SU(N) Higgs branch (HB) symmetry. Specifically, the generator which replaces∑
i Ti in (2.18) is

ρ = diag

(
N − 1

2
,
N − 3

2
, · · · ,−N − 3

2
,−N − 1

2

)
, (2.23)

and the trial R-symmetry becomes

Rα = C +H − α(C −H) + (1− α)ρ. (2.24)

The S3
b partition function of the deformed T (SU(N)) theory reads∏N−1
n=1 s

(Xn)
b

(N − 1)!

∫ N−1∏
j=1

duje
2πiξN−1(

∑
j uj)

∏
i,j

sb

(
ui − uj −m+ i

Q

2
α

)
× (2.25)

∏
j

∏N
k=1 sb

(
uj +

(
m+ iQ2 (α− 1)

)
N−2k

2

)
sb

(
−uj +

(
m+ iQ2 (α− 1)

)
2k−2−N

2

)
∏N−1
i<j sb

(
iQ2 ± (ui − uj)

) . . .

In this formula ξN−1 denotes the FI parameter for the U(N −1) gauge group, m is the real

mass associated with the symmetry H − C − ρ and, analogously to the previous case, we

are not allowed to turn on any other real masses for the HB SU(N) symmetry since it is

broken. The contribution from the singlet Xn, whose trial R-charge is (n+ 1)(1−α), reads

s
(Xn)
b = sb

(
(n+ 1)

(
m+ i

Q

2
α

)
− inQ

2

)
and in the second line we included the contribution of the N fundamentals of U(N − 1).

The dots stand for all other terms appearing in the partition function. We omit them since

they do not play any role in our discussion. Exploiting again the identity sb(x)sb(−x) = 1,

we can simplify the second line which reduces to∏N−1
j=1 sb

(
uj −

(
m+ iQ2 (α− 1)

)
N
2

)
sb

(
−uj −

(
m+ iQ2 (α− 1)

)
N
2

)
∏N−1
i<j sb

(
iQ2 ± (ui − uj)

) . . .
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Taking this fact into account, we can notice that the partition function becomes identical

to that of the linear quiver

∩•
1

−→
←−
∩•
2

−→
←− · · ·−→←−

Φ
∩•

N−1

q
−→
←−
q̃

�
1

(2.26)

consistently with the expectation that N−1 flavors at the end of the quiver became massive.

The assignment of quantum numbers are compatible with the superpotential (2.12)

W = q̃ΦNq +

N−1∑
n=1

Xj q̃ΦN−n−1q + . . . ,

where Φ is the U(N − 1) adjoint and q, q̃ denote the U(N − 1) fundamental flavor. The

matter content and interactions (denoted by . . .) of the rest of the quiver is compatible

with N = 4 supersymmetry.

The equality of the S3
b partition functions of the mirror theories can be understood as a

consequence of the fact that T (SU(N)) is self-mirror: if ξi denote the N−1 FI parameters of

T (SU(N)), we can change variable and consider the N parameters ei defined by the relation

ξi = ei − ei+1 (with i = 1, . . . , N − 1);

N∑
i=1

ei = 0. (2.27)

The statement that T (SU(N)) is self-mirror implies that

ZT (SU(N))(mA, ei,mj) = ZT (SU(N))(−mA,mj , ei), (2.28)

where mA is the real mass for the axial symmetry H − C. Explicitly, the expressions on

the left and right hand sides are (cf (2.17))

ZT (SU(N))(mA, ei,mj)

=
1

(N − 1)!

∫ N−1∏
i=1

duie
2πi(eN−1−eN )(

∑
i ui)ZT (SU(N−1))(ui, e1, . . . , eN−1)×∏

i,j sb (ui − uj +mA)
∏N−1
i=1

∏N
j=1 sb

(
iQ4 ± ui ∓mj − mA

2

)
∏N−1
i<j sb

(
iQ2 ± (ui − uj)

) (2.29)

and

ZT (SU(N))(−mA, ei,mj)

=
1

(N − 1)!

∫ N−1∏
j=1

duje
2πi(m1−m2)(

∑
j uj)

∏
i,j

sb (ui − uj −mA)×

∏N−1
j

∏N
i=1 sb

(
iQ4 ± uj ∓ ei + mA

2

)
∏N−1
i<j sb

(
iQ2 ± (ui − uj)

) . . . , (2.30)
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where the term in the numerator in the last line denotes the N flavours of fundamental

hypermultiplets under the gauge group U(N − 1) in quiver (1.1) and the term in the de-

nominator denotes the U(N − 1) vector multiplet. The terms collected in · · · denotes the

contribution from the rest of the quiver.

The symmetry under exchange of ei with mj was proven analytically for mA = 0 in [22]

and from the explicit expression for the partition function of T (SU(N)) found in the same

paper, it is clear that this holds also for complex ei and mj . This is expected since pro-

moting the parameters to complex variables is interpreted as mixing of the corresponding

symmetries with the R-symmetry.

Exploiting the fact that (2.28) is true for generic (complex) values of mA (as was proven

in [23]), we can immediately derive the equality of S3
b partition functions for our deformed

T (SU(N)) theory and its mirror since this simply follows from a specialization of (2.28):

on one side the monopole superpotential breaks the topological symmetries and H −C to

the diagonal subgroup, therefore all the ξi parameters and mA should be identified. This

sets the real parts of all ξi and mA to a single parameter which we shall denote by ξ.

Furthermore, the new interaction terms force the mixing with the R-symmetry according

to (2.18). According to (2.15), this implies that we should add imaginary parts iQ2 (1− α)

to all ξi and −iQ2 α to mA, namely

ξi = ξ + i
Q

2
(1− α); mA = ξ − iQ

2
α . (2.31)

Using this formula together with (2.27), we immediately find

ei =
N + 1− 2i

2

(
ξ + i

Q

2
(1− α)

)
(2.32)

and from (2.28) we conclude that

N−1∏
n=1

s
(Xn)
b ZT (SU(N))

(
ξ − iQ

2
α,
N + 1− 2i

2

(
ξ + i

Q

2
(1− α)

)
,mj

)
is identical to

N−1∏
n=1

s
(Xn)
b ZT (SU(N))

(
−ξ + i

Q

2
α,mj ,

N + 1− 2i

2

(
ξ + i

Q

2
(1− α)

))
.

One can easily see that setting ξ = −m the last formula is equivalent to (2.25), already at

the level of the integrand.

3 SU(2) gauge theory with N flavours

In this section we derive the mirror dual of SU(2) SQCD with zero superpotential using

the monopole duality of the previous section. We also perform several consistency checks

regarding the chiral ring of the two theories.
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3.1 The N = 4 mirror pairs

We start from the following pairs of 3d N = 4 mirror theories

(A) : ◦
1
− ◦

2
−�
N

(B) :

�2
|◦
2
− ◦

2
− · · · −

�1
|◦
2︸ ︷︷ ︸

N − 2 U(2) gauge groups

−◦
1

(3.1)

The white nodes with a label m represent 3d N = 4 vector multiplets in the U(m) group

and the black lines denote the bifundamental hypermultiplets. For the group SU(m), we

indicate explicitly the label SU(m) under the corresponding node.

We can obtain a similar pair of theories but with SU(2) gauge group instead of U(2)

gauge group in theory (A) as follows. We ungauge U(1) inside the U(2) gauge group in

(A). In (B), the U(1) flavour symmetry is then gauged. Therefore, we obtain

(A′) : ◦
1
− ◦

SU(2)
−�

2N

(B′) :

�2
|◦
2
− ◦

2
− · · · −

◦ 1
|◦
2︸ ︷︷ ︸

N − 2 U(2) gauge groups

−◦
1

(3.2)

where the blue node with a label m denotes SO(m) group.

3.2 N = 2 SU(2) SQCD with N flavours and W = 0 and its mirror

The idea now is very simple: starting from theory (A′) in (3.2) we can obtain N = 2 SU(2)

SQCD with vanishing superpotential simply by turning on the monopole deformation (2.10)

at the U(1) node. In other words, we exploit the dual description for monopole deformed

T (SU(2)) described before. The CB SU(2) symmetry associated with the T (SU(2)) in

theory (A′) is mapped to the symmetry rotating the two flavors in theory (B′) and, as was

remarked in the previous section, the monopole deformation is equivalent to introducing in

the mirror theory the field dependent mass matrix (2.11). By activating this deformation

we then land on the duality

(a′) : •
SU(2)

Q
− �

2N
with W(a′) = 0

(b′) : �
1

q
−→
←−
q̃

φ1⋂
•
2

b1−→
←−
b̃1

φ2⋂
•
2

b2−→
←−
b̃2

· · ·
φN−3⋂
•
2

bN−3−→
←−
b̃N−3︸ ︷︷ ︸

N − 3 U(2) gauge groups

s

χ⋂
•1
↑ ↓s̃•
2⋃

φN−2

p
−→
←−
p̃

ψ1⋂
•
1

with W(b′)

(3.3)

where

• the grey node with a label m represents a 3d N = 2 vector multiplets in the U(m)

gauge group;
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• for the group SU(m), we indicate explicitly the label SU(m) under the corresponding

node;

• the notation ∩ denotes a chiral multiplet in the adjoint representation;

• the superpotential W(b′) for the (b′) theory is as follows:

W(b′) = Xqq̃ + qφ21q̃ +WN=4
(b′) . (3.4)

where WN=4
(b′) contains the cubic superpotential terms coming from N = 4 supersym-

metry; it includes, for example, −b̃1φ1b1 . Here we denote the flipping field X1 in the

previous section by X for the sake of brevity:

X = X1 . (3.5)

Let us now discuss in more detail how we get (b′) from (B′):

1. We start from the theory

(B′) : �
U(2)

q
−→
←−
q̃

φ1⋂
•
2

b1−→
←−
b̃1

φ2⋂
•
2

b2−→
←−
b̃2

· · ·
φN−3⋂
•
2

bN−3−→
←−
b̃N−3︸ ︷︷ ︸

N − 3 U(2) gauge groups

s

χ⋂
•1
↑ ↓s̃•
2⋃

φN−2

p
−→
←−
p̃

ψ1⋂
•
1

(3.6)

and turn on the superpotential corresponding to (2.10):

W(B′) = q2q̃1 +Xq1q̃2 +
[
q1φ1q̃1 + q2φ1q̃2 + W̃N=4

(B′)

]
, (3.7)

where the square brackets contain of the usual terms coming from N = 4 supersym-

metry including q1φ1q̃1 + q2φ1q̃2, where φi is the complex scalar in the N = 4 vector

multiplet of the i-th U(2) gauge group from left to right, as well as the other terms

collected in W̃N=4
(B′) .

2. The F-term ∂q2W(B′) = 0 implies that

q̃1 + φ1q̃2 = 0 . (3.8)

Plugging this back to (3.7), we obtain

Xq1q̃2 + q1φ21q̃2 + W̃N=4
(B′) (3.9)

We write

q̃ ≡ q̃2 , q ≡ q1 , (3.10)

and hence the new effective superpotential can be written as

Xqq̃ + qφ21q̃ + W̃N=4
(B′) (3.11)

This is precisely the superpotential given by (3.4).
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In the following we denote by φi, with i = 1, . . . , N − 2, the adjoint fields in the U(2)

gauge groups from left to right and by φN−1 and φN the adjoint field in the U(1)

gauge group above and on the right on the (N − 2)-th U(2) gauge group.

We shall discuss further details regarding the superpotential (3.11) in section 4 and

in appendix A. In the meantime, let us proceed our discussion on the chiral ring of

the theories (a′) and (b′).

3.3 The generators of the chiral ring

Theory (a′) has a global symmetry SU(2N) × U(1)A [24–26]. The two generators of the

chiral ring are (1) the basic monopole operator Y and (2) the mesons

Mij = εabQ
a
iQ

b
j , (3.12)

They transform under the global symmetry as follows:

U(1)R U(1)A SU(2N)

Q r 1 [1, 0, . . . , 0]

M 2r 2 [0, 1, 0, . . . , 0]

Y 2N(1− r)− 2 −2N [0, 0, . . . , 0]

(3.13)

The generators of the chiral ring M and Y are subject to the relations

YM = 0 , εi1i2...i2NMi1i2Mi3i4 = 0 . (3.14)

Now let us turn to theory (b′). Let the R-charges of q and q̃ be 1− 2r:

R(q) = R(q̃) = 1− 2r . (3.15)

Since the superpotential W(b′) has R-charge 2, we have

R[φ] ≡ R[φi] = 2r (i = 1, . . . , N − 1) , R[X] = 4r ,

R[b] ≡ R[bi] = R[̃bi] = R(s) = R[s̃] = R[p] = R[p̃] = 1− r .
(3.16)

Therefore, the gauge invariant operator

q

(
N−3∏
i=1

bi

)
ss̃

(
N−3∏
i=1

b̃N−2−i

)
q̃ (3.17)

has R-charge

R [(3.17)] = 2N(1− r)− 2 , (3.18)

which is indeed the R-charge of the monopole operator Y in theory (a′). We propose that

Operator (3.17) in theory (b′) is mapped to the monopole operator Y in theory

(a′) under mirror symmetry.
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The monopole operators in theory (b′) take the form

V(m1;m2;...;mN−2;mN−1;mN ) , (3.19)

where mj denotes the magnetic fluxes under the j-th U(2) gauge groups:

mj = (m1,j ,m2,j) , m1,j ≥ m2,j > −∞ , (3.20)

and mN−1,mN ∈ Z denote the magnetic fluxes of the two U(1) gauge groups. The R-charge

of the monopole operator (3.19) is

R[V(m1;m2;...;mN−2;mN−1;mN )] =

(1−R[q])

2∑
i=1

|mi,1|+ (1−R[b])

2∑
i,j=1

|mi,1 −mj,2|

+ (1−R[b])

N−3∑
k=2

2∑
i,j=1

|mi,k −mj,k+1|

+ (1−R[b])

2∑
i=1

(|mN−1 −mi,N−2|+ |mN −mi,N−2|)

+ (1−R[φ])

N−2∑
j=1

|m1,j −m2,j | −
N−2∑
j=1

|m1,j −m2,j | .

(3.21)

It can be seen that the set of magnetic fluxes {(m1;m2; . . . ;mN−2;mN−1;mN )}
such that

R[V(m1;m2;...;mN−2;mN−1;mN )] = 2r ,

with m1,i ≥ m2,i ≥ 0 for all i = 1, . . . , N − 2, mN−1 ≥ 0 and mN ≥ 0 ,
(3.22)

are in 1− 1 correspondence with the positive roots of SO(2N). As an example, for N = 4,

the set of magnetic fluxes (m1,m2,m3,m4) satisfying (3.22) consists of

{{0, 0}, {0, 0}, 0, 1}, {{0, 0}, {0, 0}, 1, 0}, {{0, 0}, {1, 0}, 0, 0} ,
{{0, 0}, {1, 0}, 0, 1}, {{0, 0}, {1, 0}, 1, 0}, {{0, 0}, {1, 0}, 1, 1} ,
{{1, 0}, {0, 0}, 0, 0}, {{1, 0}, {1, 0}, 0, 0}, {{1, 0}, {1, 0}, 0, 1} ,
{{1, 0}, {1, 0}, 1, 0}, {{1, 0}, {1, 0}, 1, 1}, {{1, 0}, {1, 1}, 1, 1} ;

(3.23)

these fluxes are in 1− 1 correspondence with the 12 positive roots of SO(8). The negative

roots of SO(2N) are in 1 − 1 correspondence with the above magnetic charges with the

sign flipped. The Cartan elements of SO(2N) are then in 1− 1 correspondence with tr(φi)

(with i = 1, . . . , N − 2), χ and ψ1.

In fact, theory (b′) does not have a global symmetry SO(2N). Although theory (B′)

has the Coulomb branch symmetry SO(2N), this symmetry enhances to SU(2N) when

we arrive at theory (b′). The adjoint representation of SO(2N) becomes the rank-two

antisymmetric representation of SU(2N); the latter is realised by the monopole operator

with the aforementioned fluxes, together with tr(φi). We thus propose that

such Coulomb branch operators in theory (b′) are mapped to the mesons Mij

in theory (a′) under mirror symmetry.
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Finally, let us establish the correspondence between the operator X in theory (b′) to

an operator in theory (a′). The R-charge of X is theory (b′) is 4r, which is equal to the

that of operator which is quadratic in M . Since X is a singlet under the manifest SO(2N)

global symmetry in theory (b′), we expect that it is mapped to another singlet of the global

symmetry in theory (a′). We are thus led to identify X with TrM2 (where of course M is

the meson in theory (a′)).

3.4 Chiral ring relations

We have seen that operator (3.17) gets mapped to the monopole operator Y in theory

(a′). Since theory (a′) has only one gauge group SU(2) and hence contains only one basic

monopole operator Y , mirror symmetry implies that other gauge invariant operators built

out of chiral fields in theory (b′) must either vanish or can be written in terms of (3.17) in

the chiral ring. In this subsection, we derive such chiral ring relations from the F-terms in

theory (b′).

The F-term ∂XW(b′) = 0 implies that the gauge invariant operator

q̃aq
a = 0 , (3.24)

where a = 1, 2 is the U(2) gauge index. In addition, ∂φN−1
W(b′) = 0 and ∂φNW(b′) = 0

imply that

pap̃
a = sas̃

a = 0 . (3.25)

Since W(b′) contains the terms bN−3φN−2b̃N−3 + pφN−2p̃ + sφN−2s̃, the F-terms

∂φN−2
W(b′) = 0 imply that the following 2 × 2 matrix equations:

(̃bN−3)
a′
a (bN−3)

b
a′ + pap̃

b + sas̃
b = 0 . (3.26)

Therefore,

tr(̃bN−3bN−3) = 0 . (3.27)

Considering the F-terms ∂φiW(b′) = 0 with i = 1, . . . , N − 2 in a similar way, we obtain

tr(̃bibi) = 0 , i = 1, . . . , N − 2 . (3.28)

To obtain further chiral ring relations, let us consider the F-terms ∂φ1W(b′) = 0:

qb(φ1)
d
aq̃d + qd(φ1)

b
dq̃a − (b1)

a′
a (̃b1)

b
a′ = 0 (3.29)

Contracting the indices a and b, we obtain

tr(φ1qq̃) = 0 . (3.30)

Multiplying (3.29) by qaq̃b and using (3.24), we obtain

(b1)
a′
a (̃b1)

b
a′ q̃bq

a = 0 . (3.31)

On the other hand, multiplying (3.29) by (b1)
b′
c (̃b1)

a
b′ , we obtain

(b1)
b′
c (̃b1)

a
b′

[
qb(φ1)

d
aq̃d + qd(φ1)

b
dq̃a

]
− ((̃b1b1)

2)bc = 0 (3.32)
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We simplify this further in two steps as follows:

1. Multiplying (3.29) by (φ1)
c
b, we obtain

qb(φ1)
d
aq̃d(φ1)

c
b + qd((φ1)

2)cdq̃a︸ ︷︷ ︸
0

−(b1)
a′
a (̃b1)

b
a′(φ1)

c
b = 0 , (3.33)

where the second term vanishes; this follows from q̃a∂q̃cW(b′) = 0. Further multiplying

this by q̃cq
e, we have

qb(φ1)
d
aq̃d(φ1)

c
bq̃cq

e︸ ︷︷ ︸
0

−(b1)
a′
a (̃b1)

b
a′(φ1)

c
bq̃cq

e = 0 , (3.34)

where the first term vanishes due to (3.30). Now we can use this relation to sim-

plify (3.32) to be

(b1)
b′
c (̃b1)

a
b′q

d(φ1)
b
dq̃a = ((̃b1b1)

2)bc . (3.35)

2. Multiplying (3.29) by (φ1)
c
d, we obtain

qb(φ1)
e
aq̃e(φ1)

c
d + qe(φ1)

b
eq̃a(φ1)

c
d − (b1)

a′
a (̃b1)

b
a′(φ1)

c
d = 0 . (3.36)

Multiplying by qdq̃b and using (3.24) together with (3.30), we find that the first two

terms are zero and we thus obtain

(b1)
a′
a (̃b1)

b
a′(φ1)

c
dq
dq̃b = 0 . (3.37)

Applying the above equation to (3.35), we arrive at

((̃b1b1)
2)bc = 0 , (3.38)

i.e. the operator b̃1b1 is nilpotent. As a consequence,

tr(̃b1b1) = 0 . (3.39)

The F-terms ∂φ2W(b′) implies that

(b1)
a′
a (̃b1)

a
b′ = (̃b2)

a′
a′′(b2)

a′′
b′ . (3.40)

Therefore,

((̃b2b2)
3)a
′
d′ = (b1b̃1)

a′
b′ (b1b̃1)

b′
c′(b1b̃1)

c′
d′

= (b1)
a′
a ((̃b1b1)

2)ab (̃b1)
b
d′

= 0 ,

(3.41)

where the first equality follows from (3.40) and the last equality follows from (3.38). It can

be shown inductively that the operator b̃kbk is nilpotent:

(̃bkbk)
k+1 = 0 for all k = 1, . . . , N − 3 and no sum over k . (3.42)
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On the other hand, we see that

(̃bN−3)
a′
a (bN−3)

b
a′pbp̃

cscs̃
a (3.26)

= (̃bN−3)
a′
a (bN−3)

b
a′pbp̃

c×[
−(̃bN−3)

b′
c (bN−3)

a
b′ − pcp̃b

]
(3.25)

= −(̃bN−3)
a′
a (bN−3)

b
a′ (̃bN−3)

b′
c (bN−3)

a
b′pbp̃

c

= −((̃bN−3bN−3)
2)bcpbp̃

c

= 0 ,

(3.43)

where the last equality follows from the fact that (b̃N−3bN−3)
b
c can be viewed as a nilpotent

2 × 2 matrix and so one can choose a basis such that it has a canonical form

(
0 1

0 0

)
; it

follows that

(̃bN−3bN−3)
2 = 0 (3.44)

with respect to this basis and thus with respect to every basis. This relation can be

generalised to

(̃bN−3b̃N−2 · · · b̃`)(b`b2 · · · bN−3)pp̃ss̃ = 0 , ` = 1, 2 . . . , N − 3 . (3.45)

In addition, we have

(̃bN−3b̃N−2 · · · b̃1q̃qb1b2 · · · bN−3)abpap̃b

= (̃bN−3b̃N−2 · · · b̃1q̃qb1b2 · · · bN−3)ab
[
(̃bN−3)

a′
a (bN−3)

b
a′ − sas̃b

]
(3.44)

= −(̃bN−3b̃N−2 · · · b̃1q̃qb1b2 · · · bN−3)absas̃b .

(3.46)

This gives a relation involving the generator (3.17) of the chiral ring.

4 U(N) and SU(N) SQCD with N + k flavours

The generalization to U(N) or SU(N) gauge theories is not much harder. Let us first

discuss the case of U(N).

4.1 The mirror of U(N) SQCD

We start with the following 3d N = 4 mirror theories (A) and (B):

(A) : ◦
1

P1− ◦
2

P2− · · · − ◦
N

Q
− �
N+k

(B) : �
N

q
− ◦
N

b1− ◦
N

b2− · · · − ◦
N

bk−1−
s
�U(1)

|◦
N︸ ︷︷ ︸

k U(N) gauge groups

pN−1− ◦
N−1
· · · ◦

3

p2− ◦
2

p1−◦
1

(4.1)
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We then deform theory (A) with the monopole superpotential (2.10) and, as a result,

all the gauge groups in the T (SU(N)) tail confine leaving a chiral multiplet Ψ in the adjoint

of SU(N). We end up with the model

ϕN⋂
•
N

Q
−→
←−
Q̃

�
N+k

(4.2)

with superpotential

(ϕN )abQ
b
iQ̃

i
a + (ϕN )abΨ

b
a , (4.3)

Both adjoints become massive and only the trace part ϕ of ϕN survives. The F-terms with

respect to ϕN give Ψb
a = −(QbiQ̃

i
a)0 (where ()0 denotes the traceless component), and hence

we end up with the superpotential ϕQai Q̃
i
a. Introducing now by hand a singlet S which

flips ϕ we end up with N = 2 SQCD with zero superpotential. In conclusion, we arrive at

the following theory

(a) : •
N

Q
−→
←−
Q̃

�
N+k

with W(a) = 0 , (4.4)

Let us now consider theory (B). The superpotential (2.10) is mapped to the field-

dependent mass matrix (2.11) in theory (B):

W(B) =

 N∑
i,j=1

M i
j q̃iq

j

+

[(
N∑
i=1

qiφ1q̃i

)
+ W̃N=4

(B)

]

=

(
N−1∑
i=1

q̃iq
i+1

)
+

N−2∑
i=0

Xi

i+1∑
j=1

q̃N−i+j−1q
j

+

[(
N∑
i=1

qiφ1q̃i

)
+ W̃N=4

(B)

]
,

(4.5)

where the square brackets contain the cubic superpotential terms that come from N = 4

supersymmetry. We isolated the term
(∑N

i=1 q
iφ1q̃i

)
out explicitly and keep the rest of

the terms in W̃N=4
(B) . The latter includes, for example, −b1φ1b̃1. In this and the following

sections, we define for convenience

XN−1−j = Xj , with j = 1, . . . , N − 1 . (4.6)

The F -term with respect to qk, for k = 1, . . . , N − 1, gives

q̃k + φ1q̃k+1 +

N−2∑
j=k

Xj q̃N−j+k = 0 . (4.7)

Substituting the expression for q̃1, q̃2, · · · , q̃N−1 into (4.5) recursively, we obtain

q1φN1 q̃N +

N−2∑
j=0

(−1)j(j + 1)Xjq
1φj1q̃N + . . .

+ W̃N=4
(B) , (4.8)

where . . . denotes the terms with higher orders in Xj . However, similarly to the discussion

in appendix A of [16], such terms can be eliminated from the superpotential using the
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F -terms with respect to some Xj ; this is known as the chiral ring stability. We are thus

left with

q1φN1 q̃N +
N−2∑
j=0

cjXjq
1φj1q̃N + W̃N=4

(B) , (4.9)

for some real numbers cj that depend only on j. Setting

q̃ = q̃N , q = q1 , (4.10)

and redefining Xj such that cj are absorbed into their definitions, we arrive at the theory

(b) : �
1

q
−→
←−
q̃

φ1⋂
•
N

b1−→
←−
b̃1

φ2⋂
•
N

b2−→
←−
b̃2

· · ·−→←−
φk−1⋂
•
N︸ ︷︷ ︸

k − 1 U(N) gauge groups

bk−1−→
←−
b̃k−1

s

�1
↑ ↓s̃•
N⋃
φk

pN−1−→
←−
b̃N−1

ψN−1⋂
•

N−1
· · ·

p2−→
←−
p̃2

ψ2⋂
•
2

p1−→
←−
p̃1

ψ1⋂
•
1
, (4.11)

with superpotential

qφN1 q̃ +

(
N−2∑
i=0

Xiqφ
i
1q̃

)
+ W̃N=4

(B) , (4.12)

Adding a flipping term ϕS in (4.3) amounts to adding to the above superpotential the term

Ss̃s, where S is the flipping field in theory (b). Hence we have

W(b) = qφN1 q̃ +

(
N−2∑
i=0

Xiqφ
i
1q̃

)
+ W̃N=4

(B) + Ss̃s . (4.13)

Let us comment on the superpotential (4.13). Although this looks very similar to

that discussed in appendix A of [16], an important difference is the term qφN1 q̃. One

may wonder if one could apply chiral ring stability to reduce further the term qφN1 q̃. We

explore this possibility in appendix A of this paper. Let us mention briefly here some

consequences of doing so and focus on the case of N = 2 for the sake of simplicity. First

of all, we cannot drop this term totally; however, chiral ring stability allows to trade

the term qφ21q̃ with a new term ηq̃φq, where η = 1
2 tr(φ1) and φ is the traceless part of

φ1. We find the following consequences: (1) η and φ are not forced to have the same

R-charges; and (2) there is a possibility of an emergent U(1) global symmetry in the

infrared which is invisible in (and incompatible with) the tree-level Lagrangian. Since in

section 4.3 we manage to match the partition functions of theories (a) and (b) using the

R-charges that are compatible with (4.13), we choose to keep the term qφN1 q̃ as it is in

the superpotential (4.13) and not to reduce it further using the chiral ring stability. We

believe that this provides a better motivation and justification for our choice of R-charges in

the matching of partition functions in section 4.3 than what would be in the consequence

(1). Moreover, in appendix A we will see that the emergent U(1) global symmetry can

be identified with a Cartan component of the axial symmetry in SQCD under mirror

symmetry, which of course does not mix with the R-symmetry. Hence, the emergence of

this U(1) global symmetry does not affect the R-charge assignments that we use to match

the partition functions in section 4.3. We conjecture that the theory (b) with our choice

of superpotential (4.13) flows to the same fixed point as the theory (b) with the reduced

superpotential obtained using chiral ring stability (as discussed in appendix A).
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4.1.1 Generators and relations of the chiral ring

In this section we will match the chiral rings of theories (a) and (b). The F -term ∂SW(b) = 0

implies that

sas̃
a = 0 . (4.14)

The F -terms ∂XiW(b) = 0 for i = 0, 1, . . . , N − 2 imply that the “dressed mesons” are zero:

q̃a(φ
i
1)
a
bq
b = 0 , for i = 0, 1, . . . , N − 2 . (4.15)

The F -terms ∂φ1W(b) = 0 imply that

q̃c(φ
N−1)caq

b + (b1)
a′
a (̃b1)

b
a′ +

∑
i

Xiq̃c(φ
i−1)caq

b = 0 , (4.16)

and so, after contracting the indices a and b, we obtain

q̃a(φ
N−1
1 )abq

b = −(b1)
a′
a (̃b1)

a
a′ = − tr(b1b̃1) . (4.17)

Moreover, the quantity (pN−1)
a′
a (p̃N−1)

b
a′ can be viewed as an N ×N nilpotent matrix;

see the discussion around (3.4)–(3.6) of [11]. The F-terms ∂φkW(b) = 0 implies that

(̃bk)
c′
a (bk)

b
c′ + (pN−1)

c′′
a (p̃N−1)

b
c′′ + sas̃

b = 0 (4.18)

Contracting the indices a and b and using (4.14) together with the nilpotency of

(pN−1)
a′
a (p̃N−1)

b
a′ , we obtain

(̃bk)
c′
a (bk)

a
c′ = tr(̃bkbk) = 0 . (4.19)

Nilpotency of operators. Multiplying (4.16) by qa(φ`1)
d
c and using (4.15), we obtain

(φ`1)
d
cq
a(b1)

b′
a (̃b1)

b
b′ = 0 . (4.20)

Hence, multiplying (4.16) by (b1)
b′
b (̃b1)

c
b′ , we obtain

((b1b̃1)
2)ca = (b1)

a′
a (̃b1)

b
a′(b1)

b′
b (̃b1)

c
b′

= −q̃d(φN−1)daqb(b1)b
′
b (̃b1)

c
b′ −

∑
i

Xiq̃d(φ
i−1)daq

b(b1)
b′
b (̃b1)

c
b′

(4.20)
= 0 .

(4.21)

Thus, b1b̃1 is nilpotent. Using the F -terms ∂φ2W(b) = 0, we obtain

(b1)
a′
a (b̃1)

a
b′ = (b2)

a′′
b′ (̃b2)

a′
a′′ (4.22)

It thus follows that

((̃b2b2)
3)a
′
d′ = (b1b̃1)

a′
b′ (b1b̃1)

b′
c′(b1b̃1)

c′
d′

= (b1)
a′
a ((̃b1b1)

2)ab (̃b1)
b
d′

= 0 .

(4.23)
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It can be shown inductively that the operator b̃kbk is nilpotent:

(̃bkbk)
k+1 = 0 for all k = 1, . . . , N − 3 and no sum over k . (4.24)

As a consequence, have

0 = tr(bk−1b̃k−1bk−1b̃k−1) = tr[(pN−1p̃N−1 + ss̃)2] , (4.25)

and, since tr(pN−1p̃N−1pN−1p̃N−1) = 0, it follows that

tr(bk−1b̃k−1ss̃) = 0 . (4.26)

R-charges of various fields. Since the R-charge of the superpotential is 2, we can

assign the R-charges of φ1 and bi to be as follows:

R[φi] = 1 + x , R[bi] = R[̃bi] =
1

2
(1− x) . (4.27)

Since the superpotential W(b) contains the cubic terms coming from W̃N=4
(B) , we have

R[p] = R[p̃] =
1

2
(1− x) ,

R[S] = R[tr(φ`)] = R[tr(ψm)] = 1 + x ,
(4.28)

and so, from the superpotential term Sp̃p,

R[s] = R[s̃] =
1

2
(1− x) . (4.29)

The N + k diagonal components of the mesons M j
i = QjQ̃i in theory (a) are mapped

to tr(φi), tr(ψj) and S. It also follows that

R[M j
i ] = R[tr(φ`)] = R[tr(ψm)] = R[S] = 1 + x , (4.30)

and so

R[Qi] = R[Q̃i] =
1

2
(1 + x) . (4.31)

The R-charges for the minimal monopole operators V± of theory (a) are

R[V±] = (N + k)

(
1− 1 + x

2

)
− (N − 1) =

k + 2−N
2

− x
(
k +N

2

)
. (4.32)

From the superpotential term qφN1 q̃ of W(b) gives

2R[q] +NR[φ1] = 2 ⇒ 2R[q] +N(1 + x) = 2 ⇒ R[q] = 1− 1

2
N(1 + x) . (4.33)

Hence the R-charges of qb1b2 . . . bks and s̃b̃k b̃k−1 . . . b̃1q̃ are

R[qb1b2 . . . bk−1s] = R[s̃b̃k−1b̃k−2 . . . b̃1q̃]

=
k

2
(1− x) + 1− N

2
(1 + x)

=
k + 2−N

2
− x

(
k +N

2

)
= (4.32) .

(4.34)
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We thus propose that the minimal monopole operators V± of the U(N) gauge group in

theory (a) are mapped to the following gauge invariant quantities in theory (b):

V+ ←→ qb1b2 . . . bk−1s ,

V− ←→ s̃b̃k−1b̃k−2 . . . b̃1q̃ .
(4.35)

The R-charges of the basic monopole operators M±i , with i = 1, . . . , N + k, of the i-th

node in theory (b) are

R[M±i ] = 2N (1−R[bi]) + (N − 1)(1−R[φi])− (N − 1)

= 2N

[
1− 1

2
(1− x)

]
+ (N − 1)[1− (1 + x)]− (N − 1)

= 1 + x .

(4.36)

We propose that the components M i+1
i and M i

i+1 of the mesons in theory (a) are mapped

to these basic monopole operators:

M i+1
i ←→ M+

i

M i
i+1 ←→ M−i .

(4.37)

On the other hand, the diagonal components of the mesons in theory (a) are mapped to

the scalar φ1, . . . , φk, ψ1, . . . , ψN in theory (b):

M i
i (no sum) ←→ φ1, . . . , φk, ψ1, . . . , ψN . (4.38)

4.2 The mirror of SU(N) SQCD

We can now easily extract a candidate mirror dual for SU(N) SQCD with N + k flavors

and zero superpotential. We refer to this as theory (a′):

(a′) : •
SU(N)

Q
−→
←−
Q̃

�
N+k

with W(a′) = 0 (4.39)

To get SU(N) SQCD from U(N) SQCD it suffices to gauge the topological symmetry of

the theory, which is mapped in the mirror theory (4.11) to the U(1) symmetry rotating the

multiplets s and s̃ with opposite charge. Performing this gauging we arrive at

(b′) : �
1

q
−→
←−
q̃

φ1⋂
•
N

b1−→
←−
b̃1

φ2⋂
•
N

b2−→
←−
b̃2

· · ·−→←−
φk−1⋂
•
N︸ ︷︷ ︸

k − 1 U(N) gauge groups

bk−1−→
←−
b̃k−1

s

S⋂
•1
↑ ↓s̃•
N⋃
φk

pN−1−→
←−
b̃N−1

ψN−1⋂
•

N−1
· · ·

p2−→
←−
p̃2

ψ2⋂
•
2

p1−→
←−
p̃1

ψ1⋂
•
1
, (4.40)

with superpotential

W(b′) = qφN1 q̃ +

(
N−2∑
i=0

Xiqφ
i
1q̃

)
+ W̃N=4

(B) , (4.41)
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Notice that in this case the superpotential term Sss̃ is part of the N = 4 gauging. Indeed

this duality constitutes a generalization of the duality discussed for SU(2) SQCD in the

previous section. Moreover, the comment below (4.13) also applies here.

As before, we claim that theories (a′) and (b′) are mirror dual to each other. The

matching of chiral rings works as in the previous cases so we will not discuss the details.

We would like to observe that the monopole operator of SQCD is mapped to the following

chain of bifundamentals

qb1b2 . . . bk−1ss̃b̃k−1b̃k−2 . . . b̃1q̃

4.3 Matching sphere partition functions

The equivalence of the Sb3 partition functions essentially follows from the analysis of

section 2. The partition function of theory (A) with the monopole deformation turned on is

ZAM =
sb(S)

N !

∫ N∏
i=1

duie
2πi(ξ′+iβQ

2
)(
∑
i ui)ZTM (SU(N))(ui, ξ)× (4.42)

∏
i,j sb

(
ui − uj + ξ − iQ2 α

)∏N
i=1

∏N+k
j=1 sb

(
iQ4 (1 + α)± ui ∓mj − ξ

2

)
∏N
i<j sb

(
iQ2 ± (ui − uj)

)
where ξ′ denotes the FI parameter of the U(N) gauge group, mj ’s are the real masses

for the SU(N + k) global symmetry, ξ is again the real mass for the U(1) symmetry

H − C +
∑

i i(N − i)Ti discussed in section 2 and sb(S) is the contribution from the singlet

S, which reads

sb(S) = sb

(
i
Q

2
α− ξ

)
.

Using the result proven in section 2

ZTM (SU(N)) = e(N−1)πi(ξ+i
Q
2
(1−α))(

∑
i ui)

∏
i 6=j

sb

(
ui − uj − ξ + i

Q

2
α

)
sN−1b

(
i
Q

2
α− ξ

)

we find that the contributions from TM (SU(N)) and S cancel against the contribution

from the chiral multiplet in the adjoint and the partition function (4.42) becomes

ZAM =
1

N !

∫ N∏
i=1

duie
2πi(ξ′′+iβ′Q2 )(

∑
iui)

∏N
i=1

∏N+k
j=1 sb

(
iQ4 (1+α)±ui∓mj− ξ

2

)
∏N
i<j sb

(
iQ2 ±(ui−uj)

) . (4.43)

We recognize here the partition function of U(N) SQCD with N + k flavors, where

ξ′′ = ξ′ + N−1
2 ξ is identified with the FI parameter of the theory and β′ = β+ N−1

2 (1−α).

The choice of exponential prefactor in the integrand of (4.42) deserves some comments:

a priori to identify the correct infrared R-symmetry one should consider the mixing with all

possible U(1) symmetries in the theory, compute the trial partition function and extremize

it w.r.t. the mixing parameters. In all charge conjugation invariant theories, such as N = 4

theories and N = 2 SQCD models discussed in this paper, we know a priori that the R-

symmetry will not mix with topological symmetries so we do not need to extremize over
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them. Even if we do so, we will just find that the partition function is extremized for zero

mixing coefficient and we simply recover the same result we would have found discarding

the mixing with the topological symmetries. On the other hand, once we have turned on

the monopole superpotential (2.10) in the N = 4 theory, the invariance under charge con-

jugation is lost and we cannot rule out anymore the possibility that the R-symmetry mixes

with the surviving topological symmetries. This is precisely the reason why we introduced

the parameter β in (4.42):3 in theory (A) the monopole superpotential (2.10) leaves the

U(N) topological symmetry TN unbroken, but since charge conjugation invariance is lost,

we should consider the trial R-symmetry

Rα,β = Rα + βTN ,

with Rα given by (2.18), and then extremize over β. Based on these considerations, (2.10) is

interpreted as the trial partition function which should be extremized. The extremization

over β can be circumvented with the following simple observation: (4.42) is equivalent

to (4.43), which in turn can be identified with the trial partition function of U(N) SQCD

with N + k flavors and trial R-symmetry

Rα,β = Rα + β′T,

where T is the topological symmetry of the theory. Since in this theory charge conjugation

is a symmetry, we know that the partition function is extremized at β′ = 0, or equivalently

β = −N − 1

2
(1− α) . (4.44)

This is manifest in the special case ξ = ξ′ = mj = 0, since (4.43) is an even function of

β′. We thus conclude that the partition function extremized over β is identical to that of

N = 2 U(N) SQCD with N+k flavors, as we expected from our duality arguments. Notice

that here charge conjugation is an accidental symmetry emerging in the IR, like the axial

SU(N + k) symmetry which is not present in the parent N = 4 theory.

We would like to remark another important consequence of the nonzero value of β:

in the original N = 4 theory the monopole V + (with unit magnetic flux under U(N)

only) has trial R-charge (in the convention of section 2) k+1
2 (1 + α). Once the monopole

deformation is activated and we introduce the mixing of the R-symmetry with TN , the

R-charge of the monopole is shifted by −N−1
2 (1−α) and the resulting R-charge is precisely

that of a monopole operator in N = 2 U(N) SQCD with N+k flavors of charge 1−α
2 . After

confinement of the gauge nodes in the tail, the monopole V + is identified with the monopole

operator in U(N) SQCD and the R-charge assignment is automatically consistent with this

interpretation.

Let us now match (4.42) (or (4.43)) with the partition function of theory (b). The

equality of the partition functions of theories (A) and (B) (before the monopole deforma-

tion) is a consequence of N = 4 mirror symmetry: indeed theories (A) and (B) admit a

Hanany-Witten brane realization in Type IIB and they are related by the action of S-duality

3We would like to thank Francesco Benini for suggesting this procedure.
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on the brane system, as is expected for mirror dual theories. The matching of partition

functions for many mirror theories in this class was checked analytically in [22, 27].

In the case at hand the most convenient way to proceed is to notice that theory

(A) can be obtained via higgsing starting from T (SU(N + k)): it actually corresponds to

TΛ(SU(N + k)) where Λ ≡ (k, 1 . . . 1) denotes the partition labelling the corresponding

nilpotent orbit. If we denote with ξi the FI parameters associated with the “balanced”

gauge groups U(1), . . . ,U(N − 1) and with ξ′ the U(N) FI parameter, we can introduce as

in section 2 the N + 1 parameters ei defined as follows:

ξi = ei − ei+1 (with i = 1, . . . , N − 1); ξ′ = eN − eN+1. (4.45)

Similarly to (2.27), the ei’s satisfy one relation which in the present case reads

N∑
i=1

ei + keN+1 = 0. (4.46)

This constraint was derived in [13, (3.14)] in the context of the Hilbert series4 and gen-

eralizes (2.27) which holds in the case of trivial nilpotent orbit Λ = (1, . . . , 1). As was

pointed out in the same reference, the parameters ei describe the contribution from the

various NS5 branes and so should be identified with real masses of the various flavors in

the mirror theory, in which NS5 branes are replaced by D5 branes. This constraint can be

interpreted as saying that the “real masses” associated with the cartan generators of the

SU(N) topological symmetry are ẽi ≡ ei + k
N eN+1 for 1 ≤ i ≤ N . These indeed satisfy the

relation
∑

i ẽi = 0.

At the level of partition functions, the statement of mirror symmetry is

ZA(mA, ei,mj) = ZB(−mA,mj , ei), (4.47)

where mA is the real mass for the “axial” symmetry H − C, the parameters ei are inter-

preted as (linear combinations of) FI parameters in theory (A) and as real masses for the

SU(N)×U(1) symmetry in theory (B). mj denote of course real masses for the SU(N+k)

symmetry in theory (A) and FI parameters in theory (B). Note that (4.47) was proven

in [23] for a general value of mA.5 Equation (4.47) implies the equality between the fol-

lowing two parition functions (as in (4.47)):

ZA(mA, ei,mj) =
1

N !

∫ N∏
i=1

duie
2πi(eN−eN+1)(

∑
i ui)ZT (SU(N))(ui, e1, . . . , eN )×

∏
i,j sb (ui − uj +mA)

∏N
i=1

∏N+k
j=1 sb

(
iQ4 ± ui ∓mj − mA

2

)
∏N
i<j sb

(
iQ2 ± (ui − uj)

) (4.48)

4The parameters xi appearing in (3.14) of [13] are fugacities and actually correspond to the exponentials

of the parameters ei used in the present work. This is the reason why the constraint among ei’s involves

sums instead of products.
5We thank Sara Pasquetti for pointing this out to us. In the case mA = 0 (4.47) follows from the results

of [22, 27]. For T (SU(2)), this statement is also proven in [20].
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and

ZB(−mA, ei,mj) =
1

N !

∫ N∏
j=1

duje
2πi(m1−m2)(

∑
j uj)

∏
i,j

sb (ui − uj −mA)×

∏
j

∏N
i=1 sb

(
iQ4 ± uj ∓ ei + mA

2

)
∏N
i<j sb

(
iQ2 ± (ui − uj)

) . . . , (4.49)

where the terms in the numerator in the last line correspond to the hypermultiplet q of

theory (B) in (4.1) and the term in the denominator corresponds to the contribution of

the leftmost U(N) vector multiplet. The term · · · denotes the contribution from the rest

of quiver (B) in (4.1).

The desired result simply follows from a specialization of (4.47) by setting (for 1≤j≤N)

mA = ξ − iQ
2
α ; (4.50)

ej =
k

N + k

(
ξ′ + i

Q

2
β

)
+

(
N − j − N2 −N

2N + 2k

)(
ξ + i

Q

2
(1− α)

)
, (4.51)

and

eN+1 = − N

N + k

(
ξ′ + i

Q

2
β

)
− N2 −N

2N + 2k

(
ξ + i

Q

2
(1− α)

)
. (4.52)

These formulas can be obtained in a similar way to the discussion around (2.31): solving

simultaneously the system of equations (4.45) and (4.46) and identifying all the FI param-

eters ξi with the real mass mA for the “axial” symmetry to a single parameter ξ, we obtain

the real parts of mA, ej (for j = 1, . . . , N), and eN+1 as above. The imaginary parts are

fixed by the consistency with the aforementioned trial R-symmetry

Rα,β = Rα + βTN , (4.53)

with Rα given by (2.18). According to (2.15), this implies that we should add imaginary

parts iQ2 (1 − α) to all ξi (with i = 1, . . . , N − 1), iQ2 β to ξ′, and −iQ2 α to mA. Solving

again (4.45) and (4.46), we obtain the imaginary parts of the above results.

Once we introduce the contribution of the singlets S and Xi and extremize w.r.t. β,

the left hand side of (4.47) reduces to the partition function of U(N) SQCD in the way

that have already discussed around (4.43). The right hand side instead, in which ei’s

represent real masses for the flavors, reduces to (b): because of the choice made above for

the parameters ei, the contributions from N − 1 out of the N flavors at the end of the

quiver cancel out thanks to the identity sb(x)sb(−x) = 1. In particular, it can be seen

from (4.50) that the terms sb

(
iQ4 + uj − ei + mA

2

)
and sb

(
iQ4 − uj + ei+1 + mA

2

)
, with

i = 1, . . . , N − 1, in (4.49) cancel each other. In conclusion, we are left with one flavor q

and q̃, corresponding to the terms sb

(
iQ4 + uj − eN + mA

2

)
and sb

(
iQ4 − uj + e1 + mA

2

)
,

whose trial R-charge is given by

Rα,β(q) = 1 +
kβ

N + k
− (1− α)

N2 + k

2N + 2k
, (4.54)

Rα,β(q̃) = 1− kβ

N + k
− (1− α)

N2 + 2Nk − k
2N + 2k

, (4.55)
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where these values can be easily extracted from the term iQ2 (1 − Rα,β(q, q̃)) inside the

argument of sb.

The singlets s̃ and s appearing in (b) correspond to the terms sb

(
iQ4 − uj + eN+1+mA

2

)
and sb

(
iQ4 + uj − eN+1 + mA

2

)
in (4.49). Their R-charges are

Rα,β(s, s̃) =
1 + α

2
∓
(

(1− α)
N(N − 1)

2N + 2k
+

Nβ

N + k

)
, (4.56)

with − for s and + for s̃. This assignment of R-charge is compatible with all the super-

potential terms appearing in (b), but as we can notice it is not compatible with charge

conjugation invariance since chiral multiplets with and without tilde have different trial

R-charge. This fits perfectly with the previous discussion for SQCD: the off-diagonal mass

terms forces the mixing with a baryonic symmetry and breaks charge conjugation invari-

ance, so we should extremize over all surviving baryonic symmetries as well. However,

charge conjugation reappears as an accidental symmetry in the IR and this immediately

tells us that the trial partition function will be extremized for the value of β which sets

to zero the difference between the R-charge of fields with and without tilde. Imposing

Rα,β(q) = Rα,β(q̃) and Rα,β(s) = Rα,β(s̃) we find

β = −N − 1

2
(1− α) , (4.57)

in perfect agreement with (4.44) of the mirror side.

The case of SU(N) gauge theory. The above discussion can be easily generalized to

the case of SU(N) SQCD with N+k flavors: it is enough to gauge the topological symmetry

TN (or its baryonic counterpart in the mirror theory). This has the effect of removing the

central U(1) inside U(N) in theory (A) and gauge the U(1) symmetry acting on s and s̃

fields in theory (B) (notice that this gauging combined with the superpotential term Sss̃

produces an N = 4 gauging). At the level of partition functions, this just amounts to

integrating over the parameter ξ′ in (4.47). We have as before

mA = ξ − iQ
2
α

but we have only N parameters ei, with i = 1, . . . , N , satisfying the constraint

N∑
i=1

ei = 0

as in section 2. We thus have as in the T (SU(N)) case

ei =
N + 1− 2i

2

(
ξ + i

Q

2
(1− α)

)
.

The parameter β does not arise this time: technically this is due to the fact that (in theory

(A)) the integration over ξ′ sets to zero the sum of the integration variable, reproducing

the correct Haar measure for SU(N). This directly removes the phase coming from the

T (SU(N)) tail. This result is indeed expected physically, because in a SU(N) gauge theory

there is no topological symmetry which can possibly mix with the R-symmetry.
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A comment on the flavour symmetry. A U(N) gauge theory, resp. SU(N) gauge

theory, with N + k flavours and zero superpotential has a flavour symmetry SU(N + k)×
SU(N + k)× U(1)A, resp. SU(N + k)× SU(N + k)× U(1)A × U(1)B. However, from the

perspective of the mirror theory (b) in (4.11), resp. theory (b′) in (4.40), we see that the

number of U(1) topological symmetries is N + k − 1, resp. N + k. Thus, not all Cartan

elements of SU(N+k)×SU(N+k) are visible in the mirror theory; only those of the diagonal

subgroup are manifest in the quiver description. In other words, the SU(N+k)×SU(N+k)

symmetry is “hidden” in the mirror theory and only arises at low energies. In appendix A,

we discuss about the possibility that there may exist an extra U(1) global symmetry that

emerges in the infrared due to the chiral ring stability condition. Nevertheless, this does

not explain the remaining hidden Cartan elements. It would be interesting to get further

insight on this point in future work.

The symmetry enhancement can also be seen from the perspective of the partition

function: the N = 4 theory has the SU(N + k) flavour symmetry but, as remarked be-

low (2.20), once the singlet is flipped this symmetry enhances to SU(N + k)× SU(N + k).

In the partition function of the N = 4 theory, one can turn on real masses for only the

diagonal combination of SU(N + k)× SU(N + k) and these are mapped to FI parameters

in the mirror theory. Indeed, when the adjoint field is removed, one is allowed to introduce

real masses for both SU(N + k) symmetries and these should correspond to a “doubling”

of the FI parameters on the dual side. It would be nice to get a better understanding of

this “doubling” in the mirror theory in the future.

5 Brane realisation

In this section, we discuss a brane realisation [3, 28–30] of the mirror pairs (a) and (b) given

by (4.4) and (4.11). It is instructive to describe this using a particular example, say for

N = 3 and k = 3, depicted in figure 1. This can be generalised for any value of N and k.

The branes in the left diagram span the following directions

0 1 2 3 4 5 6 7 8 9

D3 X X X X

NS5 X X X X X X

NS5′ X X X X X X

D5 X X X X X X

(5.1)

As described in [28–30], this corresponds to U(N) SQCD with N + k flavours and zero

superpotential; this is indeed theory (a) described in (4.4).

In order to determine the mirror theory, we apply the S-duality to the brane system

described above [3]. The NS5-brane becomes a D5-brane, the NS5′-brane becomes a D5′-

brane, and the D5-brane becomes an NS5-brane. Arranging the leftmost NS5-brane in

the right diagram to cut the D3-branes, we see that the motion of the leftmost D3-branes

segment along the 8 and 9 directions corresponds to turning on the nilpotent VEV 〈M〉 6= 0.

This VEV higgses the flavour symmetry to U(1) and leads to the first two terms in the

– 30 –



J
H
E
P
0
3
(
2
0
1
8
)
1
2
6

S-dual

1

13 2M

nilpotent VEV hMi 6= 0

D5

NS5NS50

D5

D50 NS5

D3

333

Figure 1. The brane realisation of mirror pairs (4.4) and (4.11) with N = 3 and k = 3.

superpotential (4.12). Observe that the remaining part of the brane configuration is still

N = 4 supersymmetric. We thus expect the presence of the term W̃N=4
(B) in (4.12).

This idea can be generalised to other classical gauge groups. From the perspective of

branes, this corresponds to introducing an appropriate orientifold plane to the system. We

shall present such results in the following section and in appendix B.

6 USp(2k) with Nf fundamental flavours and one antisymmetric

traceless chiral multiplet

As proposed in [11, figure 61, p. 139], we have the following 3d N = 4 mirror pairs:

(A) : ◦
1
− ◦

2
− · · · − ◦

2k−1
− •

2k
− �

2Nf

(B) : �
2k
− ◦

2k
− · · · − ◦

2k︸ ︷︷ ︸
Nf−3

−
◦ k
|◦
2k
−◦
k

(6.1)

We can apply a similar procedure as in the previous section and obtain the following

3d N = 2 mirror pairs:

(a) :
A′
∩•
2k

Q
− �

2Nf
with W(a) = 0

(b) : �
1

q
−→
←−
q̃

φ1∩•
2k

b1−→
←−
b̃1

φ2∩•
2k

b2−→
←−
b̃2

· · ·
φNf−3

∩•
2k

bNf−3

−→
←−
b̃Nf−3

s

χ
∩•k
↑ ↓s̃•
2k⋃

φNf−2

p
−→
←−
p̃

ψ1∩•
k

with W(b)

(6.2)

where the red node denotes the gauge group USp(2k), A′ denotes the rank-two traceless

anti-symmetric chiral multiplet, and

W(b) = q̃φ2kq +
2k−2∑
j=0

Xj q̃φ
jq +WN=4

(b) . (6.3)

Note that for k = 1, we recover the mirror pair (3.3)
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R-charges and operator maps. Let the R-charges of q and q̃ be 1− kr:

R(q) = R(q̃) = 1− 2kr . (6.4)

Since the superpotential W(b) has R-charge 2, we have

R[φ] ≡ R[φi] = 2r (i = 1, . . . , Nf ) ,

R[b] ≡ R[bi] = R[̃bi] = R(s) = R[s̃] = R[p] = R[p̃] = 1− r .
(6.5)

Therefore, the gauge invariant operator

q

Nf−3∏
i=1

bi

 ss̃

(
N−3∏
i=1

b̃Nf−2−i

)
q̃ (6.6)

has R-charge

R [(6.6)] = 2Nf (1− r) + 2(k − 1)(1− 2r)− 2k . (6.7)

If we assign the R-charges of the fields Q and A′ in theory (a) to be

R[Q] = r , R[A′] = 2r , (6.8)

then the R-charge of the minimal monopole operator Y of the USp(2k) gauge group in

theory (a) is (see e.g., [31, section 5])

R[Y ] = 2Nf (1− r) + 2(k − 1)(1− 2r)− 2k . (6.9)

Indeed, we propose the following operator map

Y ←→ q

Nf−3∏
i=1

bi

 ss̃

(
N−3∏
i=1

b̃Nf−2−i

)
q̃ , (6.10)

which is to be expected from mirror symmetry. The mesons M ij = JabQiaQ
j
b, with

i, j = 1, . . . , 2Nf , in theory (a) has R-charge:

R[M ] = 2r , (6.11)

The operator maps of each component of M to the operators of theory (b) are similar to

those stated around (3.19)–(3.22). In particular, if we view M as a matrix transforming

in the adjoint representation of SO(2Nf ), then the Cartan elements are mapped to tr(φi)

(with i = 1, . . . , Nf − 2), tr(χ) and tr(ψ1); and the element of the root are mapped to the

minimal monopole operators in theory (b), whose R-charge are 2r.

Notice that we can match the chiral rings of the two theories only if we assume the R-

charge assignment (6.8). Such a relation between the R-charges of traceless anti-symmetric

and fundamental fields is not expected in general and we interpret this fact as evidence

that the mirror theory (b) has an emergent U(1) symmetry which mixes with the R-

symmetry. Equation (6.8) is not very surprising after all: both the USp(2N) adjoint and
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the anti-symmetric chirals originate as components of the SU(2N) adjoint which emerges

upon confinement of the gauge groups in the T (SU(2N)) tail. Because of the N = 4

superpotential terms of theory (A), this field is constrained to have the same R-charge

as the meson built out of the USp(2N) fundamentals, reproducing (6.8). This relation

is maintained until the very last confinement step, in which a symmetry acting on the

anti-symmetric chiral only emerges. In the dual theory this is just a hidden symmetry.

7 Concluding remarks

In this paper we have seen that in three dimensions there is a precise method to introduce a

chiral multiplet in the adjoint representation of a unitary gauge group: it is enough to couple

the theory to a T (SU(N)) theory and turn on a monopole superpotential deformation. This

procedure allows to modify in a controlled way the matter content of a three-dimensional

gauge theory and, as we have explained extensively, this can be used to generate new dual

descriptions of N = 2 SQCD. We tested our duality proposal with a variety of methods,

including analysis of the chiral rings and of sphere partition functions.

In principle our construction can be iterated coupling several T (SU(N)) tails and

activating the monopole superpotential deformation for all of them. This has the effect of

introducing several adjoint chirals. As we have illustrated in section 6, the price we have

to pay, if we want to use this method to introduce new matter fields rather than removing

them, is the presence of accidental symmetries. One then needs to understand how to

detect them.

There are many directions worth investigating. First of all it would be interesting to

obtain the analogous result for T (SO(2N)) theories. This would shed more light on the

dualities we conjecture for orthogonal or symplectic SQCD in appendix B. It would also

be interesting to generalize our construction to the case of N = 2 quiver theories, as well

as to case in which tensor matter is included. Yet another interesting question is to study

the reduction of the mirror pairs in this paper to two dimensions along the line of [32, 33].

This could potentially lead to new mirror theories in two dimensions that have not been

studied before.
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A Chiral ring stability and emergent global symmetries

In this section we discuss in more detail emergent symmetries in our mirror theories,

especially in connection with the chiral ring stability criterion of [34] (see also [16]). Before

proceeding with the analysis, let us briefly review the findings of [10] in the abelian case.

The mirror of N = 4 SQED with N flavors (plus a free hypermultiplet) is a circular

quiver with N U(1) gauge groups and bifundamental hypermultiplets qi, q̃i (i = 1 . . . N)

charged under consecutive U(1) groups. We denote the singlets in the vector multiplets as

φi (i = 1 . . . N). The superpotential of the mirror theory is

W =
N∑
i=1

(φi − φi+1)q̃iq
i (φN+1 ≡ φ1).

To recover N = 2 SQED we introduce a chiral multiplet λ and couple it to the singlet in

the N = 4 vector multiplet to make it massive. In the dual theory this is implemented by

coupling the extra singlet (which we call again λ) to all the mesons. The superpotential

becomes

W =

N∑
i=1

(φi − φi+1)q̃iq
i + λ

(∑
i

q̃iq
i

)
.

If we now perform the following field redefinition on the singlets:

Si = φi − φi+1 + λ (i = 1 . . . N); φ =
∑
i

φi,

we find that φ drops out of the superpotential and decouples (together with the diagonal

combination of the U(1) vector multiplets) and we conclude that N = 2 SQED is dual to

the U(1)N/U(1) theory with superpotential

W =
∑
i

Siq̃iq
i.

The above field redefinition is unitary, hence the Kähler potential is not affected. This

model has N−1 U(1) topological symmetries, a baryonic symmetry and N U(1) symmetries

under which the bifundamentals have charge 1 and the singlets Si have charge −2. This

precisely reproduces the rank 2N of the global symmetry SU(N)×SU(N)×U(1)A×U(1)J
of SQED with N flavors.

Let’s now turn to the analysis of nonabelian theories and for definiteness we focus

on the simplest nontrivial case: the mirror dual of SU(2) SQCD with three flavors. The

arguments can easily be extended to higher rank cases. As we have argued in section 3.2,

the mirror theory is the quiver (b′) in (3.3) with superpotential (we use the same notation)

W = Xq̃q + q̃φ21q + χs̃s+ ψ1p̃p− s̃φ1s− p̃φ1p. (A.1)

It is now convenient to rewrite the adjoint of U(2) φ1 as ηI2 + φ, where I2 is of course the

2 × 2 identity matrix, η = 1
2 tr(φ1) and φ is the traceless part. Since φ2 = trφ2

2 I2, we can

rewrite the superpotential as

W =

(
X + η2 +

trφ2

2

)
q̃q + 2ηq̃φq + (χ− η)s̃s+ (ψ1 − η)p̃p− s̃φs− p̃φp. (A.2)
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By applying chiral ring stability we can simplify the first term and rewrite it simply as

Xq̃q since the F-term for X sets q̃q to zero in the chiral ring. Overall we can rewrite the

superpotential as

W = Xq̃q + 2η′q̃φq + χ′s̃s+ ψ′1p̃p− s̃φs− p̃φp, (A.3)

where we have also performed the field redefinition χ′ = χ−η, ψ′1 = ψ1−η and η′ = η. We

are then led to the conclusion that η′ is no longer forced to have the same charges under

global symmetries as χ′, ψ′1 and φ and we gain a new U(1) symmetry under which X, η′

have charge −2; q, q̃ have charge 1; and all other fields are uncharged. The issue is that,

contrary to the abelian case discussed before, the field redefinition

(χ− η, ψ1 − η, η) −→ (χ′, ψ′, η′) (A.4)

we have just performed is not unitary and makes the Kähler potential off-diagonal. The

requirement that it is uncharged under all global symmetries of the theory reinforces the

constraint that χ, η and ψ1 have the same charge. We thus conclude that classically the

Lagrangian is not invariant under the aforementioned symmetry.

Of course, this does not rule out the possibility that it emerges in the infrared. As-

suming it does, can we match it with a global symmetry of SQCD? In order to answer

this question, we recall that the monopole operators of this theory are mapped to meson

components of SU(2) SQCD with three flavors and in particular all the monopole operators

with charge ±1 under the topological symmetry of the U(2) central node (whose charge

under the aforementioned U(1) symmetry is 1
2 [(−2) + (−2) + 1 + 1] = −1) can be mapped

in to meson components of the form Q̃1Q
i and Q̃iQ

1 (i = 2, 3). All other monopole op-

erators are uncharged. Moreover, the operator qss̃q̃ which is mapped to the monopole of

the SU(2) theory has charge +2. This is precisely compatible with the U(1) symmetry

of SQCD which assigns charge −1 to Q̃1 and Q1 and zero to the other flavors. In other

words, this emergent U(1) global symmetry is mapped to a Cartan element of the axial

symmetry of SQCD under mirror symmetry. This gives supporting evidence for this emer-

gent symmetry and, moreover, it indicates that the emergent U(1) symmetry does not mix

with the R-symmetry. Hence, the emergence of this U(1) global symmetry does not affect

the R-charge assignments that we use to match the partition functions in section 4.3.

Assuming this extra U(1) is there, we find in theory (A.3) a rank five global symmetry,

coming from three U(1) topological symmetries, one U(1) flavour symmetry and the afore-

mentioned U(1), whereas SU(2) SQCD with three flavors is known to have U(6) symmetry,

so we are missing a U(1) generator which is not manifest from the above Lagrangian de-

scription. In the case of SQCD with N flavors the global symmetry has rank 2N , whereas

on the dual side we see manifestly N + 2 U(1) symmetries, including the emergent one.

As we have said in the main body of the paper, we leave the discussion of the remaining

hidden symmetries for future work. The main difference with respect to the abelian case

discussed at the beginning is that the presence of the adjoint chiral multiplet φ prevents

us from assigning independent charges to χ′ and ψ′1. The discussion for U(2) SQCD is

unchanged since the superpotential is the same, the only difference being that a U(1) tail
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is now ungauged. Again, the emergent symmetry in the mirror theory can be matched

with the U(1) symmetry acting on one flavor only: in this case we have two monopole

operators of charge ±1 under the topological symmetry, which are mapped in the mirror

to qs and s̃q̃ respectively. Both monopole operators of U(2) SQCD have charge +1 under

such a symmetry. Again, the SQCD model has a rank six global symmetry whereas in our

dual description we see a rank five symmetry group. The mismatch grows linearly with

the number of flavors. Following the same reasoning, in the case of SU(N) SQCD we find

that the superpotential can be written as follows:

W =
N−1∑
i=0

Xiq̃φ
iq +

∑
j

αj b̃jb
j + χ′s̃s+ ψ1p̃p+ . . . (A.5)

where φ denotes again the traceless part of the U(N) adjoint. Every bifundamental is

coupled to a different singlet (this is analogous to the abelian case) and the dots stand for

cubic terms involving the traceless part of the adjoint chirals φi. These are the same as in

the N = 4 theory.

B Quivers with alternating orthogonal and symplectic gauge groups

In this appendix, we state various conjectures about mirror theories of 3d N = 2 SQCD

with orthosymplectic gauge groups and zero superpotential. The proposed mirror theories

involve quivers with alternating orthogonal and symplectic gauge groups. In order to

motivate such conjectures, we start with N = 4 mirror pairs of linear quivers. These

models are studied in detail in [11, 13, 35–37] and they admit brane realizations. We then

proceed in a similar way as described in section 5, namely turn on the nilpotent VEVs for

one of the flavour symmetry in the N = 4 mirror theory. In this way, we can obtain the

mirror theories of N = 2 SQCD as well as their superpotentials.

We emphasise that the results in this appendix are conjectural for the following rea-

sons. First of all, we do not have a solid statement of the duality analogous to (2.1) for the

orthosymplectic gauge group. One of the reasons is that for the an orthosymplectic gauge

group, there is no U(1) topological symmetry and the symmetry generators are usually

hidden [13, 35, 38]. This makes the explicit charge assignment in the level of Lagrangians

difficult. Moreover, as pointed out in [11], N = 4 mirror theories of certain linear quiv-

ers in this section are “bad theories” in the sense that the dimension of some monopole

operators falls below the unitarity bound. In the latter case, the best we could do is to

map the “dressed” monopole operators in the mirror theory whose dimensions stay above

the unitarity bound to the chiral operator of original theory. In any case, since the results

could be interesting and potentially be useful for future work, we simply state the results

without derivations, along with the R-charge of the chiral fields and basic operator maps.
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B.1 USp(2k) gauge theory with Nf flavours

B.1.1 N = 4 mirror pairs

Let us first consider 3d N = 4 USp(2k) gauge theory with Nf flavours,

•
2k
− �

2Nf
(B.1)

There are two known mirror theories of (B.1). One can be obtained by using the brane

construction involving an O3-plane (see [35, figure 13]):

•
2
−•

2
−•

4
−•

4
−· · ·− •

2k−2
− •

2k−2
− •

2k
−
�1
|
•
2k
− •

2k+1
− •

2k
− · · · − •

2k+1︸ ︷︷ ︸
kf−2k−1 blue nodes
kf−2k−2 red nodes

−
�1
|
•
2k
− •

2k
− •

2k−2
− •

2k−2
−· · ·−•

4
−•

4
−•

2
−•

2
(B.2)

The other mirror theory can be obtained by using the brane construction involving an

O5-plane (see [39, section 4.1.1 & figure 12]):

◦
1
− ◦

2
− · · · − ◦

2k−1
−

� 1
|◦
2k
− ◦

2k
− . . .−

◦ k
|◦
2k︸ ︷︷ ︸

(kf−2k−1) (2k)-nodes

−◦
k
, (B.3)

Observe that we can recover the theory (B′) in (3.2) from (B.3) as follows. First, we

consider USp(2) gauge theory (i.e. N = 1) with Nf + 1 flavours:

�
2
− •

2
− �

2Nf
(B.4)

Gauging the SO(2) flavour symmetry in the above quiver, we obtain

•
2
− •

2
− �

2Nf
(B.5)

On the mirror side, this amounts to ungauging the leftmost U(1) node (with k = 1 and

Nf → Nf + 1) in (B.3) and hence we obtain

� 2
|◦
2
− ◦

2
− . . .−

◦ 1
|◦
2︸ ︷︷ ︸

(Nf−2) (2)-nodes

−◦
1
, (B.6)

Observe that (B.5) and (B.6) are indeed the mirror pairs in (3.2).

In addition to (B.6), one can indeed obtain another mirror theory of (B.5) in a similar

manner from (B.2). Taking k = 1 and Nf → Nf + 1 in (B.2) and ungauging the leftmost

SO(2) gauge group, we obtain

�3
|•
2
− •

3
− •

2
− · · · − •

3︸ ︷︷ ︸
Nf−2 blue nodes
Nf−3 red nodes

−
�1
|•
2
− •

2
(B.7)

– 37 –



J
H
E
P
0
3
(
2
0
1
8
)
1
2
6

Generalisation. Let us generalise such mirror pairs by considering the following quiver:

(A) : •
2
− •

2
− •

4
− •

4
− · · · − •

2k
− •

2k
− �

2Nf
(B.8)

This theory is also known as T[2Nf−2k−1,12k+1](SO(2Nf )) in the notation of [11]. The

mirror of (B.8) is denoted by T [2Nf−2k−1,12k+1](SO(2Nf )). It admits the following quiver

description [36]:

(B) : �
2k+1

− •
2k
− •

2k+1
− •

2k
− · · · − •

2k+1︸ ︷︷ ︸
Nf−k−1 blue nodes
Nf−k−2 red nodes

−
�1
|•
2k
− •

2k
− · · · − •

4
− •

4
− •

2
− •

2
(B.9)

For k = 1, this is in agreements with (B.7).

B.1.2 N = 2 USp(2k) SQCD with W = 0 and its mirror

We obtain the following 3d N = 2 mirror pair as in the previous sections:

(a) : •
2k

Q
− �

2Nf
with W(a′) = 0

(b) : �
1

q
−

φ1⋂
•
2k

b1−
φ2⋂
•

2k+1

b2−
φ3⋂
•
2k

b3− · · · −
φm′⋂
•

2k+1︸ ︷︷ ︸
Nf−k−1 blue nodes
Nf−k−2 red nodes

bm′− s

�1
|•

2k⋃
φm′+1

p2k−1−
ψ2k−1⋂
•
2k
· · ·

p4−
ψ4⋂
•
4

p3−
ψ3⋂
•
4

p2−
ψ2⋂
•
2

p1−
ψ1⋂
•
2

with W(b′) and m′ = 2Nf − 2k − 2.

(B.10)

where the above quivers are written in the N = 2 notation, in which

• each node denotes a 3d N = 2 vector multiplet;

• each − denotes a chiral multiplet in the SO × USp bi-fundamental representation;

and

• each
⋂

denotes the adjoint chiral field.

The superpotential W(b) contains the following terms

q(φ2k+1
1 )q +

k−1∑
j=0

X2jqφ
2j
1 q + W̃N=4 , (B.11)

where the power of φ1 in these terms are fixed using the principal orbit [2k+1] of SO(2k+1).

Note that the number of flipping fields is equal to the number of independent Casimirs of

USp(2k). As before, W̃N=4 denotes a collection of the cubic superpotential terms that

comes from N = 4 supersymmetry.
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The special case of k = 1 deserves a special attention.

(a′) : •
2

Q
− �

2Nf
with W(a′) = 0

(b′) : �
O(1)

q
−

φ1⋂
•
2

b1−
φ2⋂
•
3

b2−
φ3⋂
•
2

b3− · · · −
φm′⋂
•
3︸ ︷︷ ︸

Nf−2 blue nodes
Nf−3 red nodes

bm′− s

�1
|•
2⋃

φm′+1

p
−

ψ1⋂
•
2

with W(b′) and m′ = 2Nf − 4.

(B.12)

This provides the another duality frame for the SU(2) gauge theory with Nf flavours in

addition to (3.3).

R-charges and operator maps. Let us denote the R-charge of Q in theory (a) by r:

R[Q] = r . (B.13)

From the superpotential terms φ2m+1b2m+1b2m+1, the R-charges R[φ] of φ1, φ3, φ5, . . .,

φm′−1 can be written as

R[φ] := R[φ2m+1] = 2− 2R[b] , (B.14)

where R[b] := R[b1] = R[b2] = · · · = R[bm′ ].

We propose that the meson M = QQ in theory (a) is mapped to the minimal monopole

operator Y (b) of any USp(2k) gauge group in theory (b):

M ←→ Y (b) . (B.15)

It follows that

2r = 2(2k + 1)(1−R[b]) + (2k)(1−R[φ])− 2k , (B.16)

where the right hand side is the R-charge of the monopole operator Y (b); see e.g. [31, (3.7)].

Plugging (B.14) into the above equation, we obtain

R[b] = 1− r , (B.17)

and hence

R[φ] = 2r . (B.18)

The superpotential term (φ2k+1
1 )qq implies that

2 = 2R[q] + (2k + 1)R[φ] (B.19)

We thus obtain the R-charge of q to be

R[q] = R[b](1 + 2k)− 2k = (1− r)(1 + 2k)− 2k = 1− (1 + 2k)r . (B.20)

The R-charges of the flipping fields X2j (with j = 0, 1, 2, . . . , k − 1) are thus

R[Xj ] = 2− 2R[q]− 2jR[φ] = 2(1 + 2k − 2j)r . (B.21)
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The R-charge of the minimal monopole operator Y (a) of the USp(2k) gauge group in

theory (a) is

R[Y (a)] = 2Nf (1− r)− 2k . (B.22)

This turns out to be equal to the R-charge of the gauge invariant combination qb1b2 . . . bm′s

in theory (b):

R[qb1b2 . . . bm′s] = R[q] +m′R[b] +R[b] = 2Nf (1− r)− 2k . (B.23)

We thus conclude that the minimal monopole operator Y (a) in theory (a) is mapped to the

operator in theory (b) as follows:

Y (a) ←→ qb1b2 . . . bm′s . (B.24)

This is as expected from mirror symmetry.

B.2 SO(2k) gauge theory with 2Nf flavours

B.2.1 N = 4 mirror pairs

Let us start by considering the following 3d N = 4 theory:

(A) : •
2
− •

2
− •

4
− •

4
− · · · − •

2k−2
− •

2k−2
− •

2k
− �

2Nf
(B.25)

where the blue node with a label m denotes an SO(m) group and the red node with an even

label m denotes a USp(m) group. This theory is also known as T
[1

2Nf ]

[2Nf−2k+1,12k]
(USp(2Nf ))

in the notation of [11]. The mirror of (B.25) is denoted by T
[2Nf−2k+1,12k]

[1
2Nf ]

(SO(2Nf + 1)),

whose quiver is given by [36]

(B) : �
2k
− •

2k
− •

2k
− •

2k
− · · · − •

2k︸ ︷︷ ︸
Nf−k blue nodes
Nf−k red nodes

−
�1
|•
2k
− •

2k−1
− · · · − •

4
− •

3
− •

2
− •

1
(B.26)

B.2.2 SO(2k) SQCD with 2Nf flavours, W = 0 and its mirror

We obtain the following 3d N = 2 mirror pair as in the previous sections:

(a) : •
2k

Q
− �

2Nf
with W(a) = 0

(b) : �
1

q
−→
←−
q̃

φ1⋂
•
2k

b1−
φ2⋂
•
2k

b2−
φ3⋂
•
2k

b3− · · · −
φm′⋂
•
2k︸ ︷︷ ︸

Nf−k blue nodes
Nf−k−1 red nodes

bm′− s

�1
|•

2k⋃
φm′+1

p2k−1−
ψ2k−1⋂
•

2k−1
· · ·

p4−
ψ4⋂
•
4

p3−
ψ3⋂
•
3

p2−
ψ2⋂
•
2

p1−
ψ1⋂
•
1

with W(b) and m′ = 2Nf − 2k.

(B.27)
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The superpotential W(b) contains the following terms

q̃(φ2k−11 )q̃ + qφ1q +

k−1∑
j=0

X2j q̃φ
2j
1 q̃ +Xkq̃φ

k
1 q̃ + W̃N=4 , (B.28)

where the power of φ1 in these terms are fixed using the principal orbit [2k−1, 1] of SO(2k)

in the same way as in [40]. Note that the number of flipping fields is equal to the number

of independent Casimirs of SO(2k).

R-charges and operator maps. Let us denote the R-charge of Q in theory (a) by r:

R[Q] = r . (B.29)

From the superpotential terms φ2m+1b2m+1b2m+1, the R-charges R[φ] of φ1, φ3, φ5, . . .,

φm′−1 can be written as

R[φ] := R[φ2m+1] = 2− 2R[b] , (B.30)

where R[b] := R[b1] = R[b2] = · · · = R[bm′ ].

Let us denote the monopole operator in any USp(2k) gauge group in theory (b) dressed

with the adjoint matter field φ by

Y
(b)
j = tr(Y

(b)
0 φj) (B.31)

where Y
(b)
0 is the minimal monopole operator of any USp(2k) gauge group in theory (b).

The R-charge of Y
(b)
j is (see e.g. [31, (3.7)]):

R[Y
(b)
j ] = 2(2k)(1−R[b]) + (2k)(1−R[φ]) + jR[φ]− 2k

(B.30)
= 2j(1−R[b]) . (B.32)

Let us point out that for j = 0, R[Y
(b)
0 ] = 0. This means that the dimension of the minimal

monopole operator Y
(b)
0 falls below the unitary bound. Indeed for the theory with N = 4

supersymmetry, namely (B.26) with R[b] = 1/2, a USp(2k) gauge group with 2k flavours

renders the theory “bad” in the sense of [11]. Hence, to make sense of this, we consider

Y
(b)
j with j ≥ 1.

We propose that the meson M = QQ in theory (a) is mapped to the monopole operator

Y
(b)
1 in theory (b):

M ←→ Y
(b)
1 . (B.33)

It follows that

2r = R[Y
(b)
1 ] = 2(1−R[b]) . (B.34)

Thus,

R[b] = 1− r . (B.35)

We therefore obtain

R[φ] = 2r . (B.36)

The R-charge of the operator Y
(b)
j is thus

R[Y
(b)
j ] = 2jr . (B.37)
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The superpotential term φ1qq imposes the condition

R[q] = R[b] = 1− r . (B.38)

The superpotential term (φ2k−11 )q̃q̃ imposes the condition

2R[q̃] + (2k − 1)R[φ] = 2 , (B.39)

and so

R[q̃] = 2 + 2kR[b]−R[b]− 2k = 1− (2k − 1)r . (B.40)

The R-charges of the flipping fields are as follows:

R[X2j ] = 2− 2R[q̃]− 2jR[φ] = 2(2k − 1− 2j)r , j = 0, . . . , k − 1 (B.41)

R[Xk] = 2− 2R[q̃]− kR[φ] = 2r(k − 1) . (B.42)

The minimal monopole operator Y (a) of gauge group SO(2k) theory (a) has R-charge

R[Y (a)] = 2Nf (1− r)− (2k − 2) . (B.43)

The baryon-monopole operator β(a) of theory (a) has R-charge

R[β(a)] = (2k − 2)r +R[Y (a)] = 2Nf (1− r)− (2k − 2)(1− r) . (B.44)

These can be matched with the following R-charges of the operators of (b):

R[qb1b2 . . . bm′s] = R[q] +m′R[b] +R[b] = 2Nf (1− r)− (2k − 2)(1− r)
R[sbm′ . . . b2b1q̃] = R[b] +m′R[b] +R[q̃] = 2Nf (1− r)− (2k − 2) .

(B.45)

We thus propose that Y (a) and β(a) are mapped to the operators of (b) as follows:

β(a) ←→ qb1b2 . . . bm′s

Y (a) ←→ sbm′ . . . b2b1q̃
(B.46)

Moreover, the R-charge of the baryon B in theory (a) is

R[B] = 2kr . (B.47)

The baryon B in theory (a) is mapped to the monopole operator in theory (b) as follows:

B ←→ Y
(b)
k . (B.48)

B.3 O(2k + 1) gauge theory with 2Nf flavours

B.3.1 N = 4 mirror pairs

Let us start by considering the following 3d N = 4 theory:

•
1
− •

2
− •

3
− •

4
− · · · − •

2k
− •

2k+1
− �

2Nf
(B.49)

This theory is also known as T
[1

2Nf ]

[2Nf−2k,12k]
(USp(2Nf )′) in the notation of [36]. The mirror

of (B.49) is denoted by T
[2Nf−2k,12k]

[1
2Nf ]

(USp(2Nf )′), whose quiver is given by

�
2k
− •

2k+2
− •

2k
− •

2k+2
− •

2k
− · · · − •

2k+2︸ ︷︷ ︸
Nf−k blue nodes
Nf−k−1 red nodes

−
�1
|•
2k
− •

2k+1
− · · · − •

4
− •

5
− •

2
− •

3
(B.50)
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B.3.2 O(2k + 1) SQCD with 2Nf flavours, W = 0 and its mirror

We obtain the following 3d N = 2 mirror pair as in the previous sections:

(a) : •
O(2k+1)

Q
− �

2Nf
with W(a) = 0

(b) : �
SU(1)

q
−

φ1⋂
•

2k+2

b1−
φ2⋂
•
2k

b2−
φ3⋂
•

2k+2

b3− · · · −
φm′⋂
•

2k+2︸ ︷︷ ︸
Nf−k−1 blue nodes
Nf−k−1 red nodes

bm′− s

�1
|•

2k⋃
φm′+1

p2k−1−
ψ2k−1⋂
•

2k+1
· · ·

p4−
ψ4⋂
•
4

p3−
ψ3⋂
•
5

p2−
ψ2⋂
•
2

p1−
ψ1⋂
•
3

with W(b) and m′ = 2Nf − 2k − 1. (B.51)

The superpotential W(b) contains the term

q(φ2k1 )q +

k∑
j=0

X2jqφ
2j
1 q + W̃N=4 . (B.52)

R-charges and operator maps. Let us denote the R-charge of Q in theory (a) by r:

R[Q] = r . (B.53)

From the superpotential terms φ2m+1b2m+1b2m+1, the R-charges R[φ] of φ1, φ3, φ5, . . .,

φm′−1 can be written as

R[φ] := R[φ2m+1] = 2− 2R[b] , (B.54)

where R[b] := R[b1] = R[b2] = · · · = R[bm′ ] = R[s].

Let us denote the monopole operator in any SO(2k + 2) gauge group in theory (b)

dressed with the adjoint matter field φ by

Y
(b)
j = tr(Y

(b)
0 φj) (B.55)

where Y
(b)
0 is the minimal monopole operator of any SO(2k+ 2) gauge group in theory (b).

The R-charge of Y
(b)
j is (see e.g. [31, (3.7)]):

R[Y
(b)
j ] = 2(2k)(1−R[b]) + [(2k + 2)− 2](1−R[φ]) + jR[φ]

− [(2k + 2)− 2]

(B.54)
= 2(1−R[b])(j − k) .

(B.56)

Let us point out that for 0 ≤ j ≤ k, R[Y
(b)
0 ] ≤ 0, assuming that 0 ≤ R[b] < 1. Indeed

for the theory with N = 4 supersymmetry, namely (B.51) with R[b] = 1/2, a SO(2k + 2)

gauge group with 2k flavours renders the theory “bad” in the sense of [11]. Hence, to make

sense of this, we consider Y
(b)
j with j ≥ k + 1.

We propose that the meson M = QQ in theory (a) is mapped to the monopole operator

Y
(b)
k+1 in theory (b):

M ←→ Y
(b)
k+1 . (B.57)
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It follows that

2r = R[Y
(b)
k+1] = 2(1−R[b]) . (B.58)

Thus,

R[b] = 1− r , (B.59)

and hence

R[φ] = 2r . (B.60)

The R-charge of the operator Y
(b)
j is thus

R[Y
(b)
j ] = 2r(j − k) . (B.61)

The superpotential term φ2k1 qq imposes the condition

2R[q] + 2kR[φ] = 2 . (B.62)

Therefore,

R[q] = 1− kR[φ] = 1− 2kr . (B.63)

The R-charges of the flipping fields X2j (with j = 0, 1, . . . , k) are thus

R[X2j ] = 2− 2R[q]− 2jR[φ] = 4r(k − j) . (B.64)

The minimal monopole operator Y (a) of gauge group SO(2k) theory (a) has R-charge

R[Y (a)] = 2Nf (1− r)− (2k + 1− 2) . (B.65)

This can be matched with the following R-charges of the operators of (b):

R[qb1b2 . . . bm′s] = R[q] +m′R[b] +R[b] = 2Nf (1− r)− (2k + 1− 2) . (B.66)

We thus propose that Y (a) is mapped to the operator of theory (b) as follows:

Y (a) ←→ qb1b2 . . . bm′s . (B.67)

Open Access. This article is distributed under the terms of the Creative Commons
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