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ABSTRACT

Context. The imaging sharpness of an X-ray telescope is chiefly determined by the optical quality of its focusing optics, which in
turn mostly depends on the shape accuracy and the surface finishing of the grazing-incidence X-ray mirrors that compose the optical
modules. To ensure the imaging performance during the mirror manufacturing, a fundamental step is predicting the mirror point spread
function (PSF) from the metrology of its surface. Traditionally, the PSF computation in X-rays is assumed to be different depending on
whether the surface defects are classified as figure errors or roughness. This classical approach, however, requires setting a boundary
between these two asymptotic regimes, which is not known a priori.
Aims. The aim of this work is to overcome this limit by providing analytical formulae that are valid at any light wavelength, for
computing the PSF of an X-ray mirror shell from the measured longitudinal profiles and the roughness power spectral density, without
distinguishing spectral ranges with different treatments.
Methods. The method we adopted is based on the Huygens-Fresnel principle for computing the diffracted intensity from measured or
modeled profiles. In particular, we have simplified the computation of the surface integral to only one dimension, owing to the grazing
incidence that reduces the influence of the azimuthal errors by orders of magnitude. The method can be extended to optical systems
with an arbitrary number of reflections – in particular the Wolter-I, which is frequently used in X-ray astronomy – and can be used in
both near- and far-field approximation. Finally, it accounts simultaneously for profile, roughness, and aperture diffraction.
Results. We describe the formalism with which one can self-consistently compute the PSF of grazing-incidence mirrors, and we show
some PSF simulations including the UV band, where the aperture diffraction dominates the PSF, and hard X-rays where the X-ray
scattering has a major impact on the PSF degradation. The results are validated with ray-tracing simulations, or by comparison with
the analytical computation of the half-energy width based on the known scattering theory, where these approaches are applicable.
Finally, we validate this by comparing the simulated PSF of a real Wolter-I mirror shell with the measured PSF in hard X-rays.

Key words. telescopes – methods: analytical – instrumentation: high angular resolution – X-rays: general

1. Introduction

Optics for imaging X-ray telescopes consist of a variable
number of coaxial grazing-incidence, double-reflection X-ray
mirrors. Most X-ray telescopes have so far adopted the
Wolter-I profile, achieving a double reflection on a grazing-
incidence paraboloidal mirror segment and a hyperboloidal one
(Van Speybroeck & Chase 1972): accurate on-axis focusing is
obtained by means of two consecutive reflections onto these two
surfaces. Alternative solutions can be envisaged, for instance,
polynomial profiles (Conconi & Campana 2001; Conconi et al.
2010), to enlarge the optical field of view, or Kirkpatrick-Baez
geometries (Kirkpatrick & Baez 1948), but all solutions rely
on two or more reflections. In addition to the intrinsic aberra-
tions of the optical design, especially off-axis, the mirror surface
accuracy determines the concentration and the imaging perfor-
mances. These quantities are typically expressed in X-ray as-
tronomy using the point spread function (PSF), that is, the an-
nular integral of the focused X-ray intensity around the center
of the focal spot. Another quantity of frequent use to denote the
imaging properties is the half-energy width (HEW), that is, twice
the median value of the PSF. Achieving optical systems with
high angular resolution – for example, lower than 5 arcsec HEW

for the ATHENA X-ray observatory (Willingale et al. 2014;
Bavdaz et al. 2014) that is to be launched in 2028 – requires
accurate mirror metrology over a wide range of spatial scales,
and also methods for predicting the PSF from metrology data at
various X-ray energies.

Mirror imperfections affecting the PSF in X-rays are tradi-
tionally divided into figure errors, for instance measured with
optical profilometers (Takács et al. 1999), and microroughness,
which can be measured with techniques like phase-shift inter-
ferometry (PSI, see, e.g., Upputuri et al. 2009) or atomic-force
microscopy (AFM, see, e.g., Dixson et al. 2000). Except for defi-
nitions that empirically refer to the mirror length (De Korte et al.
1981), the separation of profile geometry and roughness in gen-
eral reflects the different treatments adopted to predict their im-
pact on the angular resolution. For example, if a measured profile
is decomposed into Fourier components, profile errors encom-
pass long spatial wavelengths, where geometrical optics can be
applied. According to this definition, the PSF of a mirror char-
acterized by defects of this kind can be predicted by ray-tracing
routines that reconstruct the path of rays reflected at different
mirror locations, regardless of the X-ray wavelength, λ. This
method can be readily extended to multiple reflection systems,
such as the Wolter system. In contrast, the surface roughness
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is assumed to entirely fall in a spectral region of spatial wave-
lengths where the concept of “ray” is no longer applicable be-
cause the optical path differences introduced by the roughness
start to be similar to λ. In this spectral range, the PSF broaden-
ing stems from the wavefront diffraction off the reflecting sur-
face, or X-ray scattering (XRS), which in general increases in
intensity with the X-ray energy. The characterization of the mi-
croroughness over a wide range of spatial frequencies is conve-
niently expressed in terms of its power spectral density (PSD),
because its values do not depend on the measurement technique
in use (ISO 10110 Standard). Moreover, a well-established first-
order theory can be very effectively used (Church et al. 1979;
Stover 1995) to compute the scattering diagram, provided that
the smooth surface condition is fulfilled,

4πσ sinα0 < λ, (1)

where α0 is the grazing (i.e., measured from the surface) in-
cidence angle of X-rays and σ is its surface error root mean
square (rms) in a given spectral band. A noticeable result of
this scattering theory is that the XRS angular distribution is sim-
ply proportional to the PSD. On this basis, several contributions
(Christensen et al. 1988; Willingale 1988; O’Dell et al. 1993)
were given in the past years to establish a relationship between
the mirror PSF and the surface finishing level. One of us (Spiga
2007) has used the scattering theory to derive analytical for-
mulae that can be used to convert the surface PSD of a mirror
into the X-ray scattering term of the HEW as a function of λ
and vice versa. However, the first-order theory cannot be always
extended to the low-frequency limit, where the surface defects
are usually of larger amplitude. This limit has been overcome,
for example, by Harvey et al. (1988), who provided a transfer
function-based approach to relate the PSF to the self-correlation
function of a stochastically rough surface. More recently, a com-
plete approach to the modeling of light scattering from rough
surfaces has been provided by Schröder et al. (2011) to bridge
the gap between scattering theories that are valid in different
smoothness conditions.

The approaches just mentioned always require a spatial fre-
quency that serves as a boundary between figure errors (non-
stochastic) and roughness (stochastic); however, this limiting
frequency is not of immediate definition. For this reason, adopt-
ing the geometric or scattering treatment has for a long time been
“a matter of taste”, to quote Aschenbach (2005), who is cred-
ited to have shed some light on solving this problem on physical
grounds. Aschenbach concluded that any single Fourier com-
ponent whose σ fulfills the smooth-surface condition (Eq. (1))
should be mostly treated as roughness, and as figure error other-
wise. This approach highlighted that the geometry or scattering
treatment is not fixed, but should at least depend on α0 and λ.
However, there are some drawbacks in this statement:

– The criterion operates a selection on the rms values of a spec-
trum of discrete frequencies, therefore it is difficult to apply
to a continuous PSD since the “single component” rms, and
consequently the boundary frequency, would depend on the
spectral resolution of the metrological instrument in use.

– The separation between the two regimes is not abrupt in real-
ity (Sect. 3.2). For example, the spatial frequencies near the
smooth-surface limit cannot be treated in either way (Fig. 1).
We refer to these components, often found in the centimeter-
millimeter range of spatial wavelengths, as mid-frequencies.

– Every spectral range, treated separately, returns a PSF. We
then have as many PSFs as the number of spectral ranges in
which we have decomposed the profile, which should now

Fig. 1. Different spatial wavelengths in a mirror profile error. Long
wavelengths (1) are usually treated with geometrical optics, high-
frequency roughness components (3) with the first-order scattering the-
ory. The treatment of mid-frequencies (2) is more uncertain. Even more
uncertain is the most general situation, in which all three components
contribute to the mirror PSF.

be combined into a single, total, predicted PSF. Even if a
convolution of the PSFs might seem a natural approach, this
is not correct in general, as we show in Sect. 3.4.

These points highlight the need for a self-consistent method to
predict the PSF from a complete metrology dataset, including
profile, mid-frequencies, and roughness. To this end, wavefront
propagation methods (i.e., applications of the Huygens-Fresnel
principle) should be used to treat surface defects of any fre-
quency, at any wavelength of the incident radiation. The rea-
son is that the validity of the Huygens-Fresnel principle is unre-
stricted. The geometrical optics results are automatically found
in the limit of large surface defects, or λ→ 0.

Methods based on physical optics are frequently used in
normal-incidence mirrors for visible light (see, e.g., Cady 2012).
For grazing-incidence mirrors, they were mostly used to model
the X-ray scattering when the smooth-surface and small scatter-
ing angle conditions are not met, for example, by Beckmann &
Spizzichino (1987), and Zhao & Van Speybroeck (2003): nev-
ertheless, they seem to have restricted this method to solely
compute the XRS. Mieremet & Beijersbergen (2005) used the
Huygens-Fresnel principle to evaluate the impact of the aperture
diffraction in silicon pore optics, but did not include mirror de-
fects in their analysis. Others adopted the wavefront propagation
to interpret the results of X-ray mirror tests in visible or ultravi-
olet light (e.g., Saha et al. 2010), but the analysis was limited to
the case of a focus at an infinite distance from the mirror, that is,
to far-field conditions. In fact, owing to the long focal lengths at
play in X-ray astronomy, the far-field condition is fulfilled in a
number of cases. However, it is not applicable to the optical sys-
tems in which two or more reflections occur in sequence within
a short distance, like Wolter-I profiles and most of polynomial
configurations.

In this work we describe in detail a method for computing the
PSF – and consequently the HEW – of grazing-incidence X-ray
optical systems, including the Wolter system, from measured or
modeled profiles, simply making use of the Fresnel diffraction
theory. We have already anticipated some results in previous
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Fig. 2. Reference frame used to compute the diffracted field from a
grazing-incidence mirror. The scattered amplitude at the generic point
in the xz plane is obtained by superposing secondary waves generated
at each point of the mirror profile (x1, y1, z1).

papers (Raimondi & Spiga 2010, 2011; Spiga & Raimondi
2014). Here we provide a complete derivation of the results,
and extend the formalism to anisotropic sources, or to sources
located at a finite distance. Even if the Fresnel diffraction the-
ory is often used to compute the PSF accounting for diffraction
aperture and optical aberrations, it seems not to have been ap-
plied to real mirror profiles, that is, accounting for profile errors
and roughness in a very wide spectral range of spatial frequen-
cies. To this end, we need to reduce the surface integrals to only
one dimension, corresponding to the longitudinal axis (Sect. 2).
We provide simple formulae to compute the field diffracted by
a grazing-incidence mirror profile at any light wavelength, with
simplified expressions in the far-field case (Sect. 3). In Sect. 4 we
extend the formalism to double-reflection mirrors, which are of-
ten adopted in X-ray astronomy, and we show in Sect. 5 some ex-
amples of PSF computations using these formulae. The geomet-
rical optics results are automatically obtained at X-ray energies
at which aperture diffraction and X-ray scattering are negligible.
In certain conditions, we can even compare the HEW(λ) values
computed from Fresnel diffraction with the results obtained from
the analytical treatment (Spiga 2007) of the XRS term of the
HEW. A very good agreement is found between the two meth-
ods (Sect. 6), provided that the XRS term and the figure error
term of the HEW are summed linearly. We also report in Sect. 7
an experimental verification of the predictions for a hard X-ray
mirror shell tested at the SPring-8 radiation facility (Spiga et al.
2011). A short summary of the results is given in Sect. 8.

2. Grazing incidence and monodimensional

approximation

Wavefront propagation techniques are widespread in optics to
assess the impact of the aperture diffraction effects on the imag-
ing quality. Indeed, this method has rarely been applied to real
mirrors with measured surface defects. The reason is that most
codes for wavefront propagation are two-dimensional, meaning
that they compute the intensity distribution over a 2D focal plane
from a 2D surface mirror map. This makes the computation
quite intensive, however, therefore it can only be applied to pro-
files that are known analytically or to profiles whose measured
shape is sampled with a convenient lateral step (≥1 mm). This
clearly rules out including the roughness in the PSF computation

because this would imply a sampling step typically below 1 µm,
and so the number of iterations required would be larger by
more than a factor of 106! In contrast, the computation is enor-
mously simplified when the Huygens-Fresnel principle is ap-
plied to 1D profiles in the axial direction. In addition, this en-
ables us to compute the PSF on a single line in the focal plane,
averaging the results if several axial profiles have to be analyzed.

The method we hereby provide is exactly based on a
1D computation and can be applied to a variety of cases. For
example, the astronomical case, with a source at a practically in-
finite distance from a mirror focusing via a double-reflection at
a shallow angle. X-ray mirrors or mirror assemblies of this kind
are also tested using terrestrial sources such as MPE/PANTER
(Burwitz et al. 2013), where a very small X-ray source is located
at a finite, although very large, distance. Among other effects
(Van Speybroeck & Chase 1972), the finiteness of the source
distance causes a small, intrinsic defocusing in Wolter-I mir-
rors, but this is in general negligible with respect to the influence
of fabrication errors. X-ray mirrors are also used at terrestrial
X-ray sources like synchrotron radiation facilities or free elec-
tron lasers (FELs) such as Fermi at Elettra (Allaria et al. 2010),
where an X-ray beam of noticeable spatial (also temporal in
FELs) coherence is generated from a very small source. In these
cases, the high source brilliance does not require a tight mir-
ror nesting; higher focusing performances are usually required,
and because of the finiteness of the source distance, an exact fo-
cusing in single reflection can be obtained only using ellipsoidal
mirrors. If the mirror is characterized by a very high profile accu-
racy and surface finishing, then the source size and its coherence
properties have also to be taken into account (Raimondi et al.
2013a).

We consider throughout a radiation of wavelength λ, prop-
agating in the negative z direction of the reference frame
(see Fig. 2) and impinging on an axially-symmetric grazing-
incidence mirror, of length L1 and optical axis coincident with
the z-axis. The mirror is a sector with an azimuthal aperture ∆Φ,
with linear dimensions much larger than λ to avoid azimuthal
diffraction effects. In the axial direction, the mirror spans from f
to f + L1, and the azimuthal (sagittal) radius of the mirror also
increases. We denote the theoretical radius at z = f with R0 and
the radius at the other end with RM.

The wavefront is assumed to be initially uniform and spheri-
cal, with an electric field amplitude E0 at z = f + L1. The source
is a point located at z = S . The wavefront can initially diverge
(S ≫ 0) or converge (S ≪ 0), but we always assume |S | ≫ L1.
The axial profile of the mirror, including defects resulting from
profile, mid-frequencies and roughness, is described by the co-
ordinate array (x1, z1) in the xz plane. For simplicity, we assume
the mirror system to focus the radiation from the source to the
z = 0 plane at a distance f out to the mirror’s nearest end. We
explicitly point out that f is the mirror distance needed to have
the best focal plane at z = 0, which in general differs from the
mirror focal length unless the source is located at infinity. For
simplicity, we also assume |S | > f and define D = S − f as
source-to-mirror distance.

We now define α0 to be the incidence angle at z = f for a
source at infinite distance, measured from the surface: α0 must
be shallow (smaller than a few degrees), otherwise the reflectiv-
ity will be very low. The variation of the incidence angle on the
mirror in a meridional plane is in general even smaller than α0 it-
self (Spiga et al. 2009), even though some curvature is obviously
needed for the mirror to have a focus. So we may write, to a good
approximation, that RM − R0 ≃ L1 sinα0. In the general case we
also have to account for the divergence, or the convergence, of
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the incoming beam. The divergence angle of the wave – also ap-
proximately constant – is denoted with δ = R0/D, taken with the
same sign of D: we can therefore write the incidence angle on
the mirror as

α1 = α0 + δ, (2)

and the radial amplitude of the mirror’s entrance pupil seen from
the source as

∆R1 ≃ L1 sinα1. (3)

Our aim is to devise a general formula for the mirror PSF, de-
fined as the diffracted field intensity at z = 0, integrated in circu-
lar coronae between the radii x and x + ∆x, divided by ∆x, and
normalized to the intensity collected by the mirror. Doing this,
assuming shallow incidence angles has two advantages:

1. the two polarization states do not practically change di-
rection after reflection, so we can readily work in scalar
approximation;

2. we can limit the computation to the longitudinal (i.e., axial)
profiles, neglecting thereby the transverse deflection caused
by azimuthal (i.e., sagittal) errors.

The last point, which allows reducing the computation complex-
ity dramatically, is justified by the following considerations:

– If geometrical optics can be applied, the slope errors of the
longitudinal sections of the mirror result in an angular dis-
persion twice as large, while the same slope errors along the
azimuth result in an angular spread of rays smaller by a fac-
tor of tan 2α1.

– The scattering in the incidence plane, determined by the
roughness PSD computed in the longitudinal direction, is
more extended (Church 1988) than in the perpendicular
direction by a factor of (tanα1)−1/2; in other words, the
XRS pattern is almost unaffected by the profiles along the
azimuth.

– Since the mirror aperture is a circular corona of width
∆R1 ≪ R0, also the aperture diffraction – visible when
the mirror is tested in UV light – resembles the diffraction
pattern of a long, straight slit, which can be computed in 1D
(an example is shown in Fig. 3).

An implication of the 1D approximation is that the PSF abruptly
drops just out of the incidence plane; hence, at any azimuthal
coordinate of the mirror the PSF collapses into a single line, and
the intensity distribution along the line is a function only of the
radial distance from the center of the focal spot. Then the in-
tegration in circular coronae is made immediately, and the PSF
becomes a function of the sole coordinate x. In this way, it is suf-
ficient to compute the PSF along the x-axis instead of throughout
the entire detector area.

We thereby assume the mirror surface to be described as a
rotation of a 1D profile about the z-axis, that is the radial coordi-
nate as a function of the mirror’s axial coordinate, r = r1(z1),
which in turn equals the longitudinal mirror profile in the xz
plane x1(z1). In practice, x1 is composed of three terms:

x1(z1) = xn1(z1) + xmeas1(z1) + xPSD1(z1), (4)

where xn1 is the nominal mirror profile, xmeas1 is the measured
profile error along the entire profile length L1, and xPSD1 is one
of the infinitely possible profiles of length L1, computed from
the PSD. The latter is to be obtained from a previous roughness
characterization in a broad spectral range, but not overlapping
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Fig. 3. Computed aperture diffraction PSF at λ = 3000 Å, source at
infinity, of a grazing-incidence parabolic mirror with f = 10 m, a min-
imum radius R0 = 150 mm, and a length L1 = 300 mm, resulting in a
circular corona aperture of 2.25 mm width. The dashed line is the usual
diffraction pattern of a straight slit of equal width, while the accurate
computation (solid line) is obtained by computing the exact diffraction
pattern integrated over circular coronae. A high-frequency modulation
in the latter would also be superimposed owing to the diffraction of the
2R0 diameter circular aperture, but in real cases is canceled out by the
finite resolution of the detector.

the frequency window of the instrument used to measure xmeas1.
The reason for the different treatment for the two terms is that the
resolution of xmeas1 cannot be extended down to the typical fre-
quencies of microroughness. Conversely, instruments dedicated
to roughness measurements cannot be extended to scan lengths
of more than a few millimeters. Hence, the PSD characteriza-
tion can be used to obtain one of the infinitely possible profiles
of length L1 (Sect. 5.4) that are consistent with the measured
roughness PSD. The reason for the profile degeneracy lies in the
phase information of the Fourier components of the roughness,
which are lost when computing the PSD. To reconstruct the pro-
file from the PSD, the phase of the components can be freely
selected. Each choice results in a different rough profile, which
in principle might exhibit different scattering properties.

Fortunately, one of the results of the first-order XRS theory
is that the scattering pattern only depends on the PSD if the rms
of xPSD1 fulfills Eq. (1):

(∫ L1

0
xPSD1 dz1

)1/2

<
λ

4π sinα1
· (5)

Equation (5) is usually fulfilled by optically polished surfaces,
therefore we expect the PSF contribution of xPSD1 to depend
not on the particular realization of the rough profile, but on the
sole PSD.

We finally point out that the decomposition of x1(z1) is
purely operational, meaning that it is only related to the sensi-
tivity of measurement methods used for different windows of
spatial frequencies, and the condition of Eq. (5) is requested to
xPSD1 only to reconstruct the profile reliably. We show below
that the same formulae for the PSF can be applied, regardless of
whether the smooth-surface condition is fulfilled or not.
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3. PSF of a grazing-incidence single-reflection

mirror

3.1. Isotropic, point-like source

We consider the case of a point-like and isotropic source on
the optical axis of a axially-symmetric, grazing-incidence mirror
sector characterized by the radial profile x1(z1), as described in
Sect. 2. Referring to the scheme depicted in Fig. 2, the electric
field diffracted in the xz plane can be easily computed by means
of the Huygens-Fresnel principle. The derivation, reported in
Appendix A, returns the following expression (Eq. (A.13)):

E(x, 0, z) =
E0 ∆R1

L1
√
λx

∫ f+L1

f

√

x1

d̄2
e
− 2πi
λ

[

d̄2 − z1 +
x2
1

2(S − z1)

]

dz1, (6)

where ∆R1 is given by Eq. (3), we have omitted unessential
phase factors, evaluated the radial coordinate at x1(z1), and
defined

d̄2 =
√

(x1 − x)2 + (z1 − z)2. (7)

If the diffracted field does not encounter subsequent mirrors, this
expression can be used to derive the mirror PSF at the nominal
focal plane (z = 0). The diffracted intensity on the x-axis is

I(x) =
E2

0 (∆R1)2

L2
1λx

∣

∣

∣

∣

∣

∣

∣

∫ f+L1

f

√

x1

d̄2,0
e
− 2πi
λ

[

d̄2,0 − z1 +
x2
1

2(S − z1 )

]

dz1

∣

∣

∣

∣

∣

∣

∣

2

, (8)

where d̄2,0 is Eq. (7) evaluated at z = 0. Owing to the symme-
try about the z-axis, and since by hypothesis the sector is wide
enough to avoid edge diffraction at it sides, Eq. (8) is valid on
the focal plane for azimuthal angles within [−∆Φ/2, +∆Φ/2].
Therefore, integrating the intensity on the focal plane over a cir-
cular segment of area x∆Φ∆x, dividing by ∆x, and normalizing
to the intensity collected by the mirror slice E2

0R0 ∆Φ∆R1, we
obtain the formula for the PSF of a single-reflection grazing-
incidence mirror:

PSF(x) =
∆R1

L2
1λR0

∣

∣

∣

∣

∣

∣

∣

∫ f+L1

f

√

x1

d̄2,0
e
− 2πi
λ

[

d̄2,0 − z1 +
x2
1

2(S − z1)

]

dz1

∣

∣

∣

∣

∣

∣

∣

2

. (9)

If all the lengths in Eq. (9) are measured in millimeters, the PSF
is measured in mm−1. To have the focal line graded in arcsec-
onds, it is sufficient to multiply the x-axis times the plate-scale
factor 206 265/ f and divide the PSF by the same factor to have
it measured in arcsec−1. In that case, we denote the angular dis-
tance from the PSF center with θ. We also note that

1. The derivation of Eq. (9) is based on the Huygens-Fresnel
principle and the grazing incidence approximation; therefore
it is valid for any value of λ.

2. Numerical computation shows that the PSF is normalized
to 1 if integrated over the entire x-axis (we prove this ana-
lytically, for a particular case, in Sect. 3.4).

3. If the computation is performed over a focal line of finite size
2ρ (from now on called “detector”), then the PSF integral is
less than 1, because some beam is scattered out of the de-
tector size. However, if the HEW is computed with respect
to the absolute normalization, then its value is independent
of ρ, on condition that the detector is wide enough for the
PSF integral to exceed 1/2.

The PSF in Eq. (9) is entirely determined by the function x1(z1):
the real, longitudinal profile of the mirror, including its real de-
fects, regardless of any distinction between figure errors, mid-
frequencies, or roughness. If the profile is known analytically,
then the integral can be explicitly solved, but this can only be
done in a few cases. In general, the PSF is computed from a tabu-
lated profile, with a finite spatial resolution, ∆z1, which has to be
low enough to sample the shortest measured wavelength in the
profile. However, it also needs to be short enough to avoid ghost
features. The maximum sampling step of the profile is the spatial
wavelength, λ f /(sinα1 ρ), which causes a first-order scattering
at the detector edge x = ±ρ, halved to fulfill the Nyquist criterion
and oversampled by a factor of 2π (Raimondi & Spiga 2010):

∆z1 =
λ f

4π sinα1 ρ
· (10)

This sampling enables computing the PSF within the detector
size. The measured profile error, xmeas1, has to be at least sam-
pled at this spatial step, and the PSD on the corresponding spatial
frequencies [1/L1, 2/L1, . . . , 1/2∆z1], as per the Nyquist theo-
rem. In turn, higher spatial frequencies (typically obtained from
a roughness PSD measurement in the AFM range) may need
to be included as well, up to a highest value νmax > (2∆z1)−1:
to this end, the sampling step in z1 should be clearly reduced to
(2νmax)−1. Expanding the frequency band in the profile clearly
increases the scattering amount out of the detector edge, which
is compensated by a reduced PSF normalization. We note that
Eq. (10) was derived from the grating formula at the first order
of interference, but it remains valid at higher orders: in fact, the
2k∆z1 (for integer k) wavelength also contributes to a kth order
scattering at the same angle, but this wavelength is well over-
sampled by step ∆z1 provided by Eq. (10).

We can also derive the sampling requested for the detector,
∆x, defined as the coordinate at which the minimum spatial fre-
quency in the profile, 1/L1, scatters at the first order, oversam-
pled by 2π:

∆x =
λ f

2π sinα1 L1
· (11)

The resulting number of sampled points, N, is the same for the
mirror and for the detector:

N =
2ρ
∆x
=

L1

∆z1
=

4π∆R1 ρ

λ f
· (12)

The results just listed – and in the remainder of this paper – can
be generalized to mirrors with non axially symmetric errors. If
different sectors of a grazing-incidence mirror are characterized
by different measured axial profiles, the PSF of each sector can
be computed from the individual profiles, and the PSFs obtained
can be averaged to return the final PSF. The profiles can also
include tilt or offset errors with respect to the nominal profile of
the mirror. The extension of the computation to a source off-axis
in the xz plane is straightforward, changing the definition of d1
by Eqs. (A.14) or (A.15), provided that the off-axis angle θs of
the source is much smaller than α1.

The previous results are exactly valid only for a source of
ideal temporal coherence, meaning a perfectly monochromatic
source. To account for the finite coherence length ∆scoh, one can
apply Eq. (9) by varying λ at random with x within a wavelength
bandwidth ∆λ ≃ λ2/(2π∆scoh). This has the effect of smoothing
out fine PSF features, which would be visible only with perfectly
monochromatic radiation.
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Fig. 4. Dashed lines: PSF expected from applying geometrical optics to a parabolic profile with a sinusoidal profile error with A = 0.1 µm and
T = 10 mm (Eq. (14)). The parabolic profile parameters take on reasonable values R0 = 15 cm, f = 10 m, and L1 = 300 mm. The detector has
a resolution of 20 µm. Solid lines: computed PSF for decreasing λ, using Eq. (9). a) λ = 500 Å, dominated by aperture diffraction. b) λ = 70 Å,
first-order scattering dominates and the second-order peaks start to appear. c) λ = 10 Å: multiple orders have become visible. d) λ = 0.5 Å:
high-order peaks are almost completely blended, and the PSF now resembles the geometrical optics result.

3.2. An example: the sinusoidal profile error

In this section we show some applications of Eq. (9) to the case
of a parabolic nominal profile with a superposed sinusoidal pat-
tern (Eq. (4)),

xmeas1 = A sin

(

2π
T

z1

)

, (13)

and the source is assumed to be at infinity, therefore α1 = α0.
Classically, if T is in the centimeter range and the incidence an-
gle is in the typical range of X-ray optics (≈0.5 deg), this pertur-
bation is difficult to classify as figure error or roughness, and ac-
cordingly falls in a mid-frequency range of uncertain treatment
(Fig. 1). For example, if geometrical optics could be applied, the
PSF would exhibit a typical diverging shape (Spiga et al. 2013):

PSF(θ) =
1
π

⎡

⎢

⎢

⎢

⎢

⎢

⎣

(

4πA
T

)2

− θ2
⎤

⎥

⎥

⎥

⎥

⎥

⎦

−1/2

(14)

for |θ| < 4πA/T , and zero elsewhere (dashed lines in Fig. 4).
But in which conditions are we allowed to treat this sinusoidal
perturbation with geometrical optics?

The application of Fresnel diffraction (Eq. (9)) allows us
to overcome these uncertainties, and the results exhibit a more
complicated picture. When λ is in the UV range, the interferen-
tial pattern of the grating is invisible (Fig. 4a), because it is com-
pletely hidden by the aperture diffraction. As λ is diminished, the
aperture diffraction decreases in proportion, and the PSF starts to
resemble a Dirac delta, as it would for a perfect mirror. However,
at sufficiently high energies, scattering peaks start to appear at
the two sides of the central peak: at λ = 70 Å the first-order
peaks are the most prominent feature, while the second-order
peaks appear (Fig. 4b).

When the energy is increased (Fig. 4c), the PSF becomes
more complicated as peaks appear near the angles θk: these an-
gles are defined by the known grating equation

T [cosα0 − cos(α0 + θk)] = kλ, (15)

with k integer. The peak height decays rapidly just beyond the
angular range of the geometric PSF: the reason is that, as we
show in Sect. 3.4, in far-field and small scattering angle approx-
imations the peak heights are

PSF(θk) ∝ J2
k

(

4πA
λ

sinα0

)

(16)
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and Jk is the kth Bessel function of the first kind. This is a known
result of the sinusoidal grating theory. Now, for high values of
k > 0 and |x| < k, Jk(x) ≈ 0. Hence, the PSF is nearly zero if

4πA sinα0 < kλ (17)

for k > 0. By comparison with Eq. (15), we obtain

4πA sinα0 < T [cosα0 − cos(α0 + θk)] (18)

which no longer depends on λ. Developing Eq. (18) yields

sin
θk

2
>

2πA
T
, (19)

and a similar result is obtained for k < 0. Therefore, in the limit
of small scattering angles, the PSF is near zero if

|θk | >
4πA
T
, (20)

exactly like the result of geometrical optics.
For very low values of λ (Fig. 4d), the separation between

adjacent peaks eventually becomes smaller than the detector res-
olution and the peaks merge, forming a nearly continuous func-
tion that perfectly matches the PSF predicted by geometrical op-
tics. Even with an ideal detector with infinite spatial resolution
the peaks would merge, in practice because the peak spacing
would be smoothed out by the finite monochromaticity of the
X-ray source. This example shows that what we call “geometric
optics” is nothing but the superposition of high scattering orders
that blend for sufficiently low values of λ, and consequently, it
can be simulated accurately using Eq. (9), exactly like all the
other physical optics effects!

We now return to the question for which conditions geo-
metrical optics – and consequently, ray-tracing programs – can
be applied. In general, there is no answer a priori. For exam-
ple, the smooth-surface criterion (Eq. (1)) with α0 = 0.43 deg
and σ = A/

√
2 = 71 nm is fulfilled for λ > 67 Å. In fact, at

λ = 70 Å the PSF is correctly dominated by the first-order scat-
tering (Fig. 4b), but the transition to geometrical optics is very
gradual as the energy is increased: at λ = 10 Å the computed
PSF is still far from the geometrical optics predictions, and only
for λ < 1 Å the ray-tracing results merge with the computation
à la Fresnel (Fig. 4d).

A simple argument shows why the passage to the geometri-
cal optics occurs near λ = 1 Å. Consider a profile patch of length
equal to the spatial period T ; the width seen by the X-ray beam is
therefore T sinα0, and the corresponding diffraction figure size
at a distance f is 2 fλ/(T sinα0). If the latter exceeds T sinα0,
that is,

λ >
T 2 sin2 α0

2 f
(21)

the size and the relief of the profile spatial period is completely
hidden by the diffraction, i.e., the geometrical optics cannot
be applied. Substituting the values one obtains λ > 2.8 Å, in
good accord with the limit found via the simulation reported in
Fig. 4d. Other examples that show how the PSF reduces to the
predictions of geometrical optics in the limit of small λ or long
spatial wavelengths are reported in Sect. 5 for double-reflection
optical systems.
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Fig. 5. PSF simulation obtained from Eq. (9) with an elliptical mirror,
illuminated by a spatially incoherent source of 0.5 mm diameter at λ =
30 Å, with top-hat intensity profile. The parameters f , R0, and L1 are
the same as for the simulations of Fig. 4. The radiation source is at a
distance of 50 m from the mirror entrance. The peaks appear smoothed
to the angular diameter of the source (2 arcsec).

3.3. Extended and anisotropic sources

The results listed in the previous section are valid if the radiation
source can be approximated by a geometric point. In these con-
ditions the source is spatially coherent and isotropic, meaning
that the wavefront is spherical and the electric field amplitude is
the same in all the directions. For example, the X-ray source at
PANTER (Burwitz et al. 2013) has a 1 mm size out to a 123.9 m
distance, so the point-like approximation is widely applicable as
long as the mirror HEW is not better than the angular size of the
source (∼1.5 arcsec).

However, most astronomical sources, or X-ray facilities on
the ground if the mirror PSF starts to become similar to the de-
magnified source size (Raimondi et al. 2013b), are better repre-
sented with a finite extension. Most natural extended sources are
spatially incoherent, and the image at the focal plane is obtained
by decomposing the source into point-like sources of angular di-
ameter φS (Holý et al. 1999),

φS <
λ

L1 sinα1
(22)

at off-axis positions and intensities properly distributed within
the source extent, using Eq. (9), and superposing the diffraction
patterns on the focal plane. The final result is a convolution of
Eq. (9) with the de-magnified intensity profile of the radiation
source (Fig. 5).

Other sources, such as synchrotrons and FELs, exhibit a high
degree of spatial coherence and are markedly anisotropic; hence,
the mirror illumination is often nonuniform, which clearly af-
fects the measured PSF. For example, the Fermi at Elettra FEL1
is a coherent source with a Gaussian intensity profile (Svetina
et al. 2013). The subsequent propagation of the wavefront stems
from the source self-diffraction and, because the diffraction of a
Gaussian profile is also Gaussian, the amplitude decreases with
the distance from the source, but maintains a Gaussian shape.
At a large distance D ≫ 0 from the source, in the fundamental
propagation mode, the wavefronts are almost spherical and the
amplitude distribution on the mirror, u(x1, z1), can be written as
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(Raimondi et al. 2013a)

u(x1, z1) =

√

∆R1

ω

√

2
π

exp

[

− (x1 − Rc)2

ω2

]

, (23)

where Rc = R0 + ∆R1/2, assuming the beam to point toward
the center of the mirror. The beam width rms, ω, varies with z1
according to the relation

ω(z1) =

√

ω2
0 +
λ2(D − z1)2

π2ω2
0

, (24)

and ω0 is the beam width rms near the light source (beam
“waist”). The multiplicative constant in Eq. (23) is chosen to
normalize the average beam intensity:

1
∆R1

∫ +∞

−∞
|u(x1, z1)|2 dx1 = 1. (25)

Bendable mirrors can be used to turn the initial distribution of
the beam (Eq. (23)) into a desired one (Svetina et al. 2012), en-
dowing the mirror with a properly designed profile (Spiga et al.
2013). Extension of the PSF equation, Eq. (9), to the case of an
anisotropic, coherent source is straightforward:

PSF(x) =
∆R1

L2
1λR0

∣

∣

∣

∣

∣

∣

∣

∫ f+L1

f

u(x1, z1)
√

x1

d̄2,0
e
− 2πi
λ

[

d̄2,0 − z1 +
x2
1

2(S − z1 )

]

dz1

∣

∣

∣

∣

∣

∣

∣

2

(26)

which we explicitly solve in the next section for a perfect ellip-
soidal mirror.

3.4. Applications to the far-field configuration

In this section we simplify Eq. (9) in the frequent case of an
observation plane at a very large distance from the mirror, an
approximation well-known as far-field (Fraunhofer) diffraction,
retrieving known expressions based on the Fourier transform.
We anticipate that this approximation cannot be applied to opti-
cal systems like the Wolter-I, in which two reflections occur in
sequence at a short distance (Sect. 4).

In the astronomical case, S → +∞, which means that the
third term of the exponent in Eq. (9) is negligible and α1 = α0.
Hence, sinα0 = ∆R1/L1. Moreover, if the PSF is evaluated at the
focal plane and f ≫ L1, then the square root in the integral varies
much slower than the exponential and can be approximated by a
constant,

√

R0/ f . Equation (9) then reduces to

PSF(x) =
∆R1

L2
1λ f

∣

∣

∣

∣

∣

∣

∫ f+L1

f

e
− 2πi
λ

[√
(x1 − x)2 + z2

1 − z1

]

dz1

∣

∣

∣

∣

∣

∣

2

. (27)

We derived this simplified expression in a previous work
(Raimondi & Spiga 2010).

As a further step, we decompose the mirror profile as in
Eq. (4), where xn1 is a parabolic profile with the focus in the ori-
gin of the reference frame, and we denote the total profile error
with xe1, in general below a micron of amplitude. Here xn1 plays
the role of a “lens” that focuses at z = 0 the beam diffracted by
xe1: in this way, the angular distribution of the PSF is solely de-
termined by the entrance pupil size and by xe1 (alternatively, the
beam can be initially converging and be diffracted by the error

profile, Saha et al. 2010). We thereby write the expression under
root in the exponent of Eq. (27) as

(x1 − x)2 + z2
1 ≃ x2 + x2

n1 + 2xn1(xe1 − x) + z2
1, (28)

where we have neglected the term xe1x because the focal
spot and xe1 are usually much smaller than the mirror size.
The Fraunhofer approximation consists of also neglecting the
x2 term, and developing the root at the first order. The exponent
in Eq. (27) becomes
√

(x1 − x)2 + z2
1 − z1 ≃

[√

x2
n1 + z2

1 − z1

]

− xn1(x − xe1)
√

x2
n1 + z2

1

· (29)

If one substitutes the equation of a parabola with the focus in
the origin of the reference frame, z1 = ax2

n1 − 1/4a, where a is
a positive constant, the term in [ ] brackets on right-hand side
of Eq. (29) reduces to 1/2a, a constant phase factor that can be
ignored. Using this result, Eq. (27) reduces to

PSF(x) ≃ ∆R1

L2
1λ f

∣

∣

∣

∣

∣

∣

∫ f+L1

f

e−
2πi
λ

xn1 x

z1 e−
2πi
λ

xe1 2 sinα dz1

∣

∣

∣

∣

∣

∣

2

, (30)

where we approximated
√

x2
n1 + z2

1 ≈ z1, always in far-field
condition, and defined 2 sinα ≈ xn1/z1. Still, owing to the
high value of f , α ≃ α0, and using Eq. (3) we can also write
dz1 ≈ (L1/∆R1) dxn1.

We finally express the PSF as a function of the angular devi-
ation defined in Sect. 3.1, θ = x/z1 ≈ x/ f , and find a well-known
result:

PSF(θ) =
1
∆R1λ

∣

∣

∣

∣

∣

∫ ∞

0
e−

2πi
λ

xn1θ CPF(xn1) dxn1

∣

∣

∣

∣

∣

2

, (31)

where CPF(xn1) denotes the complex pupil function:

CPF(xn1) = exp

(

−2πi
λ

2xe1 sinα0

)

, (32)

in which is zero outside the interval [R0,R0+∆R1]. Equation (31)
is the well-known expression of the far-field PSF, and the expres-
sion in the squared module – the Fourier transform of the CPF –
is known as optical transfer function (OTF: Harvey et al. 1988).

A perfect mirror is represented by xe1 = 0 everywhere:
Eq. (31) then becomes

PSF(θ) =
1
∆R1λ

∣

∣

∣

∣

∣

∣

∫ R0+∆R1

R0

e−
2πi
λ

xn1θ dxn1

∣

∣

∣

∣

∣

∣

2

=
β

π

sin2(βθ)
(βθ)2

(33)

with β = π∆R1/λ. Equation (33) is the expected diffraction pat-
tern of a linear aperture of width ∆R1 (Fig. 3). Moreover, it is
correctly normalized to unity, as we anticipated in Sect. 3.1.

In real mirrors, xe1 � 0. For example, if xe1 is a sinusoid (as
in Sect. 3.2), then Eq. (31) turns into

PSF(θ) =
∆R1

L2
1λ

∣

∣

∣

∣

∣

∣

∫ f+L1

f

e−
2πi
λ

sinα0

[

z1θ+2A sin
( 2πz1

T

)]

dz1

∣

∣

∣

∣

∣

∣

2

. (34)

Reflectance maxima are located by Eq. (15), which in shallow-
angle approximation reads Tθk sinα0 ≃ kλ with k integer, and
the PSF at peaks becomes

PSF(θk) ≈ ∆R1

λ

∣

∣

∣

∣

∣

∣

1
2π

∫ 2π

0
e−i
(

kt+
4πA sinα0
λ

sin t
)

dt

∣

∣

∣

∣

∣

∣

2

, (35)
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where we have set t = 2πz1/T . In Eq. (35), the expression in the
square module is Jk, the kth Bessel function of the first kind, and
we obtain the result anticipated in Eq. (16):

PSF(θk) ≈ ∆R1

λ
J2

k

(

4πA sinα0

λ

)

· (36)

Since every peak has a typical diffraction width of λ/∆R1 and
∑+∞
−∞ J2

k
(x) = 1 for any value of x, the PSF is correctly normal-

ized. Equation (36) is the shallow-angle approximation of the
well-known diffraction pattern of a sinusoidal grating (see e.g.,
Stover 1995).

More generally, decomposing xe1 =
∑

m xm into different
contributions (e.g., as measured with instruments sensitive to
different windows of spatial frequencies, like in Eq. (4)), allows
us to separate Eq. (32) into the respective CPF factors:

CPF(x1) = χ([R0,R0 + ∆R1]) ·
∏

m
exp

(

−2πi
λ

2 xm sinα0

)

(37)

where χ is the characteristic function of the interval [R0,R0 +

∆R1] and the mth profile error term is assumed to be infinitely
extended. Since the contributions to the CPF are multiplicative,
the respective transforms are to be convolved to return the to-
tal OTF.

In far-field approximation, the OTF is thereby the convolu-
tion of the OTFs related to different components of the profile
error, including the aperture diffraction term represented by the
χ function. However, the same convolution is neither possible
in near-field diffraction nor applicable to the squared module of
the transform, that is, the PSF: it is therefore incorrect in general
to convolve the PSFs of the different contributions to the profile
error. For example, taking xe1 = xa + xb with xa = A sin(2πz1/T )
and xb = −xa, we have xe1 = 0, the CPF reduces to the χ func-
tion and we correctly obtain Eq. (33). But, computing the PSF
expected from xa and xb separately yields Eq. (36) in both cases.
The convolution of the two PSFs then returns a multiple peak
structure very different from Eq. (33).

As a last example, we compute the PSF of a perfectly el-
liptical mirror (xe1 = 0) illuminated by a distant FEL source in
fundamental mode (Eq. (23)) in far-field condition. By approxi-
mating the square root in the integrand with

√

R0/ f as we did in
Eq. (27), Eq. (26) becomes

PSF(x) =

√
2/π
ωλ f

∣

∣

∣

∣

∣

∣

∣

∫ R0+∆R1

R0

e−
(x1−Rc)2

ω2 e
− 2πi
λ

[

d̄2,0−z1+
x2
1

2(S−z1 )

]

dx1

∣

∣

∣

∣

∣

∣

∣

2

: (38)

developing the exponent in a similar way to Eq. (29), but this
time substituting the equation of the ellipse, we can rewrite the
previous equation as

PSF(x) =

√
2/π
ωλ f

∣

∣

∣

∣

∣

∣

∫ R0+∆R1

R0

e
−
[

(x1−Rc)2

ω2 +2 πix
λ f

x1

]

dx1

∣

∣

∣

∣

∣

∣

2

(39)

where the distance of the source to the mirror, D, is assumed to
be large enough to take ω ≃ λD/πω0 (Eq. (24)) approximately
independent of z. Changing the integration variable to t = (x1 −
Rc)/ω, discarding unessential phase factors, and completing the
square in the exponent, we obtain after some handling

PSF(x) =

√

2
π

D

fω0
e
−2
(

Dx
fω0

)2 ∣
∣

∣

∣

∣

∣

1
√
π

∫ +∆R1/2ω

−∆R1/2ω
e
−
(

t+ iDx
fω0

)2

dt

∣

∣

∣

∣

∣

∣

2

. (40)

Fig. 6. Geometry of a double-reflection system such as a Wolter-I. The
electric field on a meridional profile of the hyperbola is computed by
Fresnel diffraction on the parabola. The PSF on the focal plane is sub-
sequently computed.

In Eq. (40), the first exponential factor is the image of the
Gaussian source, de-magnified by a factor f /D, whilst the com-
plex error function in the square module accounts for the mod-
ulation caused by the Gaussian beam tail cutoff by the mirror
aperture. If ∆R1/2ω→ ∞, then the modulation factor tends to 1
and the PSF becomes exactly a Gaussian, as expected.

4. Extension to a double-reflection optical system

In this section we extend the previous formalism to an optical
system with two consecutive reflections such as a Wolter-I, a
widespread optical system in X-ray astronomy, composed of two
coaxial and confocal reflective surfaces: a paraboloid and a hy-
perboloid (Van Speybroeck & Chase 1972). However, different
kinds of double-reflection systems are also adopted in X-ray as-
tronomy, such as polynomial profiles (Conconi et al. 2010). For
generality, we denote the two segments of the double-reflection
system as primary and secondary mirror.

We thereby extend the optical setup as shown in Fig. 6: we
here also at first neglect azimuthal errors and assume that the
profile is described by the radial coordinate as a function of z,
which in the xz plane is denoted with x1(z1) of length L1 for the
primary, and x2(z2) of length L2 for the secondary. In the frequent
case that L1 = L2, we denote their common value with L. For
simplicity, the two mirror segments are assumed to intersect at
z = f , even if an extension to an optical system with the two seg-
ments separated by a gap is straightforward. The primary mirror
collects the radiation from an isotropic, point-like X-ray source
at z = S and diffracts it onto the secondary, which eventually
diffracts the wave to a focus. The nominal focal plane is still as-
sumed to be at z = 0. The angle formed by the two surfaces at the
intersection plane is 2α0, and R0 is the corresponding azimuthal
curvature radius. Finally, always denoting with δ = R0/D the
beam divergency (negative for a converging wave), the incidence
angles is α1 = α0 + δ on the primary segment and α2 = α0 − δ
on the secondary (Spiga et al. 2009). The corresponding radial
amplitudes are ∆R1 = L1α1 and ∆R2 = L2α2. Clearly, for an
on-axis astronomical source we have α1 = α2: if additionally we
have L1 = L2, then we also have ∆R1 = ∆R2.

The electric field diffracted by the primary mirror (Fig. 6)
can be computed on the profile of the secondary mirror using
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Fig. 7. Field intensity along the hyperbolic profile in a perfect Wolter-I
mirror at three different values of λ, as computed with Eq. (41). We
assumed that L1 = L2 = 300 mm, R0 = 150 mm, f = 10 m, and
D→ ∞.

Eq. (6) for all the points of the secondary mirror:

E2(x2, z2) =
E0 ∆R1

L1
√
λx2

∫ f+L1

f

√

x1

d̄12
e
− 2πi
λ

[

d̄12−z1+
x2
1

2(S−z1)

]

dz1, (41)

where d̄12 is the distance in the xz plane from a generic point of
the primary mirror to a generic point on the secondary mirror:

d̄12 =
√

(x2 − x1)2 + (z2 − z1)2. (42)

An example of applying of Eq. (41) to a Wolter-I perfect profile
is shown in Fig. 7 at three different values of λ, in the most fre-
quent configuration for astronomical mirrors: source at infinity,
on-axis, and L1 = L2, and then also ∆R1 = ∆R2. The normalized
field intensity, |E2/E0|2, is computed over the hyperbola length
and 50 mm beyond to show the extension of the diffracted field.

The electric field intensity on the hyperbolic profile ex-
hibits the characteristics of the Fresnel diffraction pattern from
a straight edge (Fig. 7). Even if the two segments have the
same length and incidence angle, the region geometrically il-
luminated by the parabolic segment is slightly shorter than the
hyperbola length because of the parabolic mirror axial curvature.
At the illumination edge, the intensity is always one quarter of
the incident intensity, then decreases gradually in the geometric
shaded region. In the illuminated region, the intensity is mod-
ulated by diffraction fringes of increasing frequency as λ de-
creases. Exactly like the example in Sect. 3.2, the results tend
to the geometrical optics findings in the limit of low λ values.
Finally, the increasing intensity from the intersection plane to-
ward the illumination edge denotes the progressive power con-
centration, as expected from a focusing mirror.

However, the situation changes if the source is at finite dis-
tance: if δ > 0 we already expect from geometrical optics that a
fraction of rays reflected by the primary mirror miss the second
reflection, and the effective radial aperture is reduced from ∆R1
to ∆R2. Vice versa, if δ < 0, all rays undergo the second reflec-
tion, but the radial aperture of the primary mirror is reduced to
∆R1. Hence, the effective radial aperture for a double reflection
for a source on-axis can be shortly written as

∆Rm = min(∆R1,∆R2), (43)

provided that it is non-negative (Spiga et al. 2009). Applying
Eq. (41) to a source at finite distance returns a similar picture.
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Fig. 8. Field intensity along the hyperbolic profile in a perfect Wolter-I
mirror as computed with Eq. (41). Same mirror parameter values as in
Fig. 7, but this time D = +100 m.

For example, we report in Fig. 8 the computation of the normal-
ized intensity for a source with D = 100 m: even if the diffraction
pattern is still visible, the illumination edge is not, at least within
the hyperbola length: this means that part of the wavefront after
the first reflection is diffracted beyond the edge of the secondary.
Hence, a relevant amount of the collected power is lost in single
reflection, in accord with geometrical optics expectations. The
modulation visible in Figs. 7 and 8 is, however, a typical physi-
cal optics effect.

The subsequent diffraction by the secondary segment, at any
position in the xz plane (in-, intra-, or extra-focus), is simply
obtained from applying Eq. (6) weighting its integrand on the
complex E2 function obtained from Eq. (41):

E(x, z) =
∆R2

L2
√
λx

∫ f

f−L2

E2(x2, z2)
√

x2

d̄2
e−

2πi
λ

d̄2 dz2. (44)

In the last equation the complex expression of E2 already in-
cludes all the relevant information on the phase; hence, the terms
in the exponent that include subscript 1 have been removed. Only
the distance d̄2 remains:

d̄2 =
√

(x2 − x)2 + (z2 − z)2. (45)

Finally, the computation of the PSF in the nominal focal plane
is made taking the squared module of Eq. (44) at z = 0, and
normalizing to the intensity collected within the radial aperture
effective for double reflection, ∆Rm (Eq. (43)):

PSF2(x) =
(∆R2)2

E2
0∆RmL2

2 λR0

∣

∣

∣

∣

∣

∣

∫ f

f−L2

E2(x2, z2)
√

x2

d̄2,0
e−

2πi
λ

d̄2,0 dz2

∣

∣

∣

∣

∣

∣

2

(46)

where d̄2,0 is Eq. (45) evaluated at z = 0. The last expression is
independent of the incident radiation intensity, and normalized
to 1 when integrated over x.

Exactly as in Sect. 3.1, we have to set an appropriate sam-
pling of the primary mirror profile, of the secondary mirror pro-
file, and of the focal line. For the secondary mirror sampling ∆z2,
just replacing α1 → α2 in Eq. (10) is necessary (Eq. (48)). For
the focal line sampling ∆x, Eq. (11) is used changing α1 → α2,
L1 → L2, and we have Eq. (49). Finally, replacing the angle sub-
tended by the detector in Eq. (10) with the angle subtended by
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the secondary mirror, we obtain Eq. (47):

∆z1 =
λ

8πα0 sinα1

(

1 +
L1

L2

)

(47)

∆z2 =
λ f

4π sinα2 ρ
(48)

∆x =
λ f

2π sinα2 L2
· (49)

As for the single-reflection case, applying Eqs. (41) and (46)
with the sampling values provided by Eqs. (47) to (49) enables
computing the PSF for any value of λ within the detector field;
including higher measured frequencies is always possible and
results in an enhanced scattering out of the detector field and
in a lower PSF normalization. Misalignments, offsets, and tilts
of the two mirror segments can be included in the two profiles
x1(z1), x2(z2) to be accounted for in the calculation.

Equations (41) and (46) can be applied with the sole restric-
tions that the incidence angle is shallow and that the out-of-plane
deflection effect of azimuthal errors are negligible. In particular,
the approximations required in far-field condition after the first
reflection (Sect. 3.4) become redundant. On the other hand, the
far-field condition cannot be applied when the two segments are
continuous or separated by a few millimeters, as in the Wolter-I
design, even if λ is much smaller than the distances at play. The
far-field approximation requires – inter alia – approximating the
root in Eq. (41) with a constant, but this cannot be done because
d12 varies from ∼L1 + L2 down to near zero. Such a rough ap-
proximation would make the diffraction pattern very different
from the pattern correctly described in Figs. 7 and 8.

The far-field approximation is sometimes used to compute
the double-reflection PSF using the CPF transform (Eq. (31)),
assuming as profile error the sum of the defects of the two seg-
ments: this implies the initial assumption that the wavefront at
the mirror exit has a uniform intensity and a phase shift equal
to the superposition of the phase shifts caused by the two pro-
file errors. This in general incorrect, however, because Fig. 7
shows that the intensity on the secondary segment is nonuni-
form. Hence, using Eq. (31) for a Wolter-I system may lead to
inaccurate results. We show this along with other examples in
Sect. 5.3.

We finally mention that the extension to an extended or/and
anisotropic source can be obtained in a completely analogous
way to the one described in Sect. 3.3.

5. Examples of PSF computation for Wolter-I

mirrors

In the remainder of this paper we make use of Eqs. (41) and (46)
to simulate the PSFs of Wolter-I mirrors characterized by profile
errors and roughness. To this end, we have written a numeri-
cal code in IDL language named WISE to numerically solve the
integrals, and in this section we show some results to demon-
strate the versatility of the method in use. We show that all the
computed PSFs behave as expected, accounting simultaneously
for aperture diffraction, geometric errors, and roughness, without
needing to adopt different treatments depending on the frequen-
cies of the error profile. Some results for a Wolter-I mirror were
anticipated in Raimondi & Spiga (2011). Some applications of
WISE to a Kirkpatrick-Baez optical system in use at Fermi at
Elettra have been presented in Raimondi et al. (2013a, 2013b).

The test case we consider here is the Wolter-I mirror shell
with parameters listed in the caption of Fig. 7, adding different
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Fig. 9. PSF of a perfect Wolter-I mirror with the same geometry as in
Fig. 7 as computed with the WISE code. a) In UV light at 3000 Å,
in single and double reflection: the aperture diffraction is apparent and
enhanced in double reflection. b) At 30 Å, the aperture diffraction is
minimized and the PSF becomes a Dirac delta, also in double reflection.

types of profile errors superimposed on either one or both seg-
ments of the nominal Wolter-I profile.

5.1. Perfect parabola and hyperbola

The analytical expressions x1(z1) and x2(z2) of a Wolter-I nom-
inal profile (Van Speybroeck & Chase 1972), when substituted
into Eqs. (41) and (46) return a sinc-shaped PSF that becomes
more peaked and narrower as λ is decreased, as expected. The
situation is completely analogous to the single reflection of a
parabolic mirror (Eq. (33)). In UV light, the broadening caused
by the aperture diffraction is clearly seen in both single and
double reflection and dominates the HEW value (Fig. 9a). One
might expect the HEW in Wolter-I configuration to be larger than
the configuration resulting from the sole perfect parabolic seg-
ment because the wavefront was diffracted twice, and the result
is in accord with the expectation. The interpretation is that the
wavefront has become divergent after the first diffraction and
becomes enlarged before impinging onto the secondary mirror,
which in turn diffracts it by trimming its edges. In contrast, the
result would have been indistinguishable from a single diffrac-
tion if computed from the product of the two segments’ CPFs
(Sect. 3.4). Since optical tests on Wolter-I X-ray mirrors are
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Fig. 10. PSF at λ = 20 Å of a Wolter-I mirror with the same dimensions
as in Fig. 7, plus a sinusoidal perturbation (period 10 mm, amplitude
0.1 µm) on the sole parabola. The result is compared with the PSF of the
sole parabolic mirror segment with the same defect, detected in the focal
plane of the parabola at a distance of approx. 20 m. The PSF simulation
for the Wolter-I mirror with the perturbed parabolic profile returns the
same result as the single-reflection case.

performed in UV or visible light, the accurate subtraction of the
diffraction aperture term should also account for the small dif-
ference introduced by the double reflection.

In X-rays (0.4 keV, Fig. 9b), the aperture diffraction is usu-
ally reduced to negligible levels and the PSF resembles a Dirac
delta function for single- and double-reflection cases, as ex-
pected. The low but finite HEW value is determined by the
spatial resolution of the focal line (10 µm). High-quality X-ray
optics, however, can reach a PSF very close to the aperture
diffraction limit.

5.2. Sinusoidal grating on parabola, perfect hyperbola

As a first example of an imperfect Wolter-I mirror (sized as in
the caption of Fig. 7), we have considered a sinusoidal pertur-
bation with an amplitude of 0.1 µm and a period of 10 mm, su-
perposed on the sole parabolic profile (Fig. 10). This case was
already treated extensively – at a different incidence angle –
for a single-reflection mirror in Sect. 3.2. The computed PSF
at λ = 20 Å exhibits the characteristically peaked pattern of a
sinusoidal grating here as well (Eq. (36)).

Since the hyperbola profile is not perturbed and the aperture
diffraction effects are negligible at this value of λ, we expect
that the beam diffracted by the sinusoidal grating is simply re-
flected to the focal plane, preserving the intensity distribution.
In fact, the simulated PSF is very well superposed on the PSF of
the sole perturbed parabolic profile (Fig. 10: the focal length of
the parabola slightly exceeds twice the focal length of the corre-
sponding Wolter-I mirror). This example puts Eqs. (41) and (46)
to the test: if the calculation were inaccurate, the second diffrac-
tion would not have reproduced the positions and heights of the
single-reflection peaks, which in turn are confirmed by a com-
parison with the findings of the grating theory (Sect. 3.2). The
same result can be obtained by imparting the sinusoidal error to
the sole hyperbola.

5.3. Long-period deformations of parabola and hyperbola

We now consider a deformation on both mirror segments over
a lateral scale equal to L, whose effects are expected to merge
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Fig. 11. Results of WISE for a Wolter-I mirror with the same geomet-
rical properties as in Fig. 7 and a profile error according to Eq. (50)
at λ = 20 Å, assuming w1 = w2 > 0. Also plotted for comparison
is the PSF computed in single reflection (Eq. (9)), which correctly fits
Eq. (51). At this λ and with this profile error, the results of physical
optics (solid lines) accurately match the ray-tracing prediction (dashed
lines).

at sufficiently low λ values (e.g., 20 Å) with the findings of a
ray-tracing routine. Instead of a sinusoidal perturbation we have
adopted the following profile error, superposed on the two seg-
ments of the Wolter-I profile:

xmeas, j(z j) = −
L jw j

4π
log cos

[

γ (z j − z0, j)

L j

]

, (50)

where j = 1, 2, z0, j is the central coordinate of the jth segment,
and γ must be slightly smaller than π to avoid the profile di-
vergence at the edges. This profile error is specifically designed
(Spiga et al. 2013) to return in single reflection a Lorentzian-
shaped PSF of HEW |w1|, if geometrical optics can be applied,

PSF(θ) =
2|w1|

π
(

w2
1 + 4θ2

) , (51)

where θ = x/ f . A Lorentzian function like this is a special case
of the more general King function, a realistic model for the PSF
of an X-ray telescope (e.g., Swift-XRT’s: Moretti et al. 2004).
To simulate the deformation effect on a Wolter-I mirror, we as-
sume xmeas1(z1) and xmeas2(z2) to comply with Eq. (50). We then
compute the PSFs in focus by applying Eqs. (41) and (46).

If the two deformations are concave upward (i.e., w1 and w2
are both positive), the PSF spread is amplified with respect to
the single-reflection case (Fig. 11). More exactly, the HEW of
the deformed mirror equals 19 arcsec, roughly twice the HEW
in single reflection. In contrast, if the error concavity is upward
for the parabola and downward for the hyperbola (Fig. 12), the
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Fig. 12. WISE results for a Wolter-I mirror as in Fig. 11 at λ = 20 Å with
the profile error described by Eq. (50) and w1 > 0, but this time w2 < 0.
Also plotted for comparison is the PSF simulated from the single re-
flection (arrow). The opposite curvatures of the profile errors largely
balance each other, as expected. Here the predictions of the Fresnel
diffraction (lines) also agree with the geometrical optics (dots).

PSF computation correctly returns a quasi-delta function, with
an HEW much smaller than the HEW of the single-reflection
mirrors because the angular deviations approximately compen-
sate for each other. As initially expected, this result also perfectly
agrees with the results of a ray-tracing routine.

It is worth noting that this example disproves the widespread
misconception of a Wolter-I mirror PSF obtained as a convolu-
tion of the PSFs of the two mirror segments. However, it is also
easy to show that adding the deformations of the two segments
and applying the single-reflection formulae to the sum leads
to inaccurate results. For example, Fig. 13 reports the double-
reflection PSF simulated for concavities of different sign, but
with |w1| > |w2|. Because the two profile errors have signs with
opposite concavities but different amplitudes, the angular devi-
ations do not exactly compensate for each other like in Fig. 12,
and the PSF still has a finite width. However, the PSF predicted
from applying Eqs. (41) and (46) now is clearly asymmetric, in
turn confirmed by the ray-tracing (Fig. 13). In contrast, if the
PSF were computed using the single-reflection formalism – for
example, aiming at using the far-field formula (Eq. (31)) applied
to the sum of the two profile errors – then a completely different,
perfectly symmetric PSF would be obtained (blue solid line in
Fig. 13).

The correct PSF is asymmetric, however. The reason is that
the parabolic mirror error is concave downward – unlike the ex-
ample in Fig. 12 – and causes a divergence of the diffracted beam
that impinges on the hyperbola broader than it initially was. Part
of the wavefront is diffracted to the focal plane, but the remain-
der misses the hyperbola beyond the edge at z = f − L2 and
is lost. The resulting PSF must therefore exhibit a cutoff that is
not observed in the single reflection PSF, but is correctly present
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Fig. 13. WISE results for a Wolter-I mirror, λ = 20 Å, with the di-
mensions listed in Fig. 11 and the same kind of error, but now w1 =

−30 arcsec, w2 = +20 arcsec. The PSF computed from Eqs. (41)
and (46) now has a pronounced asymmetry, confirmed by the ray-
tracing findings (dashes). The detector resolution is 50 µm. In contrast,
the single-reflection PSF computed assuming a profile error according
to Eq. (50) with w1 = −10 arcsec would return a completely incorrect
picture (blue line).

in the two computations using the Fresnel diffraction and ray-
tracing. Moreover, the two asymmetric PSFs have a normaliza-
tion reduced to 87%, consistent with a power loss in double re-
flection. However, they differ in one point: the former exhibits
small oscillations near the cutoff that are not seen in the latter
and therefore have to be diffraction fringes. The diffraction oc-
curs exactly at the edge of the hyperbolic mirror, giving rise to
fringes that, according to the theory of diffraction off a straight
edge, are

√

λ/ f ≃ 3 arcsec wide near the cutoff. This number
is in good accord with the observed fringes in the red line of
Fig. 13.

5.4. Parabola and hyperbola with roughness

We now consider a Wolter-I mirror of the same dimensions as in
the previous sections, with a surface roughness described by a
PSD, to compare our formalism with the well-consolidated first-
order scattering theory, therefore assuming that the roughness
fulfills the smooth-surface limit condition (Eq. (5)). In this way,
the PSF should only depend on the chosen PSD and not on the
exact rough profile realization.

For simplicity, we assume the PSD to be expressed by a
power-law function of the spatial frequency ν (Church 1988),

P(ν) =
Kn

νn
, (52)

where the spectral index n (1 < n < 3) and the coefficient Kn

depend on the surface finishing level. The rough profiles of
lengths L1 and L2, and resolutions ∆z1 and ∆z2 (Eqs. (47)
and (48)), are generated from Eq. (52) adopting the parameter
values n = 1.5, Kn = 150 nm3 µm−1.5. The kth Fourier coeffi-
cient amplitude of the jth mirror segment, |ak, j|, is computed as
|ak, j| =

√

P(νk)/2L j, where νk = ±k/L j, k = 1, 2, . . . , L j/2∆z j,
and |a0, j| = 0. The phases of the harmonics are selected at ran-
dom, with the condition a−k, j = a∗

k, j
to cancel the imaginary part

of the rough profile, which is finally obtained by inverse Fourier
transform of the {ak, j}. Every different choice of the phases re-
turns a different rough profile, but always with the same PSD.
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Fig. 14. Results of the WISE code for a Wolter-I mirror with the same
characteristics as in Fig. 7, at λ = 6 Å, but rough profiles (semi-log
scale). Roughness profiles generated from a power-law PSD (Eq. (52))
with n = 1.5, Kn = 150 nm3 µm−1.5 were superposed on the parabolic
and hyperbolic segment. We also traced for |θ| > 1 arcsec the X-ray
scattering diagram computed from the PSD via the first-order scattering
theory. The agreement is excellent.

We have thereby computed the expected PSF at λ = 6 Å,
corresponding to X-rays of 2 keV, in single (Eq. (9)) and double
reflection (Eqs. (41) and (46)). To reduce the PSF noise resulting
from the pseudo-random nature of roughness, we repeated the
computation with five different pairs of profiles with the same
PSD, and averaged the results. The resulting PSFs are plotted
in Fig. 14, showing a sharp peak with the characteristic skirt of
X-ray scattering, characterized by a slight asymmetry. As ex-
pected, the double reflection enhances the amount of scattering.

We compared the single-reflection PSF with the scattering
diagram – that is, the normalized scattered power per scatter-
ing angle unit – expected from the classical scattering theory
(Church et al. 1979; Stover 1995), neglecting the polarization
factor

PSF(θs) =
16π2

λ3
sinα0 sin2 θs

1
2

P

(cosα0 − cos θs
λ

)

, (53)

where θs = α0 + θ is the scattering angle measured from the
surface, and the factor 1/2 in front of the PSD accounts for the
scattering parted at positive or negative θ. Equation (53) is valid
at shallow α0 and for roughness values within the smooth sur-
face limit (Eq. (1)); that is, for scattering angles not too near the
specular direction, otherwise the P(ν) function diverges to inac-
ceptably high values. With the selected values for the parame-
ters n and Kn, we have for the reconstructed profiles σ ≈ 10 Å.
The computed smooth surface limit for the adopted values of λ
and α0 corresponds to 125 Å; therefore, the first-order XRS the-
ory can be used. The application of Eq. (53) returns a PSF per-
fectly superposed on the single-reflection findings of the Fresnel
diffraction applied to the reconstructed rough profiles (Fig. 14).
The agreement is perfect for |θ| > 1 arcsec. For lower values
of |θ|, the first-order theory diverges to infinity, while the Fresnel
theory remains finite. For the rough Wolter-I mirror, the scatter-
ing theory does not provide practical formulae like Eq. (53) to
simulate a double scattering, while the application of the Fresnel
diffraction easily returns a scattering diagram that matches twice
the single scattering result very well. This can be interpreted as
a superposition of two identical scattering diagrams from the
parabola and hyperbola. In other words, the multiple scattering is

negligible if the surface is within the smooth surface condition,
as De Korte et al. already pointed out in 1981.

It is interesting to note that the slight PSF asymmetry, which
stems from the sin2 θs factor appearing in Eq. (53), is also re-
produced accurately. We conclude that in the limit of smooth
surfaces, the formalism provided here correctly reduces to the
known scattering theory and is also able to satisfactorily repro-
duce the scattering in multiple-reflection systems.

5.5. Parabola and hyperbola with long-period deformations
and roughness

In the previous sections we have seen that Eqs. (41) and (46)
found in the framework of the Fresnel diffraction are able to ac-
curately reproduce the individual factors that classically degrade
the PSF of a Wolter-I mirror: the aperture diffraction (Sect. 5.1),
mid-frequencies (Sect. 5.2), geometrical errors (Sect. 5.3), and
microroughness (Sect. 5.4). In all these cases, exactly the same
treatment was used, changing only the value of λ. However,
these aspects were hitherto analyzed separately. In this section,
we provide a more realistic example of a mirror profile includ-
ing defects over more than one spectral regime. We adopted the
mirror dimensions as in Fig. 7 and as figure error the same pro-
file (Eq. (50) with w1 = w2 = 8 arcsec, Fig. 11). The roughness
PSD is described by Eq. (52). We have assumed as realistic pa-
rameter values n = 1.8, Kn = 2.2 nm3 µm−1.8 and generated
two of the infinitely possible profiles from this power spectrum,
as described in Sect. 5.4, with spatial resolutions determined by
Eq. (47) for the parabola and by Eq. (48) for the hyperbola.

After superposing the rough profiles on the modeled figure
errors, the PSF is computed at several wavelengths from ultravi-
olet light to hard X-rays, always applying the same equations at
different values of λ, that is, Eqs. (41) and (46). As in the previ-
ous section, we always took the average of five consecutive sim-
ulations to reduce the noise in the PSF. This average is needed
only in hard X-rays, however, where the roughness effect starts
to become apparent. Finally, the PSF was degraded to a realistic
spatial resolution of the detector (20 µm).

The calculated PSFs for λ ranging from near UV to soft
X-rays are reported in Fig. 15. In the UV range, the aperture
diffraction pattern is dominant (Fig. 15a) and almost indistin-
guishable from the pattern of a perfect mirror (Fig. 9a). As
λ is decreased, the HEW value also decreases but – unlike in
Sect. 5.1 – does not tend to zero: the aperture diffraction gradu-
ally disappears and the mirror deformation effects become visi-
ble. In soft X-rays (Fig. 15c), the PSF is almost indistinguishable
from the ray-tracing findings as in Sect. 5.3, and the HEW at
λ = 100 Å equals the 16 arcsec predicted by geometrical optics.
This means that the effect of roughness is, in the present case,
completely negligible at energies below 0.12 keV.

For λ < 30 Å, however, the roughness effect begins to be
visible (Fig. 15d). The resulting X-ray scattering causes the PSF
to broaden and the HEW to increase in consequence. The scat-
tering effect increases faster and faster as the energy is increased
(Fig. 16), gradually concealing the shape of the PSF determined
by the deterministic deformation. At 50 keV, the PSF is com-
pletely dominated by the scattering (Fig. 16d).

This example shows that a PSF can be computed in a wide
range of λ values from a realistic profile, including analytical or
measured deformations and microroughness. As anticipated in
Sect. 2, we were not required to set boundaries between spec-
tral regimes to treat with different methodologies, and conse-
quently, a combination of the PSFs obtained in the respective
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Fig. 15. WISE results from near-UV to soft X-rays for a Wolter-I mirror including a long-period error and roughness. a) λ = 3000 Å: the aperture
diffraction conceals most of the mirror defects, the HEW is the same as that a perfect mirror of the same size (Fig. 9a). b) λ = 2000 Å: the aperture
diffraction is reduced and the PSF due to mirror shape becomes visible. c) λ = 100 Å; aperture diffraction fringes have completely disappeared,
and the PSF is almost equal to the ray-tracing result from the the sole figure. Like the PSF in Fig. 14, the result is slightly asymmetrical on the side
of the negative angle. d) λ = 30 Å. The PSF is still dominated by the figure, but some noisy features and a slight HEW increase already announce
the appearance of the scattering.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

-200 -150 -100 -50  0  50  100  150  200

P
S

F
 (

a
rc

s
e

c
-1

)

Focal plane (arcsec)

PSF Wolter-I at 1.0 keV

HEW = 17.1 arcsec

(a)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

-200 -150 -100 -50  0  50  100  150  200

P
S

F
 (

a
rc

s
e

c
-1

)

Focal plane (arcsec)

PSF Wolter-I at 12.4 keV

HEW = 21.2 arcsec

(b)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

-200 -150 -100 -50  0  50  100  150  200

P
S

F
 (

a
rc

s
e

c
-1

)

Focal plane (arcsec)

PSF Wolter-I at 25 keV

HEW = 27.1 arcsec

(c)

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.022

-200 -150 -100 -50  0  50  100  150  200

P
S

F
 (

a
rc

s
e

c
-1

)

Focal plane (arcsec)

PSF Wolter-I at 50 keV

HEW = 43.9 arcsec

(d)

Fig. 16. WISE results in X-rays: a) λ = 12 Å; the first roughness effects start to appear. b) λ = 1 Å; the roughness effects are now clearly visible.
The PSF is much broader and the HEW increases rapidly. c) λ = 0.5 Å. d) λ = 0.25 Å; the X-ray scattering is now overwhelmingly dominant.
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Fig. 17. HEW results as computed by the analytical method (Spiga 2007, lines) and using the WISE code (symbols) for single and double reflection.
a) sole roughness simulated from PSD, b) roughness and deterministic error. The mirror parameters are the same as adopted in Sect. 5.5 (after
Raimondi & Spiga 2011).

spatial frequency ranges was not necessary; the relative weights
of geometry and scattering are automatically included in the
computed PSF, at each selected value of λ.

6. Result validation with the analytical

HEW dependence on λ

It is also interesting to investigate the PSF evolution with the en-
ergy observing the dependence of its HEW (Sect. 1) on λ. The
computation reported in the last section was performed for the
single and the double reflection, and the HEW values obtained
are plotted as a function of the energy E ∝ 1/λ in Fig. 17b. To
isolate the contribution of the surface roughness to the HEW, the
WISE code was also applied to the sole rough profile, without
any additional figure error: the results are shown in Fig. 17a as
symbols in the graph. As we anticipated in the previous section,
the scattering caused by the surface roughness starts to increase
the HEW in X-rays beyond a few keV, and becomes relevant
above 10 keV. At low energies, the HEW increase related to the
aperture diffraction is clearly visible.

These HEW trends can be validated by comparing them with
the analytical method (Spiga 2007) based on the first-order scat-
tering theory to predict the X-ray scattering term of the HEW
as a function of λ, H(λ), given the mirror roughness PSD (and
vice versa). The power-law PSD adopted in Sect. 5.5 fulfills the
smooth surface limit (Eq. (1)) for almost all the energies con-
sidered in the computation (<55 keV), therefore the XRS theory
at the first order can be applied to a good approximation. If the
PSD can be approximated by the Eq. (52), H(λ) can be written
in an explicit form:

H(λ) = 2

[

16π2Kn

(n − 1) ln ξ

]
1

n−1
(

sinα0

λ

)
3−n
n−1

, (54)

where ξ = 2 for the single reflection and ξ = 4/3 for the double
reflection (Wolter-I).

The H(λ) trends computed from Eq. (54) for the parameter
values n = 1.8, Kn = 2.2 nm3 µm−1.8 are reported as lines in
Fig. 17a. At low energies, the trends differ because the Fresnel
diffraction method also accounts for aperture diffraction, while
Eq. (54) does not. At high energies, the HEW computed with the
two methods increase in mutual accord: the slight HEW over-
estimation with the analytical formula at higher energies can

be due to the small scattering angles approximation, required
by the first-order XRS theory, which is not exactly fulfilled,
while the Fresnel diffraction method does not require this condi-
tion. The low- and high-energy regimes are separated by a wide
plateau where neither the aperture diffraction nor the scattering
are relevant. Since no profile error other than roughness is as-
sumed in Fig. 17a, the HEW plateau is close to zero.

The HEW trend in Fig. 17b obtained by the WISE code ap-
pears to be similar to the trend in Fig. 17a, but the mid-energy
plateau is at a 8 arcsec for the single reflection and at a 16 arcsec
for the Wolter-I. These figure error HEW values are the same as
were obtained from the computation in Sect. 5.3 using the sole
profile errors, taken with the same sign, at an X-ray energy where
the PSF predictions merge with the ray-tracing result. The ana-
lytical simulations match the Fresnel diffraction results for the
single and double reflection only if the respective figure error
HEW values are added linearly to the H(λ) functions computed
from the sole PSD. In other words, if the XRS and the figure
error terms of the HEW can be computed separately, they are to
be combined linearly (Raimondi & Spiga 2010, 2011) and not
quadratically, as initially assumed. Hence, this example not only
provides a crossed validation of the analytical and the Fresnel
approaches, but also suggests the correct way to mix the two
contributions.

We recall that this comparison was possible because there
were no relevant mid-frequency deformations, which would
have hindered not only the application of the scattering theory,
but also the isolation of an energy regime where the profile error
could have been treated according to geometrical optics.

7. Experimental verification

The results obtained by our method were also been validated
experimentally. A replicated Wolter-I mirror shell in Nickel-
Cobalt alloy with a W/Si multilayer coating was manufactured
by Media-Lario Technologies (MLT, Bosisio Parini, Italy) and
INAF/OAB as a demonstrator for the optics of the hard X-ray
NHXM telescope project (now cancelled). The mirror shell was
initially measured in full illumination at the PANTER facility
(Burwitz et al. 2013) at 1 to 40 keV. Subsequently, the PSF
at 15 to 63 keV was measured sector-by-sector at the beamline
BL20B2 of the SPring-8 radiation facility (Ogasaka et al. 2008).
The mirror shell with the details of the manufacturing process

A22, page 16 of 19

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201424907&pdf_id=17


L. Raimondi and D. Spiga: Mirrors for X-ray telescopes: Fresnel diffraction-based

is described in Basso et al. (2011). Details on the experimen-
tal setup and the results obtained at SPring-8 are given in Spiga
et al. (2011). Since the HEW at 1 keV (measured at PANTER)
was 18 arcsec and the HEW values measured at SPring-8 are
much higher, the PSF at energies above 20 keV are probably
already sensing the effect of the surface roughness. Aiming at
quantitatively explaining this effect, we compared the experi-
mental results with the PSF simulations following the method
described in this paper, accounting for the metrology of profile
and roughness.

After the direct measurement in X-rays, the mirror shell lon-
gitudinal profile was measured using the dedicated mirror shell
profilometer at MLT (Sironi et al. 2011), taking six mirror pro-
files in as many sectors of the integrated mirror shell, with a
0.4 mm resolution. Finally, the shell was dismounted, cut into
pieces and its roughness PSD was characterized at INAF/OAB
using an AFM to cover the spectral region from 50 µm down
to 5 nm of spatial wavelengths. The remaining spectral gap
from 1 mm to 50 µm could not be filled by a direct PSI mea-
surement because of the pronounced azimuthal curvature of the
samples. Nevertheless, that spectral gap was covered assuming
the roughness PSD of the mandrel, which had been measured
before the shell replication. This choice was based on previous
experience (Sironi et al. 2010) that proved that the roughness
mandrel in this spectral band is completely copied by the repli-
cated shell. The entire characterization is also reported in Spiga
et al. (2011).

The simulations of the PSFs at 20 keV, 30 keV, and 50 keV
were obtained by superposing a rough profile, simulated from
the PSD, on each one of the six measured longitudinal profiles,
and applying Eqs. (41) and (46) implemented in the WISE code.
For each considered X-ray energy, the six PSFs were averaged
and normalized over a 4 cm wide region, the same lateral size
of the detector as was used to reconstruct the PSFs at SPring-8.
In Fig. 18 we display the simulated PSFs, compared with the
PSFs obtained from the measurements. The matching is accu-
rate. Consequently, the HEW values computed from the simu-
lated PSFs also agree well with the measured values to within
a couple of arcseconds. The remaining discrepancies might be
caused by the small number of profiles characterized on the mir-
ror shell, which might not be completely representative of the
tests performed at SPring-8, in which almost all the mirror sur-
face was probed. Moreover, the experimental PSF results from a
focal spot integration over 2π, hence it exhibits an intrinsic sym-
metry that cannot be exactly reproduced in the simulation. The
agreement remains to be very good.

8. Conclusions

We have shown how a computation entirely based on the
Huygens-Fresnel principle allows us a comprehensive simula-
tion of a grazing-incidence mirror PSF, without the need of
devoting separate physical treatments to different ranges of
spatial frequencies. Even if wavefront propagation codes are
widespread in X-ray optics, they are rarely applied to real mir-
ror surfaces, which are characterized by defects down to spa-
tial wavelengths in the range of a micron or even less. In fact,
the computation would require a double integration over a huge
data matrix representing the mirror surface, and in addition, for
every point of the detector. In contrast, reducing the formal-
ism to a single dimension – that is, in the incidence plane –
simplifies the computation by several orders of magnitude. The
price to pay is that transverse deviations caused by profile errors
in the azimuthal directions are neglected: this effect is usually
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Fig. 18. Simulated PSF from measured profiles and roughness at 20,
30, and 50 keV using the WISE code to implement the Fresnel diffrac-
tion approach. The experimental PSFs are reproduced accurately (after
Spiga et al. 2011).

negligible in practical cases, since their impact is smaller by or-
ders of magnitude than the errors in the longitudinal direction.
The 1D Fresnel integral can be numerically computed at any
value of λ, automatically assigning the correct weight to aperture
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diffraction, geometry, and scattering. The PSF computation à la
Fresnel is self-consistent and versatile: it works in near- and far-
field condition, regardless of the finiteness of the source distance,
and can be easily extended to multiple reflections as in the case
of the Wolter-I design, which is frequently adopted in mirrors
for X-ray telescopes. Finally, the formulae can be easily imple-
mented in any computer language: in particular, our WISE code
in IDL language yielded results that agreed well with the ex-
periments performed in hard X-rays. Future developments will
be aimed at extending the results to 2D images, but still avoid
becoming too demanding from a computational point of view.
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(INAF/OAB), B. Salmaso (INAF/OAB and Università dell’Insubria), and
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Appendix A: Deriving the integral formula

for the diffracted field

In this appendix we compute the electric field in detail (Eq. (6)),
in scalar approximation, diffracted in the xz plane by a grazing
incidence focusing mirror sector (refer to Fig. 2) with axial sym-
metry around the z-axis and angular aperture ∆Φ. We assume
the focal plane to be at z = 0, the mirror exit pupil at z = f , and
the entrance pupil at f + L1, where L1 is the length of the mirror
along z. The radial coordinate of the mirror is described by the
generic function r1(z1) assumed to be equal to the profile x1(z1)
in the xz plane, and varying from R0 to RM as f < z1 < f + L1,
with R0 ≪ f and L1 ≪ f . Because the roundness error effect
is assumed to be negligible owing to the shallow incidence an-
gles (Sect. 2), the mirror surface is described by the coordinates
(r1 cosϕ1, r1 sinϕ1, z1).

A spherical wave propagates in the negative z direction either
from (diverging wave) or toward (converging wave) a point lo-
cated on the z-axis at z = S . In the first case S ≫ 0, in the second
case S ≪ 0, and we set D = S − f . To simplify the notation, we
arbitrarily take as a phase reference the mirror’s entrance pupil
plane, and temporarily assume the incident electric field ampli-
tude to be a constant, E0. We also denote with d1(z1) the distance
from the reference wavefront to a point on the mirror, and with
d2(ϕ1, z1, x, z) the distance from that point to (x, 0, z). Finally, be
δ = r1/D the beam divergence angle at the mirror, in practice
constant (δ ≈ R0/D) throughout the mirror surface owing to the
high value of |D|. Taking δ with its sign, the incidence angle on
the mirror is also constant to a good approximation:α1 = α0 + δ,
where α0 is the incidence angle for a source at infinity (see also
Spiga et al. 2009). The radial aperture of the mirror seen from
the source is ∆R1 = L1 sinα1.

Owing to the large distance of the source, its intensity de-
creases negligibly over the mirror length and the mirror is illu-
minated uniformly. Neglecting obliquity factors, the well-known
expression of the secondary electric field in the xz plane, as gen-
erated by the mirror area element at the cylindrical coordinates
(r1, ϕ1, z1) is

d2E(x, z) =
E0

λd2
exp

[

−2πi
λ

(d1 + d2)

]

d2x1⊥, (A.1)

where d2 x1⊥ = r1 dϕ1 dx1 is the area element perpendicular to
the beam direction.

For of a diverging spherical wavefront (S ≫ 0), the distance
d1 can be written as

d1 = f + L1 − S +

√

r2
1 + (S − z1)2, (A.2)

where the term f +L1−S was added because the phase reference
was chosen at z = f +L1. Since r1 ≪ S −z1, we can approximate
Eq. (A.2) as

d1 ≃ f + L1 − z1 +
r2

1

2(S − z1)
· (A.3)

Equation (A.3) is also valid for S ≪ 0 and reduces – as expected
– to d1 ≃ f + L1 − z1 for a source at infinity. Since the source is
on-axis, d1 is independent of ϕ1. In contrast, the d2 dependence
on ϕ1 must be explicitly considered to also enable the diffracted
field computation off the z-axis:

d2 =

√

r2
1 + x2 + (z1 − z)2 − 2x r1 cosϕ1. (A.4)

To avoid diffraction effects at the azimuthal ends, R0∆Φ should
be taken much larger than λ. To this end, in practical cases it
is sufficient for ∆Φ to not exceed a few degrees. Then we can
assume cosϕ1 ≃ 1 − ϕ2

1/2, which turns Eq. (A.4) into

d2 ≃
√

d̄2
2 + x r1ϕ

2
1, (A.5)

where we have defined

d̄2 =
√

(r1 − x)2 + (z1 − z)2. (A.6)

Expanding the square root in series in Eq. (A.5), we then obtain

d2 = d̄2 +
x r1ϕ

2
1

2d̄2
−

x2 r2
1ϕ

4
1

8d̄3
2

+ · · · : (A.7)

for z not too close to f , we are allowed to neglect the terms in
Eq. (A.7), from the third term on. We substitute the first two
terms into Eq. (A.1) and obtain by integrating over the mirror
surface

E(x, z) =
∫ f+L1

f

dz1 r1

∫ + ∆Φ2

− ∆Φ2
dϕ1

E0 sinα1

λd2
e
− 2πi
λ

(

d̄2+
x r1 ϕ

2
1

2d̄2
+d1

)

, (A.8)

where we have used the relation dx1 ≃ sinα1 dz1. Recalling the
definition of ∆R1 and approximating d2 ≈ d̄2 in the denominator,
we obtain

E(x, z) =
E0 ∆R1

L1λ

∫ f+L1

f

dz1
r1

d̄2
e−

2πi
λ (d̄2+d1)

∫ + ∆Φ2

− ∆Φ2
dϕ1 e

−i
πx r1
d̄2λ
ϕ2

1 (A.9)

and, by defining the dimensionless parameter

ζ = ϕ1

√

x r1

λd̄2
, (A.10)

the integral in ϕ1 takes a simpler form

∫ + ∆Φ2

− ∆Φ2
e−i

πx r1
d̄2λ
ϕ2

1 dϕ1
r1∆Φ≫λ−→

√

λd̄2

x r1

∫ +∞

−∞
e−iπζ2

dζ, (A.11)

where the condition r1 ∆Φ ≫ λ has allowed us to approximate
the integration limits with infinity. The integral in ζ is the well-
known Fresnel integral and can easily be computed as (1−i)/

√
2.

We remain with

∫ + ∆Φ2

− ∆Φ2
e
−i
πx r1
d̄2λ
ϕ2

1 dϕ1 =

√

λd̄2

x r1
e−i π4 . (A.12)
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Finally, substituting this result into Eq. (A.9) and neglecting the
constant phase factor yields

E(x, z) =
E0 ∆R1

L1
√

xλ

∫ f+L1

f

√

r1

d̄2
e−

2πi
λ (d̄2+d1) dz1, (A.13)

then substituting d1 into Eq. (A.9) with the expression provided
by Eq. (A.3), disregarding constant phase factors, and replacing
r1 = x1(z1), exactly yields Eq. (6) in Sect. 3.

Extending the computation for a mirror sector to a source
off-axis is straightforward by changing the definition of d1 in
Eq. (A.3) to account for the position xs of the source in the
xz plane:

d1 ≃ f + L1 − z1 +
(xs − r1)2

2(S − z1)
(A.14)

for a source at finite distance, and

d1 ≃ f + L1 − z1 − θs r1 (A.15)

for a source at infinity, denoting with θs the off-axis angle. The
definition of ∆R1 used in Eq. (A.13) also needs to be changed to
account for the off-axis angle: ∆R1 = L1 sin(α0 + δ − θs).
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