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Abstract: Testosterone is the predominant androgen in men and has important physiological func-
tions. Due to declining testosterone levels from a variety of causes, testosterone replacement therapy
(TRT) is increasingly utilized, while testosterone is also abused for aesthetic and performance-
enhancing purposes. It has been increasingly speculated that aside from more well-established side
effects, testosterone may cause neurological damage. However, the in vitro data utilized to support
such claims is limited due to the high concentrations used, lack of consideration of tissue distribution,
and species differences in sensitivity to testosterone. In most cases, the concentrations studied in vitro
are unlikely to be reached in the human brain. Observational data in humans concerning the potential
for deleterious changes in brain structure and function are limited by their inherent design as well as
significant potential confounders. More research is needed as the currently available data are limited;
however, what is available provides rather weak evidence to suggest that testosterone use or abuse
has neurotoxic potential in humans.
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1. Introduction

Testosterone is the predominant androgen in men and serves important physiological
roles in both men and women [1]. In healthy eugonadal men, testosterone is produced
primarily by the Leydig cells of the testicles and results in the total daily production of
approximately 6–7 mg/day, although a range of 3–10 mg total testosterone production is
often cited as well [1–10]. This production rate results in the often cited “normal range”
for total testosterone in males of between 300–1000 ng/dL in plasma, although this range
varies based upon the laboratory and population examined [11,12].

Testosterone levels may generally decline with advancing age and may eventually
reach a point of “testosterone deficiency,” although there are other causes of low testos-
terone, including certain injuries, medications, obesity, illnesses, radiation exposure, and
genetic conditions [13–17]. This deficiency is characterized most often by symptoms and
testosterone levels (e.g., generally total testosterone below 300 ng/dL, although other
parameters may be used) [13–17]. The treatment for testosterone deficiency, often referred
to as “testosterone replacement therapy” or TRT, is designed to decrease the symptoms
of low testosterone, such as decreased libido, sexual function, and lean body mass, while
ideally maintaining testosterone levels within the normal range [13–17].

Testosterone, while produced endogenously by humans, is still (in the most technical
sense) an anabolic-androgenic steroid (AAS), albeit one that is endogenously produced.
While TRT is generally considered to be a rather safe practice, there are of course risks
for adverse effects (e.g., erythrocytosis and acne) as with any pharmacotherapy [13–17].
While the adverse effects of testosterone—and in a broader sense, all anabolic-androgenic
steroids—are fairly well described, more recent attention has been devoted to potential
neurological side effects [18,19]. While short-term alterations in psychiatric and cognitive
variables have been noted with acute administration in men, these changes are primarily
thought to involve neurochemical changes or alterations in signaling pathways leading to
temporary alterations in function rather than permanent neurological changes [20–24].
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Relatedly, it has also been proposed that testosterone, especially in the “high normal”
and “supraphysiological” range, may cause neurotoxicity, resulting in an increased risk for
neurodegenerative diseases (e.g., Parkinson’s, Alzheimer’s, Huntington’s) or at the very
least general cognitive decline, especially with chronic use, noting that these, like many of
the adverse effects of androgens in general are dose and duration dependent [18,19,25–28].
Such a hypothesis requires a more extensive examination into the evidence cited for
such claims.

2. In Vitro Data
2.1. Concentration Matters

Several groups have investigated the potential neurotoxicity of testosterone in vitro
by utilizing human and rodent cell lines [25–28]. Authors of these studies have proposed
that concentrations as low as 100 nmol of testosterone may be neurotoxic, while also
indicating that this concentration is consistent with the “high normal range” of total blood
testosterone in men, and acknowledging that concentrations of 1 µmol or greater are in the
supraphysiological range [26].

First, it should be noted that contrary to the claims of some authors [26], 100 nmol is
not within any accepted physiological range for eugonadal males. In fact, it is nearly 3 times
greater than the upper limit of normal for total blood testosterone levels in eugonadal
males [12–14]. The typical replacement doses utilized for TRT would not be expected
to reach this concentration on average (see Table 1) [29–46]. Furthermore, even amongst
those that are abusing testosterone, consistent concentrations of this magnitude in plasma
are not expected, except for those using quantities of 500–600 mg or more of testosterone
cypionate/enanthate weekly (see Table 1) [30–46].

While pharmacokinetic data gathered in humans administered varying doses of testos-
terone esters either intramuscularly or subcutaneously vary considerably depending upon
the route of administration and sampling method, these data generally show that only
quantities used as part of testosterone abuse are capable of reaching concentrations of
100 nmol or greater on a consistent basis. Other authors have indicated that concentrations
of 100–500 µmol are typically reached with a supraphysiological dose of 600 mg of testos-
terone enanthate weekly [27], which is also incorrect (see Table 1). This same group’s work
was used in lay press articles to claim that even levels of testosterone seen with TRT can
“lead to a catastrophic loss of brain cells” [47]. Concentrations well beyond 100 nmol, and
especially into the 1 µmol to 100 µmol range, for total testosterone are highly unlikely, even
in those abusing testosterone for athletic/aesthetic purposes. These concentrations have
not been reached in studies utilizing supraphysiological doses of exogenous testosterone
(see Table 1). Furthermore, the only documented case of testosterone overdose in the
literature was in a young man who experienced a cerebrovascular accident with a total
plasma testosterone concentration of 395 nmol (11,400 ng/dL) [48].

It should also be noted that these concentrations discussed relate to total testosterone
(i.e., testosterone that is unbound and bound by sex hormone binding globulin (SHBG)
and albumin), while “free testosterone” or testosterone that is not bound to SHBG and
albumin constitutes only 2–4% of total circulating testosterone; 50–60% of total testos-
terone is bound by SHBG and is generally not considered available to tissues such as the
brain [13,14,16,17]. Thus, the utilization of high concentrations of free testosterone in vitro
results in an untenable comparison with total plasma testosterone concentrations reached
even after supraphysiological doses of exogenous testosterone. While it can certainly be
argued that the relationship between testosterone and SHBG is dynamic and can be altered
in cases of exogenous administration (amongst other variables), ultimately what matters
most is the available concentration in brain tissue (see Section 2.2).

It is also important to note that even in cases where a given concentration has been
shown to have toxic effects in a given cell line (i.e., ≥100 nmol), maintaining blood con-
centrations of this magnitude would also be necessary, as short-term exposure (e.g., 24 h)
in vitro has not been shown to be capable of producing cellular damage [26].
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Table 1. Comparison of in vivo testosterone plasma concentrations with neurotoxic in vitro concentrations.

Testosterone
Preparation Dose (mg) Route of

Administration Single or Multi-Dose
Mean Plasma

Concentrations in
nmol (ng/dL)

Concentration in Vitro
Demonstrating

Neurotoxicity in nmol
(ng/dL)

Cell Line Type
(Species) References

Testosterone Enanthate

Testosterone Enanthate

Testosterone Enanthate

Testosterone Enanthate

Testosterone Enanthate

Testosterone Enanthate

Testosterone Enanthate

Testosterone Enanthate

Testosterone Cypionate

Testosterone Cypionate

Testosterone Enanthate

Testosterone Enanthate

Testosterone Enanthate

Testosterone Enanthate

Testosterone Enanthate

Testosterone Enanthate

-

Testosterone Enanthate

Testosterone Enanthate

Mixed Testosterone
Esters (Sustanon 250)

Mixed Testosterone
Esters (Sustanon 250)

Testosterone Cypionate

250

200

100

200

100

300

100

200

250

500

200

200

600

600

400

600

-

600

600

250

250

200

Intramuscular

Intramuscular

Intramuscular

Intramuscular

Intramuscular

Intramuscular

Subcutaneous

Intramuscular

Intramuscular

Intramuscular

Intramuscular

Intramuscular

Intramuscular

Intramuscular

Intramuscular

Intramuscular

-

Intramuscular

Intramuscular

Intramuscular

Intramuscular

Intramuscular

Single

Single

Single

Multi (Bi-Weekly)

Multi (Weekly)

Multi (Weekly)

Multi (weekly)

Multi (Bi-Weekly)

Multi (Weekly)

Multi (Weekly)

Multi (Weekly)

Multi (Weekly)

Multi (Weekly)

Multi (Weekly)

Multi (Bi-Weekly)

Multi (Weekly)

-

Multi (Weekly)

Multi (Weekly)

Single

Single

Single

39.4 (1136)

68.1 (1965)

40.9 (1181)

50.7 (1462)

24.9 (718) (mean
between injections)

51.8 (1494)

46.7 (1346 mean Cmax)

78.4 (2262 mean Cmax;
Range up to 167.8 (4840)

<52 (<1500)

<86.7 (<2500)

77.5 (2235)

38.4 (1108)

76.9 (2218 nadir)

98–112.5 (2828–3244)

39.7 (1146)

76.9 (2218 younger men)

124.9 (3603 older men)

92.0 (2654)

82.2 (2370 nadir)

71.0 (2048)
Range up to 121.0 (3490)

81.4 (2348)

38.6 (1112)

100 (2884)

*

1000–10,000
(28,843–288,428)

1000–10,000
(28,843–288,428)

1000 (28,843)

100,000 (2,884,282)

N27 (rat)

GT1-7 (mouse)

SH-SY5Y (human)

Pure Cortical Neurons
(rat)

Mixed Cortical Cells
(rat)

Mixed Cortical Cells
(rat)

[26,30]

[26,31]

[27,31]

[25,32]

[25,33]

[33]

[28,34]

[34]

[35]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[41]

[42]

[43]

[44]

[45]

[46]

* No toxicity demonstrated.

Thus, in this instance the concentrations used in vitro are not reflective of what is seen
in vivo in humans. Just as with pharmacological targets, utilizing extreme concentrations
may not accurately reflect the actual risk of cell/tissue damage [49,50].

2.2. Consideration of Tissue Distribution

While doses of exogenous testosterone normally utilized for TRT purposes are unlikely
to elevate plasma testosterone to concentrations that have been shown to have neurotoxic
potential in vitro, it is even more unlikely once tissue distribution is considered. In this
instance, it is known that blood concentrations of testosterone overestimate the levels
found in the human brain by 3–10 fold [51–54]. Specifically, brain tissue concentrations
are typically around 1 ng/g of tissue on average. This is likely explained, at least in
part, by the restriction of SHBG-bound testosterone to blood and its inability to cross
the blood–brain barrier, as well as the local metabolism of testosterone [54]. While it is
questionable whether exogenous testosterone administration could result in a substantially
disproportionate amount of testosterone to distribute to the brain, the available evidence
(albeit limited), utilizing cerebrospinal fluid (CSF) as a surrogate for levels in the brain
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relative to plasma, suggests that the brain maintains a relative equilibrium with the blood
and that any perturbations are rapidly corrected to maintain this relationship [55–61].

Conversely, the synthetic 17-alpha alkylated derivative of testosterone [62], methyl-
testosterone, has been shown to substantially favor the CSF over blood levels. However,
this likely reflects increased blood–brain barrier (BBB) penetration, presumably due to
greater lipophilicity and reduced binding to SHBG. These differences are likely due to the
reduced hydrogen bonding of the 17-β-hydroxyl group of testosterone due to steric hin-
drance afforded by the bulky methyl substituent at the 17-α position [63,64]. Certainly, such
seemingly small chemical and physicochemical differences between methyltestosterone
and testosterone may not be a complete explanation for such differences, but an established
equilibrium for a molecule that has evolved with mammals for millions of years versus a
synthetically altered version is not completely surprising. It should also be noted that even
in this study, though often cited as evidence that AASs are capable of reaching micromolar
concentrations in the human brain [28], mean concentrations were actually 233 nmol, with
a maximum range of 898 nmol in the CSF, which itself can only be considered a potential
surrogate of brain concentrations [58,65].

2.3. Species Differences in Sensitivity

Aside from the limitations discussed previously, in some instances, rodent cell lines
were used for in vitro assays evaluating the potential for neurotoxicity. The issue with
such use is the question of whether the chosen species possesses the same sensitivity as
humans [66]. It is unknown in this case, but there are instances of other tissue types
(e.g., liver) demonstrating that humans are less sensitive than rodents with respect to the
cellular toxicity of testosterone [67]. In addition, data show that other molecules may have
substantially divergent neurotoxic potential in humans as compared to rodents [66]. It is
interesting to note that while a direct comparison is not possible, the only study to use
human neuronal cells demonstrated toxicity only at 1 µmol [27], while the rat-derived N27
cells demonstrated toxicity at 100 nmol [26].

Aside from the potential interspecies (as well as different cell types from the same
species) differences in the sensitivity of different cell types, it must also be considered
whether their metabolic capabilities accurately reflect those seen in normal humans;
whether steroid receptor content is comparable between cell types; and even if the same
cell line may have divergent properties from the original after repeated passage [66,68–71].

3. Observational Studies

While beyond the scope of this opinion paper, it is worth noting that several groups
have reported findings indicating that AAS users may suffer from brain alterations and
cognitive dysfunction [19,72–75]. However, these study designs generally do not allow
for a causal relationship to be established. Furthermore, perhaps more importantly, these
studies are vulnerable to major confounders, including the known polypharmacy (in-
cluding other licit and illicit drugs of abuse) that anabolic steroid users self-administer;
the reliability of self-reported data and potential reverse causation considering the role
of pre-existing factors, such as addiction/substance abuse/dependence predisposition;
psychiatric and psychological conditions; and lower IQ increasing the likelihood of AAS-
dependence [76–88]. Certainly, those that may be using or even abusing testosterone may
wish to be informed of potential serious adverse effects. However, by focusing on the poten-
tial neurodegenerative disease due to androgen use, especially in light of the limited data
to support the notion of such a hazard, it could be argued that this risks further alienating
a population that already views the opinions of physicians and mainstream medical advice
with some skepticism [89]. It was not long ago that those abusing androgens were told that
they were not actually effective [90], while the risks of their use and abuse may have been
exaggerated [91–95]. Nevertheless, it should be acknowledged that potential risks with
long-term abuse exist, especially with respect to adverse cardiovascular effects [96], while
the health effects associated with long-term TRT use are still being investigated [97].
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4. Implications

While testosterone use for TRT is still subject to some controversy, the available data are
rather weak to suggest that neurological damage or an increased risk of neurodegenerative
disease is a risk with long-term use either at therapeutic doses or those generally used
for athletic/aesthetic purposes. In vitro data utilizing concentrations that are irrelevant to
in vivo administration should not be relied upon as supportive evidence of neurological
damage. More research is needed to determine if long-term androgen use/abuse is a risk
factor for neurological damage or neurodegenerative disease.
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