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ABSTRACT

We investigate the evolution of low mass (Md/Mb = 0.005) misaligned gaseous discs around
eccentric supermassive black hole (SMBH) binaries. These are expected to form from ran-
domly oriented accretion events onto a SMBH binary formed in a galaxy merger. When ex-
panding the interaction terms between the binary and a circular ring to quadrupole order and
averaging over the binary orbit, we expect four non-precessing disc orientations: aligned or
counter-aligned with the binary, or polar orbits around the binary eccentricity vector with ei-
ther sense of rotation. All other orientations precess around either of these, with the polar
precession dominating for high eccentricity. These expectations are borne out by smoothed
particle hydrodynamics simulations of initially misaligned viscous circumbinary discs, result-
ing in the formation of polar rings around highly eccentric binaries in contrast to the co-planar
discs around circular binaries. Moreover, we observe disc tearing and violent interactions be-
tween differentially precessing rings in the disc significantly disrupting the disc structure and
causing gas to fall onto the binary with little angular momentum. While accretion from a polar
disc may not promote SMBH binary coalescence (solving the ‘final-parsec problem’), ejec-
tion of this infalling low-angular momentum material via gravitational slingshot is a possible
mechanism to reduce the binary separation. Moreover, this process acts on dynamical rather
than viscous time scales, and so is much faster.
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1 INTRODUCTION

It is widely accepted that most massive galaxies host a supermas-

sive black hole (SMBH) at their centre. Galaxy mergers, expected

from the hierarchical structure growth scenario based on theΛ cold

dark matter (ΛCDM) cosmological model, then result in the for-

mation of SMBH binaries (Begelman et al. 1980). Both SMBHs

of such a binary sink towards the galactic centre due to dynamical

friction and form a hard binary (Merritt 2001). However, most such

SMBHs appear to be single rather than binary SMBHs, implying

that SMBH binaries quickly coalesce and merge. One process driv-

ing further binary shrinking are slingshot interactions with stars in

the ‘loss cone’: those on orbits intersecting with the binary (Saslaw

et al. 1974). Since the slingshot mechanism ejects the stars, the

‘loss cone’ needs to be replenished in a relatively short timescale

in order to shrink the binary all the way down to separations . 10−2

pc where gravitational waves are expected to drive coalescence. For

spherical collisionally relaxed stellar systems, it is thought that the

slingshot mechanism stalls well before reaching this separation, re-

⋆ Email: ha183@le.ac.uk, walter.dehnen@le.ac.uk
† Einstein Fellow

sulting in what is known as ‘the final parsec problem’ (Milosavl-

jević & Merritt 2003; Berczik et al. 2005).

Potential stellar dynamical solutions have been sought for gas

poor systems. Berczik et al. (2006) studied SMBH binaries evolu-

tion in realistic triaxial rotating galaxies and found that the galax-

ies supply stars on centrophilic orbits refilling the loss cone at a

high enough rate to prevent the SMBH binary from stalling and

that complete coalescence is achieved in less than 10 Gyr. Khan

et al. (2013) found that for axisymmetric galaxies with axis ratio

c/a 6 0.8 the hardening rate is 25 times faster than for spherical

galaxies. Self-consistent N-body simulations of merging galaxies

containing SMBH found binary hardening rates much higher than

idealized spherical models and sufficient to shrink the binary to the

gravitational wave coalescence regime (Khan et al. 2011; Gualan-

dris & Merritt 2012).

Interactions with circumbinary gas discs may change the evo-

lution of the SMBH binary. The mass of such a disc is uncertain and

depends on its formation. A galaxy rich merger can channel large

amounts of gas towards the centre. If this gas can cool efficiently

and avoid fragmentation and substantial star formation, a disc with

mass comparable to that of the binary may form.

For a prograde disc, spiral density waves in the disc driven by

http://arxiv.org/abs/1501.04623v1
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the outer-Lindblad resonance with the binary transport angular mo-

mentum away from the binary (Goldreich & Tremaine 1979). This

mechanism is efficient if the disc reaches very close to the binary,

so that it occupies the resonance, and is sufficiently massive for the

angular-momentum absorption not to result in an expansion of the

inner disc edge (Escala et al. 2005; MacFadyen & Milosavljević

2008). For a disc with Md = 0.2Mb, Cuadra et al. (2009) found that

binary orbital decay can stall because the disc expands due to ab-

sorption of angular momentum from the binary, severely slowing

further angular momentum exchange (see also Lodato et al. 2009).

Apart from the classical density-wave mechanism, the infall

of gas from the inner edge of the disc into the cavity can be impor-

tant (Roedig et al. 2012; Roedig & Sesana 2014). The binary may

either eject such infalling gas via a gravitational slingshot whereby

losing angular momentum and energy, or capture it onto an accre-

tion disc around either component, which adds to the binary angular

momentum. The binary evolution is determined by the competition

between these two effects and it remains unclear, which one wins

in the long term1.

For a retrograde co-planar disc, the lack of orbital resonances

allows the disc to extend to small radii. This enables the binary

to accrete or capture material with negative angular momentum

(Nixon et al. 2011). If Md ∼ Mb, this may suffice to achieve coa-

lescence (Roedig & Sesana 2014).

In reality, discs with mass in excess of their aspect ratio times

the binary mass are gravitationally unstable and hence, due to the

short cooling time in these discs, fragment and form stars much

faster than binary coalescence (Gammie 2001; Goodman 2003;

Levin 2007). The numerical treatment of fragmentation, star for-

mation, and stellar feedback is extremely challenging. In all of the

aforementioned simulations with such massive discs, these pro-

cesses have simply been suppressed (by assuming slow cooling

which prevents star formation), overestimating the efficiency of

disc-driven binary coalescence. Although star formation will rob

the disc of a significant amount of gas, the newly formed stars

may still contribute to binary orbital decay (e.g. Sesana et al. 2007,

2008), though less so than the gas owing to the lack of an efficient

dissipation mechanism to reduce their pericentres.

A more likely scenario than binary coalescence driven by the

interaction with a single massive disc is the repeated interaction

with low-mass discs resulting from the infall and tidal disruption of

molecular clouds onto the binary. Such discs are expected to have

masses 105−6 M⊙ typical of molecular clouds, small compared to

the typical mass 106−9 M⊙ of a SMBH binary. Nixon et al. (2011)

studied retrograde discs of this type and found that they are very ef-

ficient in reducing the binary angular momentum through accretion

of gas with negative angular momentum onto the secondary black

hole. This enhanced accretion onto the secondary black hole in-

creases the binary’s eccentricity, decreasing the pericentre distance

in the process, and coalescence is achieved when a mass compara-

ble to the secondary black hole has been accreted.

If accretion events in galactic nuclei are chaotic and randomly

oriented (King & Pringle 2006, 2007; King et al. 2008), we ex-

1 This effect was present in the simulations of Cuadra et al. (2009) but did

not effectuate significant binary evolution. On the other hand, based on an

extrapolation to 50 times longer than actually modelled, Roedig & Sesana

(2014) claim efficient binary shrinking. However, since the infall of gas de-

pends on the disc structure at its inner edge, this result is very sensitive to the

thermodynamical treatment. Roedig et al. (2012), for example, found that

for isothermal instead of adiabatic gas with an imposed standard β cooling

prescription, the binary orbital decay can be significantly reduced.

pect the formation of misaligned circumbinary discs around SMBH

binaries. In the case of a circular SMBH binary, the interaction

between the misaligned disc and the binary is similar to Lense-

Thirring precession on an accretion disc around a spinning black

hole (Bardeen & Petterson 1975; Pringle 1992; Scheuer & Feiler

1996). King et al. (2005) showed that the induced differential pre-

cession will cause a misaligned disc to counter-align with the black

hole spin provided

cosθ <
−|Jd|
2|Jh|

(1)

where Jd and Jh are the disc and black hole angular momenta, re-

spectively; and θ is the angle between them. The disc will co-align

with the black hole spin if this relation is not satisfied. Nixon et al.

(2011) showed that the same analysis applies to the case of a mis-

aligned disc around a binary (though the precession rate is slightly

different). Thus, if counter-alignment is stable (Nixon 2012), this

mechanism can provide a solution to the final parsec problem by

supplying retrograde discs to achieve coalescence.

Recently, Nixon et al. (2013) performed 3-D hydrodynamical

simulations of circumbinary discs around a circular binary for var-

ious tilt angles θ. In addition to co- and counter-alignment, they

found that in many cases the discs is torn into distinct rings which

precess almost independently (Nixon et al. 2012). The precessing

rings, which have partially opposed angular momentum, may in-

teract causing partial cancellation of their angular momenta and

thus gas infall close to the binary. This disc tearing significantly

increases the accretion rate and may play an important role in pro-

moting the binary final coalescence.

Those studies considered the case of a circular binary interact-

ing with a circumbinary disc, when disc precession is only around

the pole of the binary plane. In this study, we consider the more

general situation of an eccentric binary. For a SMBH binary formed

via a galaxy merger, we expect high eccentricities in many cases

(Aarseth 2003; Khan et al. 2011; Wang et al. 2014). Moreover, ret-

rograde accretion onto a circular binary naturally results in eccen-

tricity growth as discussed earlier. One important effect of binary

eccentricity is to make the time averaged binary potential triaxial

rather than axisymmetric as for a circular binary. Previous studies

have shown that misaligned discs in triaxial galaxies can precess

around both the major and the minor axes (Steiman-Cameron &

Durisen 1984; Thomas et al. 1994).

The paper is organised as follows. In Section 2 we present an-

alytic results for a simple orbit-averaged model for the binary-disc

interaction up to quadrupole order. Section 3 describes the setup

of our 3D hydrodynamical simulations, the of which results are

presented in Section 4 and discussed in Section 5. Finally, we sum-

marise and conclude in Section 6.

2 BINARY-DISC QUADRUPOLE INTERACTION

The dynamics of a circumbinary gaseous ring orbiting an eccentric

binary is not analytically treatable, even without considering any

dissipation. However, useful insight can be obtained by (i) truncat-

ing the binary gravitational potential at quadrupole order, (ii) as-

suming that the ring is circular, (iii) time-averaging over the binary

orbit, and (iv) neglecting dissipation. Assumptions (i) and (ii) are

valid as long as the ring is sufficiently distant from the binary, while

assumption (iii) requires that orbital resonances between ring and

binary are not important.

The monopole of the gravitational interaction results in Kep-
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lerian motion of the ring around the binary centre of mass, while

the quadrupole describes the lowest-order deviation of the binary

from a central point mass.

Recently, Naoz et al. (2013) have used Hamiltonian perturba-

tion theory to obtain the equations for the secular evolution of a

hierarchical triple up to octopole order. For a circular outer binary,

their results are equivalent to the situation of a circular circum-

binary ring. We now summarise the relevant relations (obtained in

Appendix A with Newtonian dynamics, but otherwise equivalent to

those of Naoz et al.) in terms of vectors rather than orbital elements

to describe the system.

The binary is parametrised by its mass ratio q≡m2/m1 6 1, to-

tal mass M =m1+m2, semi-major axis a, specific angular momen-

tum h, and eccentricity vector e. Let R≡ x1− x2 the instantaneous

binary separation vector, then

h =
m1

M
x1× ẋ1+

m2

M
x2× ẋ2 =

q

(1+q)2
R× Ṙ and (2)

e =
Ṙ× (R× Ṙ)

GM
− R̂. (3)

The vector e is conserved for the binary orbit and points from the

centre of mass to peri-apse (hence is always orthogonal to h). Its

magnitude is the orbital eccentricity and is related to that of h by

h2(1+q)4 = q2GMa(1−e2). (4)

2.1 Ring evolution

The circular circumbinary ring is parametrised by its mass m, ra-

dius r, and pole l̂. The latter is the unit vector in direction of

the ring’s specific angular momentum l, which has amplitude l =√
G(M+m)r. The ring radius must satisfy r > a(1+ e)/(1+ q) for

the quadrupole-approximation to be valid (and in order to avoid

collision with a binary component). Note that the tilt angle θ of the

ring with respect to the binary satisfies cosθ= l̂·ĥ.

The quadrupole interaction energy between binary and ring,

averaged over both the binary orbit and the ring, is

〈Ebr〉=−
mω2a2q

8(1+q)2

[

6e2−1−15e2( l̂ · ê)2+3(1−e2)( l̂ · ĥ)2
]

(5)

with ω=
√

G(M+m)/r3 the orbital frequency of the ring , in agree-

ment with equation (22) of Naoz et al. (2013). The time-averaged

binary quadrupole torques the ring according to

l̇=Θ× l (6)

with the vector

Θ=
3ωq

4(1+q)2

a2

r2

[

5e2( l̂ · ê) ê− (1−e2)( l̂ · ĥ) ĥ
]

. (7)

From equation (6) we have l · l̇ = 0, i.e. l̇ = 0 = ṙ and the ring is

merely precessing (this is no longer true at octopole and higher

order, when l̇, 0, see Naoz et al. 2013).

Since ωmr2
Θ= ∂〈Ebr〉/∂ l̂, equation (6) implies

d l̂
dt
·
∂〈Ebr〉
∂ l̂
= 0. (8)

Thus, (in the assumed approximation) no energy is exchanged be-

tween binary and a single ring, but only angular momentum (if the

binary interacts with several rings, the individual interaction ener-

gies with each ring are no longer conserved).

2.2 Binary evolution

The torque of the binary from the ring can be worked out analo-

gously to that of the ring from the binary. After averaging over the

binary orbit, we obtain

ḣ=− m

M
Θ× l. (9)

In particular, the total angular momentum, Mh+ml, is conserved at

quadrupole order. For the case m≪ M considered here, the orien-

tation ĥ only varies slightly even if the disc orientation l̂ undergoes

large changes.

For a circular binary Θ is parallel to ĥ such that ḣ·h = 0, i.e.

h = |h| is conserved and the binary is merely precessing (with an

amplitude that is smaller than that of the disc by a factor m/M).

This fact together with conservation of total angular momentum

was the basis of the analysis by Nixon et al. (2011).

For an eccentric binary, the evolution of h is not simply a pre-

cession and h not conserved. Instead, we find

ḣ=−
15

4

ω2m

ΩM

e2h
√

1−e2
( l̂ · ê) ( l̂ · k̂) (10)

with Ω =
√

GM/a3 the binary orbital frequency. Thus, h remains

unchanged only if e = 0 (circular binary), or if l̂ is perpendicular

to either ê or k̂, i.e. if either ê or k̂ are in the ring plane. Other-

wise, h oscillates, since l̂ · k̂ oscillates around zero under the ring

precession.

The change of the eccentricity vector is

ė =
3

4

ω2m

ΩM
e
√

1−e2

{

[

2− ( l̂ · ĥ)2−5( l̂ · ê)2
]

k̂+

+ ( l̂ · k̂)( l̂ · ĥ) ĥ+5( l̂ · ê)( l̂ · k̂) ê
}

(11)

and the corresponding change in eccentricity

ė=
15

4

ω2m

ΩM
e
√

1−e2( l̂ · ê)( l̂ · k̂). (12)

in agreement with equation A34 of Naoz et al. 2013, but also with

equation (10) in conjunction with equation (4). In addition to the

precession of the orbital plane and the oscillation of the eccentricity

(both already described by equation 10), the binary also undergoes

apsidal precession with rate

˙̂e · k̂=
3

4

ω2m

ΩM

√
1−e2

[

2− ( l̂ · ĥ)2−5( l̂ · ê)2
]

, (13)

which is prograde for near-planar disc orientations (when | l̂· ĥ| ∼ 1),

but retrograde for near-polar discs (when | l̂ · ê| ∼ 1).

2.3 Ring precession

The rates of change of the directions of the binary and ring angular

momenta satisfy

∣

∣

∣

∣

∣

∣

dĥ
dt

∣

∣

∣

∣

∣

∣

6
ml

Mh

∣

∣

∣

∣

∣

∣

d l̂
dt

∣

∣

∣

∣

∣

∣

(14)

and a similar relation holds for |dê/dt|. Thus, as long as m≪ M,

the binary orientation changes only very little and/or much more

slowly than that of the ring (except for extreme binary eccentric-

ities when Mh ∝
√

1−e2 can be small). We therefore consider in

this subsection the limit m/M→ 0 when the binary orientation and

eccentricity are constant.
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Figure 1. Precession paths for the direction l̂ of the angular momentum of a dissipation-less circular ring of negligible mass orbiting a binary with eccentricity

e as indicated. The binary orbits counter clockwise in the plane perpendicular to its specific angular momentum h with peri-apse in the direction ê. For a

circular binary (e= 0, left), l̂ always precesses around h in a retrograde sense. For eccentric binaries, prograde polar precession (blue) around e, the long axis

of the time-averaged binary potential, is also possible. The regions of polar and azimuthal precession are separated by two great circles (black). The four ring

orientations l̂ = ±ĥ and l̂ = ±ê are stable (non-precessing), while the orientations l̂ = ±k̂ are unstable. Dissipation would damp the precession and eventually

align the ring with one of the four stable orientations. In case of a massive ring, the binary orbit evolves too: the vectors h and e oscillate and precess, and e
and k̂ rotate around h.

Then, equation (8) implies that the ring precesses along curves

of constant 〈Ebr〉. Isolated minima and maxima of 〈Ebr〉 denote sta-

ble, non-precessing ring orientations. In the presence of dissipa-

tion (due to viscosity in the disc), these orientations are attractors,

i.e. the dissipative damping of the precession eventually aligns the

pole l̂ of the ring with the extrema of 〈Ebr〉 (Steiman-Cameron &

Durisen 1984). For any e < 1, the orientations l̂ = ±ĥ are isolated

minima of 〈Ebr〉 and correspond to co-planar ring orientations ei-

ther co- or counter-rotating with the binary.

For a circular binary (e = 0), these are the only stable orien-

tations, but all polar orbits (θ = 90◦) maximise 〈Ebr〉. Θ is parallel

to h and ring precession is circular: l̂ describes a circle around ei-

ther of the stable orientations, see also the left plot in Fig. 1. The

precession rate is lower than the orbital frequency by the factor

3qa2 cosθ/4r2(1 + q)2. This is the situation previously studied by

Nixon et al. (2011). We now turn to the more general case of an

eccentric binary.

For e > 0, the orientations l̂ = ±ê are maxima of 〈Ebr〉, corre-

sponding to polar rings (with opposite senses of rotation) around

ê. For e< 1, l̂=± k̂ are saddle points and correspond to polar rings

around

k̂≡ ĥ× ê, (15)

the intermediate axis of the time-averaged binary potential.

These latter ring orientations are unstable, i.e. small deviations will

result in precession around either of the four stable orientations.

For 0< e < 1, ring precession is never circular: l̂ describes a curve

elongated towards the unstable orientations, rather than a circle.

Azimuthal and polar precessions are retrograde and prograde, re-

spectively. See Fig.1 for a visualisation of the precession paths.

The regions of polar and azimuthal precession are separated

by the contours of 〈Ebr〉 passing through the saddle points. These

separatrices are circular and shown as black in Fig. 1. The fraction

of ring orientations undergoing polar precession is

1

π
cos−1 1−6e2

1+4e2
. (16)

At small e, this grows linearly (∝
√

20e/π) with eccentricity (see

Fig. 2). Azimuthal and polar precession are equally likely for e =

6−1/2 ≈ 0.408.
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Figure 2. Percentage of ring orientations undergoing polar precession as a

function of binary eccentricity.

3 SIMULATION SETUP

We perform a set of 3-D Smoothed Particle Hydrodynamics (SPH)

(Gingold & Monaghan 1977; Lucy 1977) simulations of geometri-

cally thin accretion discs with different initial misalignment around

an eccentric binary. We use a range of different binary eccentrici-

ties e = 0, 0.3, 0.6, and 0.9. The disc setup is very similar to that

used by Nixon et al. (2013): the disc is initially flat and extends

from an inner radius of 2a to an outer radius of 8a with an inner

thickness H/R= 0.01. We use a disc viscosity coefficient (Shakura

& Sunyaev 1973) α= 0.1 which we setup using an appropriate SPH

artificial viscosity coefficient αAV corresponding to our resolution

(Lodato & Price 2010). All simulations start with 4 million SPH

particles, while the the binary is modelled using two equal mass

sink particles with accretion radius of 0.05a. The disc initial surface

density follows the profile Σ ∝ R−3/2, and we use a locally isother-

mal equation of state with sound speed cs ∝ R−3/4. These choices

ensure a uniform vertical resolution (and hence uniform physical

viscosity, see Lodato & Pringle 2007). We assume a disc mass of

Md/Mb = 0.005 < H/R, which ensures that disc self-gravity is not

important (we do not include gas self-gravity in our simulations, but

we do self-consistently include the back-reaction from the gas on

the binary). The simulations were performed using our own code

(Dehnen & Aly 2012), which implements an SPH scheme very
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θ= 30◦ θ= 45◦ θ= 60◦ θ= 80◦ θ= 90◦

e= 0

e= 0.3

e= 0.6

e= 0.9

Figure 3. Density rendering of the simulations after t= 600 (≈ 95 binary orbits) for different binary eccentricities and initial misalignment angles as indicated.

The projections are along the intermediate binary axis k with the angular- momentum vector h pointing upwards and the eccentricity vector e to the right.

similar to that used by Nixon et al. (2013), and we verified that

our results for e = 0 agree with theirs. The disc has initial angular

momentum direction

l̂= sinθcosφ ê+sinθ sinφ k̂+cosθ ĥ, (17)

where φ is the twist angle of the disc. We ran a total of 118 simula-

tions for e= 0, 0.3, 0.6, and 0.9; θ= 0◦, 10◦, 30◦, 45◦, 60◦, 80◦, 90◦,

100◦, 120◦, 135◦, 150◦, 170◦, and 180◦; φ = 0◦, −45◦, and −90.◦.

In the next section φ will be taken to be zero whenever it is not

specified, we discuss the effects of varying φ separately.

We point out that the choice of a locally isothermal equation of

state implies that the disc instantly radiates away all the heat gained

from the viscous dissiaption and shocks. This is justified if the the

cooling time is much shorter than the precession time. When this

assumption does not hold, the disc thickness will increase and will

be more able to resist breaking. We leave more advanced thermo-

dynamic treatment to future investigation.

4 SIMULATION RESULTS

Fig. 3 shows snapshots after ≈ 95 binary orbits for the twenty sim-

ulations with initial tilt angles θ = 30◦, 45◦, 60◦, 80◦, and 90◦ ini-

tial binary eccentricities e = 0, 0.3, 0.6, and 0.9. As expected from

the analysis in Section 2, the disc precesses around ĥ for circular

and low-eccentricity binaries, while for very high eccentricities the

precession is predominantly around ê. In almost all cases, the disc

breaks into distinct rings, which interact with each other and, de-

pending on the details of each case, result in either co-, counter-, or

polar-alignment of the disc. In some cases the interaction between

independently precessing such rings is very violent and disruptive,

leading to ejection of gas. We now visit each possible outcome in

detail.

4.1 Polar alignment

Nixon et al. (2011) showed that for a circular binary, where the bi-

nary induced precession is only around ĥ, the disc eventually co- or

counter-aligns with the binary orbital plane depending on the disc

angular momentum and its initial misalignment angle. Our analy-

sis in Section 2 suggests that for an eccentric binary the precession



6 Hossam Aly, Walter Dehnen, Chris Nixon, & Andrew King

2 3 4 5 6 7 8

0
20

40
60

80
10

0
12

0
14

0

R a

θ

2 3 4 5 6 7 8

0
20

40
60

80
10

0
12

0
14

0

R a

θ

time

0
100
200
300
400
500
600

Figure 4. Evolution of tilt profiles for e= 0 (top) and e= 0.9 (bottom) discs

with initial tilt θ= 60◦ at t= 0, 100, 200, 300, 400, 500, and 600 (see legend)

in code units.

will be around ĥ or ê. In the latter case, dissipation results in polar-

alignment.

Fig. 4 shows the time evolution of the tilt profiles θ(R) for two

simulations with initial θ= 60◦ but either e= 0 (top) or e= 0.9 (bot-

tom). For the circular binary case, the inner part of the disc even-

tually co-aligns with the binary (θ→ 0◦), as expected. In contrast,

for the highly eccentric binary we see the disc aligning in a polar

configuration with respect to the binary angular momentum vector

(θ→ 90◦). The variations in θ as function of both time and radius

are caused by the precession around ê.

This is more evident from Fig. 5, where we plot the orientation

l̂ of the angular momentum in annuli of the disc at t = 100 for four

simulations with different binary eccentricity but identical initial

disc orientation at θ= 60◦. We see that the discs in our simulations

closely follow the predicted precession paths especially in the outer

parts of the disc. The inner parts of the disc, which have higher

precession rates, dissipate faster and start to align with the ĥ or ê as

expected.

4.2 Violent ring interactions

Our simulations starting from discs misaligned to both the ĥ and ê
show rather violent gas dynamics. The radially differential binary

torque tears the disc and causes the formation of separate rings.

These rings are mutually misaligned and start to interact with each

other, presumably because they gained some eccentricity from in-

teractions with the binary. The ring interactions cause partial can-

cellation of angular momentum and hence a significant increase in

the accretion rate. This is identical to the picture reported by Nixon

et al. (2013) for circumbinary discs around circular binaries.

However, for very high eccentricities we find disc tearing to be

much more violent and lead to a different evolution from that for

circular and low-eccentricity binaries. There are two reasons for

this difference: first the precession rate increases with eccentricity;

second, the low-angular-momentum gas resulting from the inter-

actions and falling onto the binary will align to polar orientation

rather than a prograde or retrograde orientation as in the case of a

near-circular binary. This allows this highly eccentric low-angular-

momentum gas to come very close to the binary without suffering

a lot of accretion. This non-circular gas in the central zone interacts

with the outer disc further increasing its orbital eccentricity, throw-

ing more gas to the centre, and promoting more interaction. This

run away effect is shown in Fig. 6 and can also be seen in the bot-

tom left panel of Fig. 3. Eventually, this process sends an increasing

amount of gas plunging onto the binary on almost radial orbits that

can reach very close to the binary, avoiding significant accretion,

and receiving energy kicks from one of the binary components in

a manner very similar to the slingshot mechanism. Some of this

gas will get ejected producing outward, almost radial, streams that

can act as a possible observational signature of a highly eccentric

SMBH binary.

Fig. 6 shows density rendering (left panels) and particle plots

coloured by eccentricity magnitude (right panels) of 5 snapshots

for the simulation with e = 0.9 and initially θ = 150◦ at times t =

0, 200, 400, 600, and 800. We can see that the amount of chaotic

gas resulting from the ring interactions keeps increasing during the

simulation. The outward streams of gas resulting from the slingshot

mechanism are very clear.

4.3 Precession rate

In order to provide a quantitative comparison between the predic-

tions of our analytical model in Section 2 and the results obtained

from the simulations, we plot in Fig. 7 the analytical precession rate

Θ derived from equation (7) for a disc with an initial misalignment

of θ = 60◦ around binaries with four different eccentricities along

with the equivalent precession computed from the simulation and

averaged over 10 binary orbits starting from t= 50. We find that the

simulations agree quite well with the predicted precession rate at

radii & 2.5R/a. For discs around eccentric binaries, we observe os-

cillations on binary orbital timescales and a good agreement is only

found when the precession rate is averaged over a few binary orbits.

We note that only a modest agreement is to be expected since our

model ignores dissipative effects, contributions from higher than

quadrupole order, and orbital resonances.

4.4 Non-zero initial disc twist angle

So far, all the results shown here are for twist angles φ= 0◦, i.e. ini-

tially the disc line of nodes with the binary plane is the k̂ direction:

l̂ is tilted towards ê. In general, however, we should expect any disc

orientation, i.e. non-zero φ.

In Fig. 8 we present snapshots for simulations with binary ec-

centricity e = 0.9, initial twist angles φ= 0◦, 45◦, and 90◦, and ini-

tial tilt angles θ= 30◦, 45◦, 60◦, 80◦, and 90◦. For φ= 90◦, we only

observe azimuthal precession, akin to the circular binary induced

precession. This confirms our prediction since for that case l̂ and ê
are always orthogonal, causing the first term in equation (7) to van-

ish, and we are left with only azimuthal precession. For φ = 45◦,
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Figure 5. Projections of angular momenta of the radially binned disc in our simulations compared to the analytical precession paths shown in Fig. 1. Solid

circles represent seven radial bins of the disc ranging from R = 1 (light gray) to R = 8 (dark gray) at t = 100 for simulations of different eccentricity (as

indicated) but the same initial tilt θ = 60◦. Obviously, the inner disc precesses faster, nicely following the theoretical precession paths. The innermost parts of

the discs around eccentric binaries start to align with the stable polar orientation.

we find the same trend discussed earlier, i.e. experiencing either

polar or azimuthal precession, or violent ring interaction. In Fig. 9

we compare the precession paths of all three φ values for the case

of e= 0.9 and θ = 60◦ to the analytical contours. Similar to Fig. 5,

we see the simulations closely follow the analytical contours apart

from the innermost parts where disc disc breaking and aligment are

dominant. This strongly suggests that our analysis above for φ= 0◦

carries over to the general case.

5 IMPLICATIONS FOR THE FINAL-PARSEC PROBLEM

The solution suggested by Nixon et al. (2011) to the final parsec

problem requires the binary to accrete negative angular momen-

tum from a retrograde disc, which gradually increases the binary

eccentricity until coalescence is achieved via energy losses to grav-

itational radiation at pericentre. Nixon et al. (2011) showed that for

a circular binary counter-alignment of randomly oriented accretion

events can provide a continuous supply of the required retrograde

discs. In particular, they showed that for cases where Jb > 2Jd, all

accretion events with initial misalignment ofθ > 90◦ will result in

a retrograde disc, i.e. roughly half of randomly oriented accretion

events will counter-align with the binary as long as the binary dom-

inates the angular momentum of the system.

Our results somewhat change this picture. As the binary ec-

centricity increases (due to retrograde accretion as in Nixon et al.

or earlier stellar dynamical processes) disc counter- (and co-) align-

ment becomes ever less likely at the expense of polar alignment.

The subsequent accretion of such polar discs merely rotates the an-

gular momentum vector of the binary presumably hardly affecting

the binary eccentricity. Thus simply retrograde gas accretion ap-

pears less viable a solution to the final parse problem.

There are however, still several ways gas can solve this prob-

lem. First, a single massive retrograde accretion event may, in prin-

ciple, supply enough negative angular momentum to complete the

binary merger. However, for a massive disc self-gravity becomes

important, likely causing clumping and star formation, which re-

duces the amount of gas that can be accreted. Moreover, a single

massive retrograde accretion event may be not be sufficiently likely

to explain the coalescence of all SMBH binaries (which form with

each major merger of massive galaxies).

A more intriguing possibility involves more violent gas dy-

namics. We showed that, in many cases, the disc does not smoothly

align, instead the strong differential precession (in particular for

misaligned discs around eccentric binaries) leads to tearing of the

disc into separate mutually misaligned rings. In the inner disc close

to the binary, the gravity of the binary cause these rings to become

eccentric such that they inevitably interact with each other and with

the outer disc. These interactions cause further eccentricity growth

on a dynamical time scale and eventually result in plunging gas

infall. Some of this infalling gas will be accreted by either binary

component. This will change the binary angular momentum, but

may not reduce its absolute value, depending on the orientation and

in contrast to the situation with pre-dominantly retrograde accretion

(Nixon et al. 2013).

If the infalling gas evades this fate, it will most likely get

ejected from the binary via a slingshot interaction. This in turn re-

duces the binary separation in much the same way as the ejection of

penetrating stars, thus exactly as required to solve the final parsec

problem. Indeed, we find in our simulations which undergo violent

gas dynamics not only significant gas accretion but also a shrinking

of the binary orbit.

Clearly, this violent interaction and accretion processes are

rather complex and chaotic and certainly not well resolved or ad-

equately modelled in our simulations. Nonetheless, what our sim-

ulations quite clearly show is that such violent gas-dynamical pro-

cesses are inevitable if the gas is initially misaligned with the bi-

nary, in particular if the binary is eccentric. We leave a more de-

tailed investigation into the binary orbital evolution in this chaotic

environment for a future study.

6 CONCLUSIONS

We have studied the interaction of an eccentric binary with a

gaseous disc initially misaligned with the binary angular momen-

tum. Such a configuration should occur naturally from the infall

and subsequent circularisation of gas into the inner few parsec of

a merger remnant still hosting a supermassive black hole (SMBH)

binary (e.g. Dunhill et al. 2014). The binary exerts a torque on the

disc, resulting in disc precession and, due to viscous dissipation, in

eventual alignment of the disc with the binary. In case of a circular

binary, this alignment is always co-planar, resulting either in a pro-

or retro-gradely rotating circumbinary disc (Nixon et al. 2011).

We find that in the general case of an eccentric binary po-

lar alignment also occurs, when disc angular momentum is aligned

with the binary peri- or apo-apse direction. The binary torque on the

disc can be quite accurately understood analytically assuming an

orbit-averaged binary potential to quadrupole order (see Section 2).

The fraction of initial disc orientations which give rise to polar
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θ= 30◦ θ= 45◦ θ= 60◦ θ= 80◦ θ= 90◦

φ= 0◦

φ= 45◦

φ= 90◦

Figure 8. Density rendering of the e = 0.9 simulations at t = 600 (≈ 95 orbits of the binary) projected on the x-z plane with different values for φ and θ as

indicated in the figure.

alignment grows with binary eccentricity, reaching 0.5 at e ≈ 0.4.

The precession paths (neglecting dissipation) are not circular, but

elongated towards the intermediate axis of the orbit-averaged bi-

nary.

The prospect of accretion onto the binary from a polar instead

of co-planar disc impedes the solution (proposed by Nixon et al.

2011) to the final-parsec problem for coalescing a supermassive

black-hole binary. In that picture consecutive randomly oriented

accretion events lead to the formation of either pro- or retro-grade

co-planar circum-binary discs. While accretion from the former is

largely suppressed (by orbital resonances as discussed in the intro-

duction), accretion from the latter reduces the binary angular mo-

mentum and drives it to larger eccentricities. However, at large ec-

centricities polar disc orientations dominate, when accretion (not

resolved in our simulations) has presumably little effect on the bi-

nary orbit (since the accreted angular momentum is perpendicular

to that of the binary). Thus, eccentricity growth via accretion is

likely to be significantly reduced well before gravitational wave

emission can take over as driver for coalescence.

However, in many of our simulations, in particular for larger

binary eccentricity and stronger initial misalignment, the disc does

not smoothly align, but is torn into separate mutually misaligned

rings. This process was already reported by Nixon et al. (2013) for

a circular binary and can be understood by the radially differential

binary torque, which overcomes the adhesive effect of gas viscos-

ity. The prominence of tearing with binary eccentricity and initial

disc misalignment can be understood as consequence of the larger

binary torque in these cases.

The subsequent evolution of these gas rings can be rather

chaotic and is not quite adequately modelled in our simulations.

However, some basic results appear to be robust. The innermost

rings are sufficiently perturbed by the binary to acquire some or-

bital eccentricity. This in turn inevitably leads to interactions be-

tween the rings, resulting in partial cancellation of their angular

momenta. This process is more prominent in more eccentric bi-

naries, because the stronger binary torque results in larger mutual

misalignment between adjacent rings. The cancellation of angular

momentum of the rings will increase their eccentricity, providing

a positive feedback loop and hence a run-away process, eventually

resulting in gas plunging onto the central binary. This material may

be accreted onto either hole, but when coming from a near-polar

orientation, this will hardly help with the final-parsec problem, as

explained above.

Alternatively, the infalling gas, which for a highly eccentric

binary can come much closer to the binary whilst avoiding accre-

tion, may get ejected from the binary via a gravitational slingshot

interaction with one of its components. This also helps to solve the

final-parsec problem, though this time by reducing its semi-major

axis. This is similar to the stellar-dynamical process of shrinking

the binary orbit via ejection of stars penetrating into the binary.

The difference is that the total amount of stars in the ‘loss cone’

(whose orbit carries them into inner parsec) is limited and cannot

be easily re-filled, while gas being dissipative and collisional by

nature may provide a better agent. This is particularly the case at

the parsec scale where the SMBH dominates the dynamics and by

its gravitational torques shepherds some gas into the loss cone.
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0 0.5 1

Figure 6. Density rendering (left panels) and particle plots coloured by ec-

centricity magnitude (right panels) of 5 snapshots of the e = 0.9 θ = 150◦

run at times (from top to bottom) t= 0, 200, 400, 600, and 800.

Figure 7. Comparison between the disc precession rate measured from the

simulation (solid) with initial θ= 60◦ and e= 0, 0.3, 0.6, and 0.9 and our an-

alytical model (dotted) of equation (7). For each case we plot the dominant

component of Θ, i.e. Θh for e= 0, 0.3 and Θe for e= 0.6, 0.9.
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APPENDIX A: BINARY-DISC QUADRUPOLE

INTERACTION

Here, we give the details of the analysis leading to the results re-

ported in Section 2. Our results, obtained via Newtonian dynamics,

agree with the more general results of Naoz et al. (2013), obtained

via Hamiltonian perturbation theory, for a circular ring and ignor-

ing octopole terms.

The three unit vectors ĥ, ê, and k̂= ĥ× ê are conserved under

the binary motion and are mutually orthogonal, such that

ĥiĥj+ êiêj+ k̂ik̂j = δij. (A1)

The binary components are at positions

x1 =
q

1+q
R, x2 =−

1

1+q
R (A2)

with

R= a(cosη−e) ê+a
√

1−e2 sinη k̂. (A3)

Here, η is the eccentric anomaly, which is related to the mean

anomaly ℓ via

ℓ= η−esinη, (A4)

such that dℓ = (1 − ecosη)dη and an orbit average becomes 〈·〉 =
(2π)−1

∫ 2π

0
·(1−ecosη)dη. When orbit-averaging RiRj, the cross term

between ê and k̂ averages to zero and

〈RiRj〉 = 1
2
a2
[

(1+4e2)êiê j+ (1−e2)k̂ik̂ j

]

(A5)

= 1
2
a2
[

5e2 êiê j+
(

1−e2
) (

δij− ĥiĥ j

)]

, (A6)

where the second form follows from eliminating k̂ik̂j in favour of

ĥiĥj with the help of the identity (A1). From this result, we can

work out the orbit-averaged trace-free specific quadrupole moment

of the binary as

Qij = M−1
[

m1〈x1i x1j− 1
3

x2
1δij〉+m2〈x2i x2j− 1

3
x2

2δij〉
]

(A7)

=
q

(1+q)2

[

〈RiRj〉− 1
3
〈RkRk〉δij

]

(A8)

=
a2q

(1+q)2

[(

1
6
−e2
)

δij+
5
2
e2 êiêj− 1

2

(

1−e2
)

ĥiĥj

]

. (A9)

We will also need the orbit average

〈RiRjṘk〉= 1
2
a3Ωe

√
1−e2

(

êik̂j êk+ k̂iêj êk−2êiêj k̂k

)

. (A10)

with Ω=
√

GM/a3 the binary orbital frequency.
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A1 Ring evolution

A ring particle at position r experiences the orbit-averaged

quadrupole potential of the binary

〈Φb〉(r)=−3GM

2r5
r ·Q · r. (A11)

Averaging over the ring, we obtain

〈rirj〉= 1
2
r2(δij− l̂i l̂j), (A12)

such that the trace-free specific quadrupole moment of the ring is

qij = r2
[

1
6
δij− 1

2
l̂i l̂j

]

. (A13)

The quadrupole interaction energy between binary and ring, aver-

aged over the the binary orbit and the ring, is then

〈Ebr〉 = −
3GMm

2r5
tr(Θ) (A14)

with interaction tensor Θ≡q ·Q, which has components

Θij =
a2r2q

6(1+q)2

[

(

1
6
−e2
)

δij+
5
2
e2êiêj− 1

2
(1−e2)ĥiĥj− (A15)

( 1
2
−3e2)l̂i l̂j− 15

2
e2( l̂ · ê)l̂iêj+

3
2
(1−e2)( l̂ · ĥ)l̂iĥj

]

.

Taking its trace in equation (A14) we obtain equation (5). The orbit-

averaged torque on the ring also involves the interaction tensor. Us-

ing index notation, we have

l̇i =−εijk〈r j

∂Φb

∂rk

〉= 3GM

r5
εijkΘjk. (A16)

Note that only the anti-symmetric part of Θ contributes to the

torque. Inserting equation (A15), we find that we can write this

as l̇=Θ× l with the vector

Θ=
3ωq

4(1+q)2

a2

r2

[

5e2( l̂ · ê) ê− (1−e2)( l̂ · Ĥ) ĥ
]

, (A17)

where ω=
√

G(M+m)/r3 is the ring angular frequency.

A2 Binary evolution

The torque of the binary from the ring can be worked out analo-

gously to that of the ring from the binary. The quadrupole potential

due to the ring at the binary is

Φr =−
3Gm

2r5
x ·q · x. (A18)

Adding the torque from each binary component and averaging over

the orbit, we find

ḣi =
3Gm

r5
εijkΘkj. (A19)

In particular, the total angular momentum, Mh+ml, is conserved

at quadrupole order. Together with the precession of the ring, this

implies that the evolution of h is not simply a precession and that

h= |h| is in general not conserved. Instead, we find

ḣ=−ω
2m

ΩM

15e2h

4
√

1−e2
( l̂ · ê) ( l̂ · k̂). (A20)

Thus, h remains unchanged only for a circular binary. ḣ= 0 for e= 0

or if l̂ is perpendicular to either e or k̂. Otherwise, h oscillates, since

l̂ · k̂ oscillates around zero under the ring precession.

The change of the eccentricity vector is

ė=
2R(Ṙ · R̈)− Ṙ(R · R̈)− R̈(R · Ṙ)

GM
(A21)

with

R̈=
∂Φr

∂x2

− ∂Φr

∂x1

=
3Gm

r5
R ·q. (A22)

Inserting (A22) into (A21) and orbit averaging (using equa-

tion A10), we find

ė = 3
ω2m

ΩM
e
√

1−e2
2

r2

[

k̂ ê ·q · ê− ê k̂ ·q · ê− 1
4

k̂ ·q
]

(A23)

= 3
ω2m

ΩM
e
√

1−e2
[(

1
4
− ( l̂ · ê)2

)

k̂+ ( l̂ · ê)( l̂ · k̂)ê+ 1
4
( l̂ · k̂) l̂

]

(A24)

=
3

4

ω2m

ΩM
e
√

1−e2

{

[

2− ( l̂ · ĥ)2−5( l̂ · ê)2
]

k̂+

+ ( l̂ · k̂)( l̂ · ĥ) ĥ+5( l̂ · ê)( l̂ · k̂) ê
}

. (A25)

From this, we obtain

ė=
15

4

ω2m

ΩM
e
√

1−e2( l̂ · ê)( l̂ · k̂) (A26)

in agreement with equation A34 of Naoz et al. (2013), but also with

equation (A20) and (1−e2)ḣ=−heė (from equation 4).

A3 Ring precession

If the mass of the ring is negligible compared to that of the binary,

we can approximate the binary orientation as fixed and the vectors

ĥ, ê, and k̂ as constants. In this case, the evolution of the ring orien-

tation allows some further analytical treatment.

Since Θ is parallel to ∂〈Ebr〉/∂ l̂, precession is along lines of

constant 〈Ebr〉. This gives the equation

C = (1−e2)( l̂ ·h)2−5e2( l̂ ·e)2 (A27)

with constant C for the precession paths. C = 0 corresponds to the

contour of 〈Ebr〉 through the unstable orientations l̂ = ± k̂. Hence,

this contour separates the regions of polar and azimuthal preces-

sion. The r.h.s. of equation (A27) can be written as ( l̂ · u1) ( l̂ · u2)

with

u1,2 =
√

1−e2 ĥ ±
√

5e. (A28)

Thus, the separatrices are great circles with poles u1,2. The fraction

of ring orientations undergoing polar precession is

1

π
cos−1(û1 · û2)=

1

π
cos−1 1−6e2

1+4e2
. (A29)

At small e, this grows linearly (∝
√

20e/π) with eccentricity. Az-

imuthal and polar precession are equally likely for û1 ·û2 = 0, which

occurs at e= 6−1/2 ≈ 0.408.

If the constant C in equation (A27) is positive (negative), we

have azimuthal (polar) precession. This equation for l̂ has the para-

metric solutions for the precession paths (see also Fig. 1)

l̂ · ê=
√

1−e2−C

1+4e2
cosζ, l̂ · k̂=

√

1−e2−C

1−e2
sinζ (A30)

for 0<C 6 1−e2 (azimuthal precession), and

l̂ · ĥ=
√

5e2+C

1+4e2
cosζ, l̂ · k̂=

√

5e2+C

5e2
sinζ (A31)

for −5e2
6C < 0 (polar precession). In either case, the third com-

ponent of l̂ follows from the normalisation condition | l̂|= 1.

The instantaneous precession rate |d l̂/dt|= |Θ× l̂| varies along

the precession paths. It is minimal at the largest value of | l̂ · k̂| along
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the precession path and drops to zero for l̂ = k̂ (the unstable ori-

entations). The instantaneous precession rate becomes maximal at

l̂ · k̂= 0 (at zero twist φ), when

|d l̂/dt|max =
3ωq

4(1+q)2

a2

r2
(1+4e2) sinθcosθ. (A32)

Thus, the maximum precession rate is much larger for highly ec-

centric than for circular binaries. The largest variation of the pre-

cession rate occurs for precession paths close to the separatrices.


