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Abstract: As an optical machine learning framework,

Diffractive DeepNeural Networks (D2NN) take advantage of

data-driven training methods used in deep learning to

devise light–matter interaction in 3D for performing a

desired statistical inference task. Multi-layer optical object

recognition platforms designed with this diffractive

framework have been shown to generalize to unseen image

data achieving, e.g., >98% blind inference accuracy for

hand-written digit classification. The multi-layer structure

of diffractive networks offers significant advantages in

terms of their diffraction efficiency, inference capability

and optical signal contrast. However, the use of multiple

diffractive layers also brings practical challenges for the

fabrication and alignment of these diffractive systems for

accurate optical inference. Here, we introduce and exper-

imentally demonstrate a new training scheme that signifi-

cantly increases the robustness of diffractive networks

against 3Dmisalignments and fabrication tolerances in the

physical implementation of a trained diffractive network.

Bymodeling the undesired layer-to-layer misalignments in

3D as continuous random variables in the optical forward

model, diffractive networks are trained to maintain their

inference accuracy over a large range ofmisalignments; we

term this diffractive network design as vaccinated D2NN (v-

D2NN). We further extend this vaccination strategy to the

training of diffractive networks that use differential de-

tectors at the output plane as well as to jointly-trained

hybrid (optical-electronic) networks to reveal that all of

these diffractive designs improve their resilience to mis-

alignments by taking into account possible 3D fabrication

variations and displacements during their training phase.

Keywords: diffractive optical networks; optical computing;

optical machine learning; optical networks.

1 Introduction

Deep learning has been redefining the state-of-the-art for

processing various signals collected and digitized by

different sensors, monitoring physical processes for, e.g.,

biomedical image analysis [1–4], speech recognition [5, 6]

and holography [7–10], among many others [11–17].

Furthermore, deep learning and related optimization tools

have been harnessed to find data-driven solutions for

various inverse problems arising in, e.g., microscopy [18–

22], nanophotonic designs and plasmonics [23–25]. These

demonstrations and others have been motivating some of

the recent advances in optical neural networks and related

optical computing techniques that aim to exploit the

computational speed, power-efficiency, scalability and

parallelization capabilities of optics for machine intelli-

gence applications [26–45].

Toward this broad goal, Diffractive Deep Neural Net-

works (D2NN) [36–39] have been introduced as a machine

learning framework that unifies deep learning-based

training of matter with the physical models governing

light propagation to enable all-optical inference through a

set of diffractive layers. The training stage of a diffractive

network is performed using a computer and relies on deep

learning and error backpropagation methods to tailor the

light–matter interaction across a set of diffractive layers

that collectively perform a given machine learning task,
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e.g., object classification. Previous studies on D2NNs have

demonstrated the generalization capability of these multi-

layer diffractive network designs to new, unseen image

data. For example, using a 5-layer diffractive network ar-

chitecture, >98% and >90% all-optical blind testing accu-

racies have been reported [38] for the classification of the

images of handwritten digits (MNIST) [46] and fashion

products (Fashion-MNIST) [47] that are encoded in the

amplitude and phase channels of the input plane, respec-

tively. Successful experimental demonstrations of these

all-optical classification systems have been reported using

3D-printed diffractive layers that conduct inference by

modulating the incoming object wave at terahertz (THz)

wavelengths.

Despite the lack of nonlinear optical elements in these

previous implementations, diffractive optical networks

have been shown to offer significant advantages in terms of

(1) inference accuracy, (2) diffraction efficiency and (3)

signal contrast, when the number of successive diffractive

layers in the network design is increased [37]. A similar

depth advantage was also demonstrated in [39], where

instead of a statistical inference task such as image clas-

sification, the D2NN framework was utilized to solve an

inverse design problem to achieve, e.g., spatially-

controlled wavelength de-multiplexing of a broadband

source. While these multi-layer diffractive architectures

offer significantly better performance for generalization

and application-specific design merits, they also pose

practical challenges for the fabrication and opto-

mechanical assembly of these trained diffractive models.

Here, we present a training scheme that substantially

increases the robustness of diffractive optical networks

against physical misalignments and fabrication toler-

ances. Our schememodels and introduces these undesired

system variations and layer-to-layer misalignments as

continuous random variables during the deep learning-

based training of the diffractive model to significantly

improve the error tolerance margins of diffractive optical

networks; this process of introducing random mis-

alignments during the training phase will be termed as

vaccination of the diffractive network, and the resulting

designs will be referred to as vaccinated D2NNs (v-D2NNs).

To demonstrate the efficacy of our strategy, we trained

diffractive network models composed of five diffractive

layers for all-optical classification of handwritten digits,

where we utilized in the training phase independent and

uniformly distributed displacement/misalignment vectors

for x, y, and z directions of each diffractive layer. Our re-

sults indicate that v-D2NN framework enables the design of

diffractive optical networks that can maintain their object

recognition performance against severe layer-to-layer

misalignments, providing nearly flat blind inference ac-

curacies within the displacement/misalignment range

adopted in the training.

To experimentally demonstrate the success of v-D2NN

framework, we also compared two 3D-printed diffractive

networks, each with five diffractive layers that were

designed for hand-written digit classification under

monochromatic THz illumination (λ = ∼0.75 mm): the first

network model was designed without the presence of any

misalignments (non-vaccinated) and the second one was

designed as a v-D2NN. After the fabrication of each dif-

fractive network, the third diffractive layer was on purpose

misaligned to different 3D positions around its ideal loca-

tion. The experimental results confirmed our numerical

analysis to reveal that the v-D2NN design can preserve its

inference accuracy despite a wide range of physical mis-

alignments, while the standard D2NN design frequently

failed to recognize the correct data class due to these pur-

posely introduced misalignments.

We also combined our v-D2NN framework with the dif-

ferential diffractive optical networks [38] and the jointly-

trained optical-electronic (hybrid) neural network systems.

Differential diffractive classification systems assign a pair of

detectors (generating one positive and one negative signal)

for each data class to mitigate the strict non-negativity

constraint of optical intensity and were demonstrated to

offer superior inference accuracy compared to standard

diffractive designs [38]. When trained against mis-

alignments using the presented v-D2NN framework, differ-

ential diffractive networks are also shown to preserve their

performance advantages for all-optical classification.

However, both differential and standard diffractive net-

works fall short in matching the adaptation capabilities of a

hybrid diffractive network system that uses a modest,

single-layer fully connected architecture with only 110

learnable parameters in the electronic domain, following

the diffractive optical front-end.

In addition to misalignment-related errors, the pre-

sented vaccination framework can also be adopted to

mitigate other error sources in diffractive network models,

e.g., detection noise and fabrication imperfections or ar-

tefacts, provided that the approximate analytical models

and the probability distributions of these factors are uti-

lized during the training stage. We anticipate that v-D2NNs

will be the gateway of diffractive optical networks and the

related hybrid neural network schemes toward practical

machine vision and sensing applications, by mitigating

various sources of error between the training forward

models and the corresponding physical hardware imple-

mentations. Furthermore, the presented methodology of

designing misalignment and noise resilient physical
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machine learning models can be broadly applicable to

other optical learning platforms, regardless of their phys-

ical dimensions and selected operation wavelengths.

2 Results

Figure 1 illustrates three different types of diffractive opti-

cal network-based object recognition systems investigated

in this work. We focused on 5-layer diffractive optical

network architectures as shown in Figure 1 that are fully-

connected, meaning that the half cone angle of the sec-

ondary wave created by the diffractive features (neurons)

of size, e.g., δ = 0.53 λ, is large enough to enable commu-

nication between all the features on two successive dif-

fractive layers that are placed, e.g., 40 λ apart in axial

direction. On the transverse plane, each diffractive layer

extends from−100×δ to 100×δ on x and y directions around

the optical axis, and therefore the edge length of each

diffractive surface in total is 200×δ (∼106.66 λ). With this

Figure 1: Different types of D2NN-based im-

age classification systems. (A) Standard

D2NN framework trained for all-optical

classification of handwritten digits. Each

detector at the output plane represents a

data class. (B) Differential D2NN trained for

all-optical classification of handwritten

digits. Each data class is represented by a

pair of detectors at the output plane, where

the normalized difference between these

detector pairs represents the class scores.

(C) Jointly-trained hybrid (optical-elec-

tronic) network system trained for classifi-

cation of handwritten digits. The optical

signals collected at the output detectors

are used as inputs to the electronic neural

network at the back-end, which is used to

output the final class scores. (D) Phase

profiles computed by the deep learning-

based training for a 5-layer diffractive op-

tical network that is vaccinated against

both lateral and axialmisalignments for the

task of handwritten digit classification. The

layers of this diffractive network were

fabricated using 3D printing as shown in

Figure 5D and experimentally tested using

the setup shown in Figure 5E. (E) Same asD,

except the diffractive network represents a

non-vaccinated, error-free design.
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outlined diffractive network architecture, the standard

D2NN training routine updates the trainable parameters of

the diffractive layers at every iteration based on the mean

gradient computed over a batch of training samples with

respect to a loss function, specifically tailored for the

desired optical machine learning application, e.g., cross-

entropy for supervised object recognition systems [37],

until a convergence criterion is satisfied. Since this con-

ventional training approach assumes perfect alignment

throughout the training, the sources of statistical varia-

tions in the resulting model are limited to the initial con-

dition of the diffractive network parameter space and the

sequence of the training data introduced to the network.

2.1 Training and testing of v-D2NNs

The training of vaccinated diffractive optical networks

mainly follows the same steps as the standard D2NN

framework; except, it additionally incorporates system

errors, e.g., misalignments, based on their probability

distribution functions into the optical forward model. In

this work, we modeled each orthogonal component of the

undesired 3D displacement vector of each diffractive layer,

D = (Dx, Dy, Dz), as uniformly distributed, independent

random variables as follows;

DX ∼ U(−Δx,  Δx) (1a)

DY ∼ U(−Δy,  Δy) (1b)

DZ ∼ U(−Δz ,  Δz) (1c)

where Δ* denotes the shift along the corresponding axis,

(*), reflecting the uncertainty in our physical assembly/

fabrication of the diffractive model. During the training,

the random displacement vector of each diffractive layer,

D, takes different values sampled from the probability

distribution of its components, Dx, Dy and Dz, for each

batch of training samples. Consequently, the location of

layer l at ith iteration/batch, L(l,i), can be expressed as;

L
(l,i) � (L1

x,  L1
y,  L

1
z) + (D(l,i)

x ,  D(l,i)
y ,  D(l,i)

z ) (2)

where the first and the second vectors on the right-hand

side denote the ideal location of the diffractive layer l, and

a random realization of the displacement vector, D(l,i), of

layer l at the training iteration i, respectively. The

displacement vector of each layer is independently

determined, i.e., each layer of a diffractive network model

can move within the displacement ranges depicted in Eq.

(1) without any dependence on the locations of the other

diffractive layers.

Opto-mechanical assembly and fabrication systems, in

general, use different mechanisms to control the lateral

and axial positioning of optical components. Therefore, we

split our numerical investigation of the vaccination process

into two: the lateral and axial misalignment cases. For the

vaccination of diffractive optical network models against

layer-to-layer misalignments on the transverse plane, we

assumed Dx and Dy are i.i.d random variables during the

training, i.e., they are independent with a parameter of Δx =

Δy = Δtr, and D was set to be 0. The axial case, on the other

hand, sets Δtr to be 0 throughout the training leaving

Dz∼U(−Δz,tr,Δz,tr) as the only source of inter-layer

misalignments.

Following a similar path with the training, the blind

testing of the presented diffractive network models up-

dates the random displacement vector of each layer l, D(l,m),

for each test samplem. The reported accuracies throughout

our analyses reflects the blind testing accuracies computed

over the 10K image test set of MNIST digits where each test

sample propagates through a diffractive network model that

experiences a different realization of the random variables

depicted in Eq. (1) for each diffractive layer, i.e., there are

10K different configurations that a diffractive network model

was misaligned throughout the testing stage. Furthermore,

similar to the training process, during the blind testing

against lateral misalignments, it was assumed that Dx and

Dy are i.i.d random variables with Δx = Δy = Δtest, and

similarly, the axial displacements or misalignments were

determined by Dz ∼ U(−Δz, test, Δz, test).

2.2 Misalignment analysis of all-optical and

hybrid diffractive systems

Figure 2A and D illustrate the blind testing accuracies

provided by the standard diffractive optical network ar-

chitecture (Figure 1A) trained against various levels of

undesired axial and lateral misalignments, respectively.

Focusing on the testing accuracy curve obtained by the

error-free design (dark blue) in Figure 2A and D, it can be

noticed that the diffractive optical networks are more

susceptible to lateral misalignments compared to axial

misalignments. For instance, when Δtest is taken as 2.12 λ,

inducing random lateral fluctuations on each diffractive

layer’s location around the optical axis, the blind testing

accuracy achieved by the non-vaccinated standard dif-

fractive optical network decreases to 38.40% from 97.77%

(obtained in the absence of misalignments). As we further

increase the level of lateral misalignments, the error-free

diffractive optical network almost completely loses its

inference capability by achieving, e.g., 19.24% blind

4210 D. Mengu et al.: Misalignment resilient diffractive optical networks



inference accuracy for Δtest = 4.24λ (i.e., the misalignment

range in each lateral direction of a diffractive layer is −8δ to

8δ). On the other hand, when the diffractive layers are

randomly misaligned on the longitudinal direction alone,

the inference performance does not drop as excessively as

the lateral misalignment case; for example, even when

Δz,test becomes as large as 19.2 λ, the error-free diffractive

network manages to obtain an inference accuracy of

49.8%.

As demonstrated in Figure 2D, the rapid drop in the

testing accuracy of diffractive optical classification systems

under physical misalignments can be mitigated by using

the v-D2NN framework. Since v-D2NN training introduces

displacement errors in the training stage, the diffractive

optical networks can adopt to those variations preserving

their inference performance over large misalignment

margins. As an example, the 38.40%blind testing accuracy

achieved by the non-vaccinated diffractive design with a

lateral misalignment range of Δtest = 2.12 λ, can be

increased to 94.44% when the same architecture is trained

with a similar error range using the presented vaccination

framework (see the purple line in Figure 2D). On top of that,

the vaccinated design does not compromise the perfor-

mance of the all-optical object recognition systems when

the ideal conditions are satisfied. Compared to the 97.77%

accuracy provided by the error-free design, this new

vaccinated network (purple line in Figure 2D) obtains

96.1% in the absence of misalignments. In other words, the

∼56% inference performance gain of the vaccinated dif-

fractive network under physical misalignments comes at

the expense of only 1.67% accuracy loss when the opto-

mechanical assembly perfectly matches the numerical

training model. In case the level of misalignment-related

imperfections in the fabrication of the diffractive network is

expected to be even smaller, one can design improved v-

D2NN models that achieve, e.g., 97.38%, which corre-

sponds to only 0.39% inference accuracy loss compared to

the error-free models at their peak (perfect alignment case)

Figure 2: The sensitivity of the blind

inference accuracies of different types of

D2NN-based object classification systems

against various levels ofmisalignments. (A)

Standard D2NN systems trained for all-

optical handwritten digit classificationwith

and without vaccination were tested

against various levels of axial mis-

alignments, determined by Δz,test. (B) Same

as A, except for differential D2NN architec-

tures. (C) Same as A and B, except for

hybrid (D2NN-FC) systems comprised of a

jointly-trained 5-layer D2NN optical front-

end and a single-layer fully-connected

neural network at the electronic back-end,

combined through 10 discrete opto-

electronic detectors (see Figure 1C). The

comparison of these blind testing results

reveals that as the axial misalignment in-

creases during the training, ΔZ,tr, the

inference accuracy of these machine vision

systems decrease slightly but at the same

time they are able to maintain their per-

formance over a wider range of mis-

alignments during the blind testing, Δz,test.

(D) Standard D2NN systems trained for all-

optical handwritten digit recognition with

and without vaccination were tested

against various levels of lateral misalign-

ment levels, determined by Δtest. (E) Same

as D except for differential D2NNs architec-

tures. (F) Same as E and F, except for hybrid

object recognition systems comprised of a jointly-trained 5-layer D2NN optical front-end and a single-layer fully-connected neural network at

the electronic back-end, combined through 10 discrete opto-electronic detectors. The proposed vaccination-based training strategy improves

the resilience of these diffractive networks to uncontrolled lateral and axial displacements of the diffractive layers with amodest compromise

of the inference performance depending on the misalignment range used in the training phase.

D. Mengu et al.: Misalignment resilient diffractive optical networks 4211



while at the same time providing >4% blind testing accu-

racy improvement under mild misalignment, i.e., Δtest =

0.53 λ. Similarly, when we compare the blind inference

curves of the error-free and vaccinated network designs in

Figure 2A, one can notice that the v-D2NN framework can

easily recover the performance of the diffractive digit

classification networks in the case where the displacement

errors are restricted to be on the longitudinal axis. For

example, with Δz,test = 2.4 λ, the inference accuracy of the

error-free diffractive network (dark blue) is reduced to

94.88%, while a vaccinated diffractive network that was

already trained against the same level of misalign-

ment, Δz,tr = 2.4 λ (yellow), retains 97.39% blind inference

accuracy under the same level of axial misalignment.

Next, we combined our v-D2NN framework with the

differential diffractive network architecture: the blind

testing results of various differential handwritten digit

recognition systems under axial and lateral misalignments

Figure 3: Comparison of different types of

D2NN-based object classification systems

trained with the same range of mis-

alignments. (A) Comparison of error-free

designs, Δz,tr = 0.0 λ, for standard (blue),

differential (red) and hybrid (yellow) object

classification systems against different

levels of axial misalignments, Δz,test. (B)

Comparison of standard (blue), differential

(red) and hybrid (yellow) object classifica-

tion systems against different levels of

axial misalignments when they are trained

withΔz,tr= 1.2 λ. C, D, E and F are same asB,

except during the training of the diffractive

models the axial misalignment ranges are

determined by Δz,tr, taken as 2.4, 4.8, 9.6

and 19.2 λ, respectively. (G) Comparison of

error-free designs, Δtr = 0.0 λ, for standard

(blue), differential (red) and hybrid (yellow)

object recognition systems against

different levels of lateral misalignments,

Δtest. (H) Comparison of standard (blue),

differential (red) and hybrid (yellow) object

classification systems against different

levels of lateral misalignments when they

are trained with Δtr = 0.53 λ. I,J,K and L are

same as H, except the lateralmisalignment

ranges during the training are determined

by Δtr, taken as 1.06, 2.12, 4.24 and 8.48 λ,

respectively.
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are reported in Figure 2B and E, respectively. Figure 3 also

provides a direct comparison of the blind inference accu-

racies of these two all-optical diffractive machine learning

architectures under different levels of misalignments.

Figure 3A and G compare the error-free designs of differ-

ential and standard diffractive network architectures,

which reveal that although the differential design achieves

slightly better blind inference accuracy, 97.93%, in the

absence of alignment errors, as soon as the misalignments

reach beyond a certain level, the performance of a differ-

ential design decreases faster than the standard diffractive

network. This means that they are more vulnerable against

the system variations that they were not trained against.

Since the number of detectors inside an output region-of-

interest is twice asmany in differential diffractive networks

compared to the standard diffractive network architecture

(see Figure 1A, B), the detector signals are more prone to

have cross-talk when the diffractive layers are experi-

encing uncontrolled mechanical displacements. With the

introduction of vaccination during the training phase,

however, differential diffractive network models can adapt

to these system variations as in the case of standard dif-

fractive optical networks. Compared to standard diffractive

optical networks, the differential counterparts that are

vaccinated generate higher inference accuracies when the

misalignment levels are small. In Figure 3H, for instance,

the vaccinated differential design (red curve) achieves

97.3% blind inference accuracy while the vaccinated

standard diffractive network (blue curve) can provide

96.91% for the case Δtr = Δtest = 0.53λ. In Figure 3I, where

the vaccination range on x and y axis is twice as large

compared to Figure 3H, the differential network reveals the

correct digit classes with an accuracy of 96.18% when it is

tested at an equal displacement/misalignment uncertainty

to its vaccination level; on the other hand, the standard

diffractive network can achieve 95.79% under the same

training and testing conditions. Beyond this level of

misalignment, the differential systems slowly lose their

performance advantage and the standard diffractive net-

works starts to perform on par with their differential

counterparts. One exception to this behavior is shown in

Figure 3K, where the misalignment range of the diffractive

layers during the training causes cross-talk among the

differential detectors at a level that hurts the evolution of

the differential diffractive network, leading to a consis-

tently worse inference performance compared to the

standard diffractive design. A similar effect also exists for

the case illustrated in Figure 3L; however, this time, the

standard diffractive optical network design also experi-

ences a similar level of cross-talk among the class detectors

at the output plane. Therefore, as demonstrated in

Figure 3L, the differential diffractive optical network

Figure 4: Summary of the numerical results

for vaccinated D2NNs. (A) The inference

accuracy of the non-vaccinated (Δtr = 0.0 λ)

and the vaccinated (Δtr > 0.0 λ) differential

D2NN systems trained for all-optical hand-

written digit recognition quantified at

different levels of testing misalignment

ranges. The v-D2NN framework allows the

all-optical classification systems to pre-

serve their inference performance over a

large range of misalignments. (B) Same as

A, except for hybrid (D2NN-FC) systems

comprised of a jointly-trained 5-layer D2NN

optical front-end and a single-layer fully-

connected neural network at the electronic

back-end combined through 10 discrete

opto-electronic detectors (see Figure 1C).

(C) Vaccination comparison of three dif-

fractive network-based machine learning

architectures depicted in Figure 1;

Δtr = Δtest.
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recovers its performance gain thriving over the standard

diffractive network design with a higher optical classifi-

cation accuracy. This performance gain of the differential

design depicted in Figure 3L, can be translated to the

smaller misalignment cases, e.g., Δtr = Δtest = 4.24λ, simply

by increasing the distance between the detectors at the

output plane for differential diffractive optical network

designs, i.e., setting the region-of-interest covering the

detectors to be larger compared to the standard diffractive

network architecture.

Figure 3 also outlines a comparison of the differential

and standard diffractive all-optical object recognition

systems against hybrid diffractive neural networks under

various levels of misalignments. For the hybrid neural

networkmodels presented here, we jointly trained a 5-layer

diffractive optical front-end and a single-layer fully-con-

nected electronic network, communicating through

discrete detectors at the output plane. To provide a fair

comparison with the all-optical diffractive systems, we

used 10 discrete detectors at the output plane of these

hybrid configurations, same as in the standard diffractive

optical network designs (see Figures 1A and C). The blind

inference accuracies obtained by these hybrid neural

network systems under different levels of misalignments

are shown in Figure 2C and F. When the opto-mechanical

assembly of the diffractive network is perfect, the error-

free, jointly-optimized hybrid neural network architecture

can achieve 98.3% classification accuracy surpassing the

all-optical counterparts as well as the all-electronic per-

formance of a single-layer fully-connected network, which

achieves 92.48% classification accuracy using >75-fold

more trainable connections without the diffractive optical

network front-end. As the level ofmisalignments increases,

however, the error-free hybrid network fails to maintain its

performance and its inference accuracy quickly falls. The

v-D2NN framework helps the hybrid neural systems during

the joint evolution of the diffractive and the electronic

networks and makes them resilient to misalignments. For

example, the handwritten digit classification accuracy

values presented for the standard diffractive networks in

Figure 3H (96.91%) and Figure 3I (95.79%) have improved

to 97.92 and 97.15%, respectively, for the hybrid neural

network system (yellow curve), indicating ∼1% accuracy

gain over the all-optical models under the same level of

misalignment (i.e., 0.53 λ for Figure 3H and 1.06 λ for

Figure 3I). As the level of misalignments in the diffractive

optical front-end increases, the cross-talk between the

detectors at the output plane also increases. However, for a

hybrid network design there is no direct correspondence

between the data classes and the output detectors, and

therefore the joint-training under the vaccination scheme

introduced in this work directs the evolution of the elec-

tronic network model accordingly and opens up the per-

formance gap further between the all-optical diffractive

classification networks and the hybrid systems as illus-

trated in Figure 3K and L. A similar comparative analysis,

along the lines of Figures 2 and 3, is also conducted for

phase-encoded input objects (Fashion-MNIST dataset),

which is reported in Supplementary Figures S4 and S5.

2.3 Experimental results

The error-free standard diffractive network design that

achieves 97.77% blind inference accuracy for the MNIST

dataset as presented in Figures 2A, D, 3A and G, offers a

power efficiency of ∼0.07% on average over the blind

testing samples (see Supplementary Information for de-

tails). This relatively low power efficiency is mostly due to

the absorption of our 3D printing material at THz band.

Specifically, ∼88.62% of the optical power right after the

object is absorbed by the five diffractive layers, while

11.17% is scattered around during the light propagation.

Due to the limited optical power in our THz source and the

noise floor of our detector, we trained an error-free stan-

dard diffractive optical network model with a slightly

compromised digit classification performance for the

experimental verification of our v-D2NN framework. This

new error-free diffractive network provides a blind infer-

ence accuracy of 97.19%, and it obtains ∼3× higher power

efficiency of ∼0.2%. In addition to improved power effi-

ciency, this new diffractive network model with 97.19%

classification accuracy also achieves ∼10× better signal

contrast (ψ) [37] between the optical signal collected by the

detector corresponding to the true object label and its

closest competitor, i.e., the second maximum signal (see

Supplementary Information for details). The layers of this

error-free diffractive network are shown in Figure 1E. In

addition, the comparison between the error-free, high-

contrast standard diffractive optical network model and its

lower contrast, lower efficiency counterpart in terms of

their inference performance under misalignments is re-

ported in Supplementary Figure S1A.

Following the same power-efficient design strategy,

we trained another diffractive optical network that is

vaccinated against both the lateral and axial mis-

alignments with the training parameters (Δtr, Δz,tr) taken

as (4.24 λ, 4.8 λ). As in the case of the error-free design, the

inference accuracy of this new vaccinated diffractive

network shown in Figure 5A is also compromised

compared to the standard diffractive networks presented

in Figures 2D and 3K since it was trained to improve power
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efficiency and signal contrast. This design can achieve

89.5% blind classification accuracy for handwritten digits

under ideal conditions, with the diffractive layers re-

ported in Figure 1D. A comprehensive comparison of the

blind inference accuracies of the vaccinated diffractive

networks shown in Figures 2 and 3 and their high-

contrast, high-efficiency counterparts are reported in

Supplementary Figure S1B.

The experimental verification of our v-D2NN frame-

work was based on the comparison of the vaccinated and

the error-free standard diffractive optical network designs

in terms of the accuracy of their optical classification de-

cisions under inter-layer misalignments. To this end, we

fabricated the diffractive layers of the non-vaccinated and

the vaccinated networks shown in Figure 1D–E using 3D

printing. The fabricated diffractive networks are depicted

in Figure 5C–D. In addition, we fabricated six MNIST digits

selected from the blind testing dataset that are numerically

correctly classified by both the vaccinated and the non-

vaccinated diffractive network models without any mis-

alignments. For a fair comparison, we grouped the

correctly classified handwritten digits based on the signal

contrast statistics provided by the non-vaccinated design.

With μSC, σSC, denoting the mean and the standard devia-

tion of the signal contrast generated by the error-free dif-

fractive network over the correctly classified blind testing

MNIST digits, we selected two handwritten digits (Set 1)

that satisfies the condition μSC+σSC < {ψ, ψ′} < μSC+2σSC,

where ψ and ψ′ denote the signal contrasts created by the

error-free and the vaccinated designs for a given input

object, respectively. The condition on ψ and ψ′ for the

second set of 3D printed handwritten digits (Set 2), on the

other hand, is slightly less restrictive, μSC < {ψ,

ψ′} < μSC+σSC. By using this outlined approach, we selected

Figure 5: Experimental testing of v-D2NN

framework. (A) A diffractive optical network

that is vaccinated against misalignments.

This network is vaccinated against both

lateral, Δtr = 4.24 λ, and axial, Δz,tr = 4.8 λ,

misalignments. (B) The location of the third

diffractive layer was on purpose altered

throughout our measurements. Except the

central location, the remaining 12 spots

induce an inter-layer misalignment. (C) The

3D printed error-free design shown in

Figure 1E. (D) The 3D printed vaccinated

design shown in A and Figure 1D. (E) The

schematic of the experimental setup.
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six experimental test objects in total that are equally

favorable for both the vaccinated and non-vaccinated dif-

fractive networks.

To test the performance of the error-free and vacci-

nated diffractive network designs under different levels of

misalignments, we shifted the third layer of both diffractive

systems to 12 different locations around its ideal location as

depicted in Figure 5B. The perturbed locations of the third

diffractive layer covers four different spots on each

orthogonal direction. The distances between these loca-

tions are 1.2 mm (1.6 λ) along x and y, and 2.4 mm (3.2 λ)

along z axes. These shifts cover a total length of 6.4 λ (12

times the smallest feature size) along (x,y) and 12.8 λ

(0.32 × 40 λ) along z axis, respectively.

Figure 5E shows a schematic of our THz setup that was

used to test these diffractive networks and their misalign-

ment performances (see Supplementary Information).

Figure 6 reports the experimentally obtained optical sig-

nals for a handwritten digit ‘0’ fromSet 1 and a handwritten

digit ‘5’ from Set 2, received by the class detectors at the

output plane based on the 13 different locations of the third

diffractive layer of the vaccinated and the error-free net-

works. The first thing to note is that both the vaccinated

and non-vaccinated networks can classify the two digits

correctly when the third layer is placed at its ideal location

within the set-up. As illustrated in Figure 6A, as we perturb

the location of the third layer, the error-free diffractive

network fails at nine locations while the vaccinated

Figure 6: Experimental image classification

results as a function of misalignments. (A)

The experimentally measured class scores

for handwritten digit ‘0’ selected fromSet 1.

(B) Same as A, except the input object is

now a handwritten digit ‘5’ selected from

Set 2. The red dot within the coordinate

system shown on the left-hand side repre-

sents the physical misalignment for each

case (see Figure 5B). Red (green) rectangles

mean incorrect (correct) inference results.

Refer to Supplementary Information (Fig-

ures S2 and S3) for more examples of our

experimental comparisons between these

vaccinated and error-free diffractive de-

signs.
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network correctly infers the object label at all the 13 loca-

tions for the handwritten digit ‘0’. In addition, the vacci-

nated network maintains its perfect record of experimental

inference for the digit ‘5’ despite the inter-layer mis-

alignments as depicted in Figure 6B. The error-free design,

on the other hand, fails at two different locations of its third

layer misalignment (see Figure 6B). The experimental re-

sults for the remaining four digits are presented in Sup-

plementary Figures S2 and S3, confirming the same

conclusions. In our experiments, all the objects were

correctly classified when the third layer was placed at its

ideal location. Out of the remaining 72 measurements (6

objects× 12 shifted/misaligned locations of the third layer),

the error-free design failed to infer the correct object class

in 23 cases, while the vaccinated network failed only two

times, demonstrating its robustness against awide range of

misalignments as intended by the v-D2NN framework.

3 Discussion

As an example of a severe case of lateralmisalignments, we

investigated a scenario where each diffractive layer can

move within the range (−8.48 λ, 8.48 λ) around the optical

axis in x and y directions. As demonstrated in Figures 2D

and 3G,when the error-free design (dark blue) is exposed to

such large lateral misalignments, it can only achieve 12.8%

test accuracy, i.e., it barely surpasses random guessing of

the object classes. A diffractive optical network that is

vaccinated against the same level of uncontrolled layer

movement can partially recover the inference performance

providing 67.53% blind inference accuracy. As the best

performer, the hybrid neural network system composed of

a 5-layer diffractive optical network and a single-layer

fully-connected network can take this accuracy value up to

79.6% under the same level of misalignments, within the

range (−8.48 λ, 8.48 λ) for both x and y direction of each

layer. When we compare the total allowed displacement

range of each layer within the diffractive network

(i.e., 16.96 λ in each direction) and the size of our diffractive

layers (106.66 λ), we can see that they are quite compara-

ble. If we imagine a lens-based optical imaging system and

an associated machine vision architecture, in the presence

of such serious opto-mechanical misalignments, this sys-

tem would also fail due to acute aberrations substantially

decreasing the image quality and the resolution. Our main

motivation to include this severe misalignment case in our

analyses was to test the limits of the adaptability of our

vaccinated systems.

Figure 4A–B further summarize the inference accu-

racies of the differential diffractive networks and hybrid

neural network systems at discrete points sampled from

the corresponding curves depicted in Figure 3G–L. In

Figure 4A, the best inference accuracy is achieved by the

error-free (non-vaccinated) differential diffractive network

model under perfect alignment of its layers. However, its

performance drops in the presence of an imperfect opto-

mechanical assembly. The vaccinated, diffractive all-

optical classification networks provide major advantages

to cope with the undesired system variations achieving

higher inference accuracies despite misalignments. The

joint-training of hybrid systems that are composed of a

diffractive optical front-end and a single-layer electronic

network (back-end) can adapt to uncontrolled mechanical

perturbations achieving higher inference accuracies

compared to all-optical image classification systems. These

results further highlight that, operating with only a few

discrete opto-electronic detectors at the output plane, the

D2NN-based hybrid architectures offer unique opportu-

nities for the design of low-latency, power-efficient and

memory-friendly machine vision systems for various

applications.

On top of the translational layer-to-layer alignment

errors, the presented framework can also be extended to

accommodate 3D rotational misalignments of diffractive

layers. While undesired in-plane rotations of diffractive

layers can be readily addressed based on the 2D coordinate

transformations performed through unitary rotation

matrices incorporated into the optical forward model

detailed in Supplementary Information, handling possible

out-of-plane rotations of diffractive optical network layers

requires further modifications to the formulation of wave

propagation between tilted planes [48, 49]. Beyond mis-

alignments or displacements of diffractive layers, the pre-

sented vaccination framework can also be harnessed to

decrease the sensitivity of diffractive optical networks to

various error sources, e.g., detection noise or fabrication

defects. At its core, the presented framework can be inter-

preted as a training regularization method that avoids

overfitting of a machine learning hardware to the specific

3D physical structure, distances and operational condi-

tions, which are often assumed to be deterministic, precise

and ideal during the training phase. In this respect, beyond

its application to practically improve diffractive optical

neural networks, the core principles introduced in our

work can be extended to train other machine learning

platforms [35, 50, 51] to mitigate various physical error

sources that can cause deviations between the designed

inference models and their corresponding physical

implementations.

In conclusion, we presented a design framework that

introduces the use of probabilistic layer-to-layer
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misalignments during the training of diffractive neural

networks to increase their robustness against physical mis-

alignments. Although the experimental demonstrations of

our vaccinateddesign frameworkwere conductedusing THz

wavelengths and 3Dprinteddiffractive layers, the presented

principles and methods can readily be applicable to dif-

fractive optical networks that operate at other parts of the

electromagnetic spectrum, including, e.g., visible wave-

lengths. In fact, as thewavelength of operation gets smaller,

the impact and importance of the presented framework will

be better highlighted. We believe the presented training

strategy will find use in the design of diffractive optical

network-based machine vision and sensing systems, span-

ning different applications.
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