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ABSTRACT 

While analyzing CAIDA Internet traces of TCP traffic to detect 

instances of data reneging, we frequently observed seven 

misbehaviors in the generation of SACKs. These misbehaviors 

could result in a data sender mistakenly thinking data reneging 

occurred. With one misbehavior, the worst case could result in a 

data sender receiving a SACK for data that was transmitted but 

never received. This paper presents a methodology and its 

application to test a wide range of operating systems using TBIT to 

fingerprint which ones misbehave in each of the seven ways. 

Measuring the performance loss due to these misbehaviors is 

outside the scope of this study; the goal is to document the 

misbehaviors so they may be corrected. One can conclude that the 

handling of SACKs while simple in concept is complex to 

implement.  

Categories and Subject Descriptors 

C.2.2 [Network Protocols]: Protocol Verification; C.2.5 [Local 

and Wide-Area Networks]: Internet – TCP 

General Terms 

Reliability, Verification 

Keywords 

SACK, Selective Acknowledgment, TBIT, TCP 

1. INTRODUCTION 
The Selective Acknowledgment (SACK) mechanism, RFC2018 

[11], an extension to Transmission Control Protocol’s (TCP) [15] 

ACK mechanism, allows a data receiver to explicitly acknowledge 

arrived out-of-order data to a data sender. When using SACKs, a 

TCP data sender need not retransmit SACKed data during the loss 

recovery period. Previous research [1, 5, 8] showed that SACKs 

improve TCP throughput when multiple losses occur within the 

same window. The success of SACK-based loss recovery algorithm 

[3] is proportional to the SACK information received from the data 

receiver. In this paper, we investigate RFC2018 conformant SACK 

generation. 

Deployment of the SACK option in TCP connections has been a 

slow, but steadily increasing trend. In 2001, 41% of the web servers 

tested were SACK-enabled [13]. In 2004, SACK-enabled web 

servers increased to 68% [12].  All of the operating systems tested in 

this study accept SACK-permitted TCP connections. 

Today’s reliable transport protocols such as TCP and Stream 

Control Transmission Protocol (SCTP) [16] are designed to tolerate 

data receiver reneging (simply, data reneging) (Section 8 

RFC2018). Data reneging occurs when a data receiver SACKs data, 

and later discards that data from its receiver buffer prior to 

delivering it to a receiving application (or receiving socket buffer). 

In related research, we argue that reliable transport protocols should 

not be designed to tolerate data reneging; largely because we 

believe data reneging rarely if ever occurs in practice [7]. While 

developing our software to discover data reneging in trace data, we 

analyzed TCP SACK information within Internet traces provided by 

the Cooperative Association for Internet Data Analysis (CAIDA) 

[6]. At first it seemed that data reneging was happening frequently. 

On closer inspection however, it appears that the generation of 

SACKs in many TCP connections potentially was incorrect 

according to RFC2018. Sometimes SACK information that should 

have been sent was not. Sometimes the wrong SACK information 

was sent. In one misbehavior, SACKs from one connection are sent 

in the SYN-ACK used to open a later connection! These 

misbehaviors wrongly gave the impression that data reneging was 

occurring. 

Our discovery led us to verifying SACK generation behavior of 

TCP data receivers for a wide range of operating systems. In this 

paper, our goal is to present a methodology for verifying SACK 

behavior, and to apply the methodology to report misbehaving TCP 

stacks. The goal of the paper is not to measure how much the 

misbehaviors degrade the performance, but rather to identify 

misbehaving TCP stacks so they will be corrected. 

We first present in Section 2 seven misbehaviors, five (A-E) 

observed in the CAIDA traces, and two (F-G) additional SACK 

related misbehaviors observed during our testing of A-E. 

Technically, misbehaviors A-E indicate that SHOULD requirements 

of RFC2018 are not being followed, and SHOULD means “that 

there may exist valid reasons in particular circumstances to ignore a 

particular item, but the full implications must be understood and 

carefully weighed before choosing a different course.”  Upon 

analysis, we believe these misbehaviors to be accidental, not 

incidental. 

Misbehaviors A-F can reduce the effectiveness of SACKs.  

Misbehavior G is the worst one where a data receiver transmits a 

SACK for data that was never received, thus questioning the data 

transfer reliability of the connection. To discover which 

implementations are misbehaving, we defined seven test extensions 

to the TCP Behavior Inference Tool (TBIT) [19], a tool that verifies 

TCP endpoint behavior. 

The methodology using TBIT is described in Section 3, and the 

results of our TBIT tests are presented in Section 4. Section 5 

identifies related research used to infer TCP behavior, and Section 6 

concludes our work. 
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2. TESTING SACK BEHAVIOR 
The five SACK generation misbehaviors observed in CAIDA traces 

are described as: 

A. Fewer than max number of reported SACKs 

B. Receiving data between CumACK and first SACK 

C. Receiving data between two previous SACKs 

D. Failure to report SACKs in FIN segments 

E. Failure to report SACKs during bidirectional data flow 

 

The two additional SACK-related misbehaviors observed during our 

TBIT testing of A-E are: 

F. Mishandling of data due to SACK processing 

G. SACK reappearance in consecutive connections 

 

A. Fewer than Max Number of Reported 

SACKs 
RFC2018 Section 3 specifies that “the data receiver SHOULD 

include as many distinct SACK blocks possible in the SACK option,” 

and that “the 40 bytes available for TCP options can specify a 

maximum of four SACK blocks.” For some TCP flows, we observed 

that only two or sometimes three SACK blocks were reported by a 

data receiver even though additional space existed in the TCP 

header. 

That is, more than two SACK blocks at the data receiver are known 

to exist (say Xl-Xr, Yl-Yr, and Zl-Zr) but only two SACK blocks are 

reported (Xl-Xr and Yl-Yr). When the cumulative ACK advances 

beyond Xr, SACK block Xl-Xr, is correctly no longer reported, and 

SACK block Zl-Zr is reported along with block Yl-Yr. This 

misbehavior implies that the data receiver reports less than the 

recommended maximum SACK blocks. 

We extended the existing TBIT test “SackRcvr” [19] to determine a 

receiver’s maximum number of reported SACK blocks. For clarity, 

most TCP segments sent by TBIT in our Figs. 1-7 are shown to 

carry 1 byte of data and create 1 byte gaps.   This numbering 

scheme makes the TBIT tests easy to understand. In the actual tests 

performed (see traces [17]), segments carry 1460 bytes of data and 

create 1460 byte gaps. The only exception was for Tests A,F for 

Linux systems. The Linux advertised receiver window is only 5840 

bytes.  To simulate 4 gaps, TBIT segments for two Linux tests carry 

600 bytes of data and create 600 byte gaps. 

The TBIT test in Fig. 1 operates as follows. Sequence numbers of 

segments are shown in parenthesis: 

Test A 

1. TBIT establishes a connection to TCP Implementation Under 

Test (IUT) with SACK-Permitted option and Initial Sequence 

Number (ISN) 400 

2. IUT replies with SACK-Permitted option 

3. TBIT sends segment (401) in order 

4. IUT acks the in order data with ACK (402) 

5. TBIT sends segment (403) creating a gap at IUT 

6. IUT acks the out-of-order data with SACK 

7. TBIT sends segment (405) creating 2nd gap at IUT 

8. IUT acks the out-of-order data with SACK 

9. TBIT sends segment (407) creating 3rd gap at IUT 

10. IUT acks the out-of-order data with SACK 

11. TBIT sends segment (409) creating 4th gap at IUT 

12. IUT acks the out-of-order data with SACK 

13. TBIT sends three resets (RST) to abort the connection 

The last SACK from the IUT reflects an implementation’s support 

for maximum number of SACK blocks reported. A conformant 

implementation’s last SACK should be as SACK #12 in Fig. 1. A 

misbehaving implementation would not SACK block Y 

(Misbehavior A1), or blocks X and Y (Misbehavior A2). 

 

Figure 1: Fewer than max number of reported SACKs 

B. Receiving Data Between CumACK and 

First SACK 
For some TCP flows having at least two SACK blocks, we observed 

the following misbehavior. Once the data between the cumulative 

ACK and the first SACK block was received, the data receiver 

increased the cumulative ACK, but misbehaved and did not 

acknowledge other SACK blocks. (The acknowledgment with no 

SACK blocks implies an instance of data reneging.) 

RFC2018 specifies that: “If sent at all, SACK options SHOULD be 

included in all ACKs which do not ACK the highest sequence 

number in the data receiver's queue.” So, SACKs should be 

included when the cumulative ACK is increased and out-of-order 

data exists in the receive buffer. 

Test B, illustrated in Fig. 2, checks this misbehavior.  The second 

SACK block should remain present when the cumulative ACK is 

increased beyond the first SACK block but is less than the second 

SACK block. 

Test B 

1. TBIT establishes a connection to IUT with SACK-Permitted 

option and ISN 400 

2. IUT replies with SACK-Permitted option 

3. TBIT sends segment (401) in order 

4. IUT acks the in order data with ACK (402) 

5. TBIT sends segment (404) creating a gap at IUT (the gap 

between Cum ACK and first SACK block) 

6. IUT acks the out-of-order data with SACK 

7. TBIT sends segment (406) creating 2nd gap at IUT 

8. IUT acks the out-of-order data with SACK 

9. TBIT sends segment (403) 

10. IUT acks the out-of-order data with SACK 

11. TBIT sends segment (402) to fill the gap between Cum ACK 

and first SACK 

12. IUT acks the in order data with SACK 

13. TBIT sends three RSTs to abort the connection 

A conformant implementation should report SACK block (406-407) 

as shown in #12 in Fig. 2. A misbehaving implementation omits 

reporting the SACK block. 
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Figure 2: Receiving data between CumACK and first SACK 

C. Receiving Data Between Two Previous 

SACKs 
We observed that some TCP flows report SACK information 

incompletely once the missing data between two SACK blocks (say 

Xl-Xr and Yl-Yr) are received. The next SACK should report a single 

SACK block concatenating the first SACK block (Xl-Xr), the 

missing data in between, and the second SACK block (Yl-Yr). 

Instead some implementations generate a SACK covering only the 

first SACK block and the missing data, i.e., (Xl-Yl), omitting the 

second SACK block. This behavior implies that the second SACK 

block is reneged. 

Test C, illustrated in Fig. 3, tests this misbehavior. The data receiver 

should report one SACK block covering the two SACK blocks and 

the data in between. 

Test C 

1. TBIT establishes a connection to IUT with SACK-Permitted 

option and ISN 400 

2. IUT replies with SACK-Permitted option 

3. TBIT sends segment (401) in order 

4. IUT acks the in order data with ACK (402) 

5. TBIT sends segment (403) creating a gap at IUT 

6. IUT acks the out-of-order data with SACK 

7. TBIT sends segment (405) creating 2nd gap at IUT 

8. IUT acks the out-of-order data with SACK 

9. TBIT sends segment (404) with missing data between the first 

and the second SACK blocks 

10. IUT acks the out-of-order data with SACK 

11. TBIT sends three RSTs to abort the connection 

A proper implementation is expected to report the out-of-order data 

(403-406) as shown in #10 in Fig. 3. A misbehaving implementation 

would report the SACK block partially (403-405). 

 

Figure 3: Receiving data between two previous SACKs 

D. Failure to Report SACKs in FIN Segments 
When closing a connection, a receiving side sends a FIN segment 

along with the acknowledgment (ACK and SACK) for the data 

received. But for some data flows, we observed the FIN segment 

does not carry SACK information. As discussed in Section 2B, the 

receiver should include the SACK information along with the ACK. 

Test D, in Fig. 4, operates as follows: TBIT opens a connection and 

sends a GET request (HTTP/1.0) to the IUT. The IUT sends the 

requested data, and immediately closes the connection with a FIN 

since HTTP/1.0 is non-persistent. 

Test D 

1. TBIT establishes a connection to IUT with SACK-Permitted 

option and ISN 400 

2. IUT replies with SACK-Permitted option 

3. TBIT sends segment (401-450: GET /index.pdf HTTP/1.0 

request) in order 

4. IUT acks the in order data with ACK (450) 

5. IUT starts sending segments with contents of index.pdf 

6. TBIT sends segment (451) creating a gap at IUT 

7. TBIT acks segments of IUT 

8. IUT acks the out-of-order data with SACK 

9. IUT continues sending contents of index.pdf with SACK 

10. Once index.pdf is sent completely, IUT sends a FIN to close 

the connection 

The conformed behavior of a data receiver is to include SACK 

information in the FIN segment as shown in #10 in Fig. 4. A 

misbehaving implementation sends an ACK, but no SACK 

information. 

 

Figure 4: Failure to report SACKs in FIN segments 

E. Failure to Report SACKs During 

Bidirectional Data Flow 
This misbehavior occurs when the data flow is bidirectional. In 

some TCP flows, SACK information is not conveyed when the TCP 

segment carries data. If a TCP host is sending data continuously 

(e.g., an HTTP server), only one SACK is sent when out-of-order 

data are received, and SACK information is not piggybacked with 

the following segments. This misbehavior can cause less efficient 

SACK-based loss recovery since SACKs are sent only once for each 

out-of-order data arrival. 

As stated in Section 2B, a conformant data receiver should include 

SACK information with all ACKs. If ACKs are piggybacked while 
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sending data, SACKs should also be piggybacked in the TCP 

segments. 

We added a new TBIT test for misbehavior E. To have bidirectional 

data flow and out-of-order data simultaneously, we used HTTP/1.1 

GET requests [9]. HTTP/1.1 opens a persistent connection between 

TBIT and an IUT. TBIT requests the file index.pdf (11650 bytes) 

which is large enough to have a data transfer requiring several round 

trips so that SACK information can be observed in the segments. 

Test E 

1. TBIT establishes a connection to IUT with SACK-Permitted 

option and ISN 400 

2. IUT replies with SACK-Permitted option 

3. TBIT sends segment (401-450: GET /index.pdf HTTP/1.1 

request) in order 

4. IUT acks the in order data with ACK (450) 

5. IUT starts sending segments with contents of index.pdf 

6. TBIT sends segment (451) creating a gap at IUT 

7. TBIT acks segments of IUT 

8. IUT acks the out-of-order data with SACK 

9. IUT continues sending contents of index.pdf with SACK 

10. Once index.pdf is retrieved completely, TBIT sends three 

RSTs to abort the persistent connection 

A conformant implementation appends SACK information in TCP 

segments carrying data as shown in Fig. 5, whereas a misbehaving 

implementation does not. 

 

Figure 5: Failure to report SACKs during bidirectional data 

F. Mishandling of Data Due to SACK 

Processing 
While running Test E, we observed another SACK related 

misbehavior. Some segments do not carry maximal payload when 

SACKs are included.  Rather they carry only the number of bytes 

equal to the SACK information appended. 

We explain the misbehavior in detail using Test F shown in Fig. 6. 

Test F modifies Test E. Instead of sending one out-of-order data, 

four are sent to check how data is sent by the TCP IUT as the 

number of appended SACKs increases. 

Test F 

1-5. Same as Test E 

6. TBIT sends segment (451) creating a gap at IUT, and ACKing 

the 1st segment of IUT 

7. When the ACK for 1st segment of IUT is received, IUT’s 

congestion window (cwnd) is increased enabling sending two 

new segments. IUT sends two segments with one SACK block: 

3rd segment (1448 bytes) and 4th segment (12 bytes) 

8. TBIT sends segment (453) creating a second gap at IUT, and 

ACKing the 2nd segment of IUT 

9. When the ACK for 2nd segment of IUT is received, IUT sends 

two segments each with two SACKs: 5th segment (1440 bytes) 

and 6th segment (20 bytes) 

10. TBIT sends segment (455) creating a third gap at IUT, and 

ACKing the 3rd segment of IUT 

11. When the ACK for 3rd segment of IUT is received, IUT sends 

two segments each with three SACKs: 7th segment (1432 

bytes) and 8th segment (28 bytes) 

12. TBIT sends segment (457) creating a fourth gap at IUT, and 

ACKing the 4th segment of IUT 

13. When the ACK for 4th segment of IUT is received, IUT sends 

two segments each with four SACKs: 9th segment (1424 bytes) 

and 10th segment (36 bytes) 

 

Figure 6: Mishandling of data due to SACK processing 

For every ACK received from TBIT, the IUT’s cwnd is increased to 

send two new segments. After the first ACK is received, the IUT 

sends segments with 1448 and 12(!) bytes of data, respectively. 

Both segments from the IUT do include a SACK block. A proper 

SACK implementation is expected to send 1448 bytes of data in 

both segments each with 12 bytes of SACK in the TCP options. As 

the number of SACKs increase to 2, 3 and 4, the IUT sends two 

segments with (1440, 20), (1432, 28), (1424, 36) bytes, respectively. 

Note that the second segment always (coincidentally?) carries a 

number of data bytes equal to bytes needed for the SACK blocks, 

not a full size segment. This misbehavior is observed continuously 

while out-of-order data exists at the IUT. Throughput is decreased 

almost in half for the time when out-of-order data exists in the 

receive buffer. 

G. SACK Reappearance in Consecutive 

Connections 
When verifying misbehaviors A-E, we ran the TBIT tests 

successively using different port numbers. We observed that in 

some TCP stacks, SACK information of a prior connection, say 

from Test A, would sometimes appear in the SYN-ACK segment of 

a new connection, say from Test B! 

To further investigate the misbehavior, we developed Test G as 

shown in Fig. 7. This test purposely uses the same initial sequence 

numbers for consecutive connections to demonstrate a worst case: 
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Test G 

1. TBIT establishes a connection to IUT with SACK-Permitted 

option and ISN 400 on ephemeral port Eph1 

2. IUT replies with SACK-Permitted option on port 80 

3. TBIT sends segment (401) in order 

4. IUT acks the in order data with ACK (402) 

5. TBIT sends segment (403) creating a gap at IUT 

6. IUT acks the out-of-order data with SACK 

7. TBIT sends three RSTs segments to abort the connection 

8. After ‘X’ minutes, TBIT establishes a connection to IUT with 

SACK-Permitted option and ISN 400 on ephemeral port Eph2 

9. IUT replies with SACK-Permitted option on port 80 including 

a SACK block of the previous connection 

In the second connection, the IUT sends an acknowledgment with 

SACK block 403-404 which is from the first connection. TBIT 

assumes 403 is SACKed, but the IUT never received the data. TBIT 

later sends data 402-403 to check if the IUT increases ACK to 405. 

The IUT returns an inconsistent ACK 403, SACK 403-405, but 

fortunately does not increase ACK to 405 so the connection remains 

reliable. In a real connection, eventually the sender will timeout on 

403, discard all SACKed information, and retransmit the data, thus 

returning to a correct state [11].  However for a brief period of time, 

the data sender and receiver are in an inconsistent state. 

 

Figure 7: SACK reappearance in consecutive connections 

3. EXPERIMENTAL DESIGN 
The TBIT tests described in Section 2 were performed over a 

dedicated local area network with no loss. Tests were performed 

between two machines, A and B, as shown in Fig. 8. The round trip 

time was on average 10ms, and no background traffic was present. 

The IUTs being verified were the standard TCP stacks of various 

operating systems. We installed 27 operating systems using Oracle’s 

VirtualBox virtualization software [20] on machine B. We ran tests 

for Mac OS X on another machine. 

TBIT 1.0 [19] was extended on FreeBSD 7.1 (machine A) with the 

seven TBIT tests detailed in the Section 2. 

For each operating system, we installed an Apache HTTP Server [2] 

on machine B since TBIT is originally designed to infer TCP 

behavior of a web server. The TCP segments transmitted between 

TBIT and each IUT were captured at machine B. For this purpose, 

we also installed wireshark [21] on each Windows OS, and tcpdump 

[18] on each UNIX or UNIX-like OS. 

 

Figure 8: Experimental design 

4. RESULTS 
We verified the operating systems in Table I. Each TBIT test was 

repeated three times. In every case, all seven test outputs were 

consistent. Segment captures of tests and TBIT tests are available 

[17]. 

For test A, the early versions of FreeBSD, 5.3 and 5.4, and all 

versions of OpenBSD report at most three SACK blocks 

(Misbehavior A1). OpenBSD explicitly defines a parameter 

TCP_MAX_SACK = 3. Windows 2000, XP and Server 2003 report 

at most two SACK blocks (Misbehavior A2).  Later Windows 

versions correct this misbehavior. 

If the return path carrying SACKs were lossless, a TCP data 

receiver reporting at most two or three SACK blocks would not 

cause a problem. A data sender would always infer the proper state 

of the receive buffer for efficient SACK-based loss recovery 

described in RFC3517 [3]. When more than four SACK blocks exist 

at a data receiver, and SACK segments are lost, the chance of a data 

sender getting less accurate state of the receive buffer increases as 

SACK implementations’ number of blocks reported is decreased. 

This misbehavior can lead to less efficient SACK-based loss 

recovery, and therefore decreased throughput (longer transfer times) 

when multiple TCP segments are lost within the same window. 

We report, for test B, that Windows 2000, XP and Server 2003, are 

misbehaving. SACK information is not reported where it should be, 

after the cumulative ACK is increased beyond the first SACK block. 

Later Windows versions correct this misbehavior. 

Misbehavior C is observed with Windows 2000, XP and Server 

2003. SACK information is partially reported when the data 

between two previously reported SACK blocks are received. Later 

Windows versions correct this misbehavior. 

We observed misbehavior D, failure to report SACK information in 

FIN segment, in FreeBSD 5.3, FreeBSD 5.4, all versions of 

OpenBSD and Microsoft’s Windows.  The problem has been 

corrected in the later FreeBSD versions. 

Misbehavior E is observed with all versions of Windows OS. When 

the TCP traffic is bidirectional, SACKs are not carried within the 

opposite direction TCP segments. Out-of-order data are SACKed 
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only once when they arrive. If a SACK is lost on the return path, 

subsequent segments with no SACKs will trigger a fast 

retransmission which can cause the data sender to unnecessarily 

retransmit data that exists in the receiver’s buffer. 

Table I TBIT Test Results 

Test 
Operating System A

1 

A

2 

B C D E F G 

FreeBSD 5.3 X    X    

FreeBSD 5.4 X    X    

FreeBSD 6.0         

FreeBSD 7.3         

FreeBSD 8. 0         

Linux 2.2.20 (Debian 3)       X  

Linux 2.4.18 (Red Hat 8)       X  

Linux 2.4.22 (Fedora 1)       X  

Linux 2.6.12 (Ubuntu 5.10)       X  

Linux 2.6.15 (Ubuntu 6.06)       X  

Linux 2.6.18 (Debian 4)       X  

Linux 2.6.31 (Ubuntu 9.10)         

Mac OS X 10.5         

Mac OS X 10.6         

OpenBSD 4.2 X    X    

OpenBSD 4.5 X    X    

OpenBSD 4.6 X    X    

OpenBSD 4.7 X    X    

OpenBSD 4.8 X    X    

OpenSolaris 2008.05       X X 

OpenSolaris 2009.06       X X 

Solaris 10        X 

Solaris 11       X  

Windows 2000  X X X X X   

Windows XP  X X X X X   

Windows Server 2003  X X X X X   

Windows Vista     X X   

Windows Server 2008     X X   

Windows 7     X X   

The traffic pattern for testing Misbehavior E is a typical web 

browsing scenario. TBIT represents a user’s web browser where 

HTTP 1.1 GET requests are pipelined, and the IUT represents an 

HTTP 1.1 web server. Since the scenario represents typical Internet 

traffic, we believe that the SACK generation misbehavior of the 

Windows OS is significant, and should be fixed. 

Misbehavior F is observed in Solaris 11, OpenSolaris and all Linux 

systems except the latest one tested Linux 2.6.31 (Ubuntu 9.10), so 

the problem may be fixed for Linux. Interestingly, misbehavior F 

did not occur in Solaris 10. When out-of-order data exists at the data 

sender, thus sending both data payload and SACKs, every other 

segment carries only bytes equal to SACK information appended (at 

most 36 bytes). This misbehavior halves the throughput for the time 

out-of-order data exists at the receive buffer, and is the typical web 

browsing scenario described above. We consider the misbehavior 

significant, and needs to be fixed. 

Misbehavior G is observed on Solaris 10 and OpenSolaris. We ran 

the Test G multiple times with different time intervals X = {1, 5, 

15} minutes. Even after 15 minutes, we frequently observed the 

reappearance of SACK blocks from a prior connection in later 

connections.  The SACK based loss recovery algorithm does not 

work efficiently, when the TCP implementation has this 

misbehavior. For example, when two connections have overlapping 

sequence numbers, the latter connection sends a SACK for a data 

block that was never received. This will cause a decrease in 

throughput. 

One time, we ran all the seven TBIT tests continuously on Solaris 

10 and OpenSolaris machines, and noticed a scenario where a 

SACK block of the first connection in Test A appeared in the SYN-

ACK segment of the third connection established in Test C. One 

time, all TBIT tests were executed and then repeated 45 minutes 

later.   Even after 45 minutes, we observed an instance where the 

SACK block of Test E from the first set appeared in the SYN-ACK 

segment of Test E in the second set. We could not repeat this 

misbehavior with any regularity. Having a sender think data is 

acknowledged when in fact the data has not been received results in 

an inconsistent (i.e., unreliable) state. Fortunately, this misbehavior 

is corrected in Solaris 11. 

5. RELATED WORK 
Two methodologies are mainly used to infer the TCP behavior: 

passive and active measurements. In passive measurements, 

collected trace files are analyzed offline to infer a specific protocol 

behavior. In 1997 Paxson [14] presents tcpanaly, a tool which 

automatically analyses the correctness of TCP implementations by 

inspecting traces collected for bulk data transfers. 

In 2001 Padhye et al. [13] describe the active measurement tool 

TBIT and its architecture. A number of TBIT tests are provided by 

authors including testing a remote web server’s support for SACK, 

and testing if SACKs are correctly processed by web servers when 

retransmitting segments during SACK-based loss recovery.  The 

authors reported that 41% of the web servers were SACK-enabled.  

Of the SACK-enabled web servers, 42% were tested to properly 

process SACKs. 

In 2004 Ladha et al. [10] extended TBIT tests to measure the 

deployment of further TCP enhancements such as limited transmit, 

appropriate byte counting (ABC), early retransmit and SACK.  The 

authors report that while 69% of tested web servers advertise being 

SACK-enabled, only 90 out of 344 (26%) actually process SACK 

information to properly perform sender side loss recovery. 

In 2005 Medina et al. [12] follow up on [13] and investigate the 

correctness of TCP implementations. Active measurements using 

TBIT confirm that in 2004 that 68% of web servers tested were 

SACK-enabled up from the 41% reported in 2001 [13]. The authors 

found roughly 90% of the SACK-enabled web servers make use of 

information in SACKs that they receive, a significant increase from 

[10].   The authors also tested the generation of SACKs by web 

servers.  Only one misbehavior is reported - where .5% of tests 
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resulted in SACKs whose sequence numbers were shifted.  The 

authors suggest plausible causes as buggy TCP implementations or 

middleboxes (NATs, fingerprint scrubbers). In our CAIDA traces 

thus far analyzed and our TBIT tests, we did not see any shifted 

sequence numbers. Note that our experimental design has no 

middleboxes. 

Our research combines both methodologies. We use TBIT to create 

synthetic TCP traffic to verify the proper SACK generation of TCP 

stacks. In addition, we capture TCP segments using tcpdump or 

wireshark for offline SACK generation analysis. 

6. CONCLUSION 
In this research, we designed a methodology and verified 

conformant SACK generation on 29 TCP stacks for a wide range of 

OSes: FreeBSD, Linux, Mac OS X, OpenBSD, Solaris and 

Windows. We identified the characteristics of the seven 

misbehaviors, and designed seven new TBIT tests to uncover these 

misbehaviors. 

For the first five misbehaviors which are observed in the CAIDA 

trace files, we found at least one misbehaving TCP stack. We report 

various versions of OpenBSD and Windows OS to have 

misbehaving SACK generation implementations. In general, the 

misbehaving SACK implementations can cause a less efficient 

SACK-based loss recovery which yields to decreased throughput 

and longer transfer times. 

During the TBIT testing, we identified two additional misbehaviors 

(F and G). Misbehavior F decreases the throughput by sending less 

than expected data while using SACKs. Most Linux and 

OpenSolaris systems show this misbehavior. Misbehavior G is more 

serious and can cause a TCP connection to be inconsistent should 

the sequence number space of one connection overlap that of a prior 

connection. Solaris 10 and OpenSolaris systems misbehave in this 

manner. 

We note that for all misbehaviors, because SACKs are advisory thus 

allowing a data receiver to renege on all SACKed out-of-order data, 

eventually the data sender-receiver will timeout, discard all SACK 

information, and return to a correct state.  Thus the data flow 

remains reliable; only performance degradation may occur. 

As stated in the Introduction, we discovered SACK misbehaviors 

during our investigation of data reneging [7]. In that investigation, 

we argue that SACKs should be “permanent” (not advisory) 

meaning a data receiver MUST NOT renege on out-of-order data. If 

SACKs were to become permanent, since misbehavior G can result 

in unreliable data transfer, it would have to be fixed. While we hope 

misbehaviors A-F will be fixed, even if left as is, they will only 

result in reduced performance, not unreliable protocol behavior. 

While simple in concept, SACK handling is complex to implement. 
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