
 Open access Journal Article DOI:10.1145/1971162.1971165

Misbehaviors in TCP SACK generation — Source link

Nasif Ekiz, Abuthahir Habeeb Rahman, Paul D. Amer

Institutions: University of Delaware

Published on: 15 Apr 2011 - ACM Special Interest Group on Data Communication

Topics: Sack

Related papers:

 Acknowledgement Spoofing at Kernel Level and TCP Sender Behaviour Analysis

 Malicious packet dropping: how it might impact the TCP performance and how we can detect it

 Design of an extended TCP for preventing DOS attacks

 A Poisoning-Resilient TCP Stack

 A mitigation model for TCP SYN flooding with IP spoofing

Share this paper:

View more about this paper here: https://typeset.io/papers/misbehaviors-in-tcp-sack-generation-
fzrup4r24j

https://typeset.io/
https://www.doi.org/10.1145/1971162.1971165
https://typeset.io/papers/misbehaviors-in-tcp-sack-generation-fzrup4r24j
https://typeset.io/authors/nasif-ekiz-4wl5a5mtqm
https://typeset.io/authors/abuthahir-habeeb-rahman-z45kkf9w6m
https://typeset.io/authors/paul-d-amer-10uepghaq6
https://typeset.io/institutions/university-of-delaware-2qwbnd86
https://typeset.io/conferences/acm-special-interest-group-on-data-communication-2a3oxuf8
https://typeset.io/topics/sack-29e0pccj
https://typeset.io/papers/acknowledgement-spoofing-at-kernel-level-and-tcp-sender-2p81pcp5kx
https://typeset.io/papers/malicious-packet-dropping-how-it-might-impact-the-tcp-49z0l7nmzw
https://typeset.io/papers/design-of-an-extended-tcp-for-preventing-dos-attacks-3x26rwzzpr
https://typeset.io/papers/a-poisoning-resilient-tcp-stack-4qqtm4ni96
https://typeset.io/papers/a-mitigation-model-for-tcp-syn-flooding-with-ip-spoofing-e6bsedc2s5
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/misbehaviors-in-tcp-sack-generation-fzrup4r24j
https://twitter.com/intent/tweet?text=Misbehaviors%20in%20TCP%20SACK%20generation&url=https://typeset.io/papers/misbehaviors-in-tcp-sack-generation-fzrup4r24j
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/misbehaviors-in-tcp-sack-generation-fzrup4r24j
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/misbehaviors-in-tcp-sack-generation-fzrup4r24j
https://typeset.io/papers/misbehaviors-in-tcp-sack-generation-fzrup4r24j

Misbehaviors in TCP SACK Generation

Nasif Ekiz
nekiz@udel.edu

Abuthahir Habeeb Rahman
abu@udel.edu

Paul D. Amer
amer@udel.edu

Computer and Information Sciences Department
University of Delaware

Newark, Delaware 19716

ABSTRACT

While analyzing CAIDA Internet traces of TCP traffic to detect

instances of data reneging, we frequently observed seven

misbehaviors in the generation of SACKs. These misbehaviors

could result in a data sender mistakenly thinking data reneging

occurred. With one misbehavior, the worst case could result in a

data sender receiving a SACK for data that was transmitted but

never received. This paper presents a methodology and its

application to test a wide range of operating systems using TBIT to

fingerprint which ones misbehave in each of the seven ways.

Measuring the performance loss due to these misbehaviors is

outside the scope of this study; the goal is to document the

misbehaviors so they may be corrected. One can conclude that the

handling of SACKs while simple in concept is complex to

implement.

Categories and Subject Descriptors

C.2.2 [Network Protocols]: Protocol Verification; C.2.5 [Local

and Wide-Area Networks]: Internet – TCP

General Terms

Reliability, Verification

Keywords

SACK, Selective Acknowledgment, TBIT, TCP

1. INTRODUCTION
The Selective Acknowledgment (SACK) mechanism, RFC2018

[11], an extension to Transmission Control Protocol’s (TCP) [15]

ACK mechanism, allows a data receiver to explicitly acknowledge

arrived out-of-order data to a data sender. When using SACKs, a

TCP data sender need not retransmit SACKed data during the loss

recovery period. Previous research [1, 5, 8] showed that SACKs

improve TCP throughput when multiple losses occur within the

same window. The success of SACK-based loss recovery algorithm

[3] is proportional to the SACK information received from the data

receiver. In this paper, we investigate RFC2018 conformant SACK

generation.

Deployment of the SACK option in TCP connections has been a

slow, but steadily increasing trend. In 2001, 41% of the web servers

tested were SACK-enabled [13]. In 2004, SACK-enabled web

servers increased to 68% [12]. All of the operating systems tested in

this study accept SACK-permitted TCP connections.

Today’s reliable transport protocols such as TCP and Stream

Control Transmission Protocol (SCTP) [16] are designed to tolerate

data receiver reneging (simply, data reneging) (Section 8

RFC2018). Data reneging occurs when a data receiver SACKs data,

and later discards that data from its receiver buffer prior to

delivering it to a receiving application (or receiving socket buffer).

In related research, we argue that reliable transport protocols should

not be designed to tolerate data reneging; largely because we

believe data reneging rarely if ever occurs in practice [7]. While

developing our software to discover data reneging in trace data, we

analyzed TCP SACK information within Internet traces provided by

the Cooperative Association for Internet Data Analysis (CAIDA)

[6]. At first it seemed that data reneging was happening frequently.

On closer inspection however, it appears that the generation of

SACKs in many TCP connections potentially was incorrect

according to RFC2018. Sometimes SACK information that should

have been sent was not. Sometimes the wrong SACK information

was sent. In one misbehavior, SACKs from one connection are sent

in the SYN-ACK used to open a later connection! These

misbehaviors wrongly gave the impression that data reneging was

occurring.

Our discovery led us to verifying SACK generation behavior of

TCP data receivers for a wide range of operating systems. In this

paper, our goal is to present a methodology for verifying SACK

behavior, and to apply the methodology to report misbehaving TCP

stacks. The goal of the paper is not to measure how much the

misbehaviors degrade the performance, but rather to identify

misbehaving TCP stacks so they will be corrected.

We first present in Section 2 seven misbehaviors, five (A-E)

observed in the CAIDA traces, and two (F-G) additional SACK

related misbehaviors observed during our testing of A-E.

Technically, misbehaviors A-E indicate that SHOULD requirements

of RFC2018 are not being followed, and SHOULD means “that

there may exist valid reasons in particular circumstances to ignore a

particular item, but the full implications must be understood and

carefully weighed before choosing a different course.” Upon

analysis, we believe these misbehaviors to be accidental, not

incidental.

Misbehaviors A-F can reduce the effectiveness of SACKs.

Misbehavior G is the worst one where a data receiver transmits a

SACK for data that was never received, thus questioning the data

transfer reliability of the connection. To discover which

implementations are misbehaving, we defined seven test extensions

to the TCP Behavior Inference Tool (TBIT) [19], a tool that verifies

TCP endpoint behavior.

The methodology using TBIT is described in Section 3, and the

results of our TBIT tests are presented in Section 4. Section 5

identifies related research used to infer TCP behavior, and Section 6

concludes our work.

ACM SIGCOMM Computer Communication Review 17 Volume 41, Number 2, April 2011

2. TESTING SACK BEHAVIOR
The five SACK generation misbehaviors observed in CAIDA traces

are described as:

A. Fewer than max number of reported SACKs

B. Receiving data between CumACK and first SACK

C. Receiving data between two previous SACKs

D. Failure to report SACKs in FIN segments

E. Failure to report SACKs during bidirectional data flow

The two additional SACK-related misbehaviors observed during our

TBIT testing of A-E are:

F. Mishandling of data due to SACK processing

G. SACK reappearance in consecutive connections

A. Fewer than Max Number of Reported

SACKs
RFC2018 Section 3 specifies that “the data receiver SHOULD

include as many distinct SACK blocks possible in the SACK option,”

and that “the 40 bytes available for TCP options can specify a

maximum of four SACK blocks.” For some TCP flows, we observed

that only two or sometimes three SACK blocks were reported by a

data receiver even though additional space existed in the TCP

header.

That is, more than two SACK blocks at the data receiver are known

to exist (say Xl-Xr, Yl-Yr, and Zl-Zr) but only two SACK blocks are

reported (Xl-Xr and Yl-Yr). When the cumulative ACK advances

beyond Xr, SACK block Xl-Xr, is correctly no longer reported, and

SACK block Zl-Zr is reported along with block Yl-Yr. This

misbehavior implies that the data receiver reports less than the

recommended maximum SACK blocks.

We extended the existing TBIT test “SackRcvr” [19] to determine a

receiver’s maximum number of reported SACK blocks. For clarity,

most TCP segments sent by TBIT in our Figs. 1-7 are shown to

carry 1 byte of data and create 1 byte gaps. This numbering

scheme makes the TBIT tests easy to understand. In the actual tests

performed (see traces [17]), segments carry 1460 bytes of data and

create 1460 byte gaps. The only exception was for Tests A,F for

Linux systems. The Linux advertised receiver window is only 5840

bytes. To simulate 4 gaps, TBIT segments for two Linux tests carry

600 bytes of data and create 600 byte gaps.

The TBIT test in Fig. 1 operates as follows. Sequence numbers of

segments are shown in parenthesis:

Test A

1. TBIT establishes a connection to TCP Implementation Under

Test (IUT) with SACK-Permitted option and Initial Sequence

Number (ISN) 400

2. IUT replies with SACK-Permitted option

3. TBIT sends segment (401) in order

4. IUT acks the in order data with ACK (402)

5. TBIT sends segment (403) creating a gap at IUT

6. IUT acks the out-of-order data with SACK

7. TBIT sends segment (405) creating 2nd gap at IUT

8. IUT acks the out-of-order data with SACK

9. TBIT sends segment (407) creating 3rd gap at IUT

10. IUT acks the out-of-order data with SACK

11. TBIT sends segment (409) creating 4th gap at IUT

12. IUT acks the out-of-order data with SACK

13. TBIT sends three resets (RST) to abort the connection

The last SACK from the IUT reflects an implementation’s support

for maximum number of SACK blocks reported. A conformant

implementation’s last SACK should be as SACK #12 in Fig. 1. A

misbehaving implementation would not SACK block Y

(Misbehavior A1), or blocks X and Y (Misbehavior A2).

Figure 1: Fewer than max number of reported SACKs

B. Receiving Data Between CumACK and

First SACK
For some TCP flows having at least two SACK blocks, we observed

the following misbehavior. Once the data between the cumulative

ACK and the first SACK block was received, the data receiver

increased the cumulative ACK, but misbehaved and did not

acknowledge other SACK blocks. (The acknowledgment with no

SACK blocks implies an instance of data reneging.)

RFC2018 specifies that: “If sent at all, SACK options SHOULD be

included in all ACKs which do not ACK the highest sequence

number in the data receiver's queue.” So, SACKs should be

included when the cumulative ACK is increased and out-of-order

data exists in the receive buffer.

Test B, illustrated in Fig. 2, checks this misbehavior. The second

SACK block should remain present when the cumulative ACK is

increased beyond the first SACK block but is less than the second

SACK block.

Test B

1. TBIT establishes a connection to IUT with SACK-Permitted

option and ISN 400

2. IUT replies with SACK-Permitted option

3. TBIT sends segment (401) in order

4. IUT acks the in order data with ACK (402)

5. TBIT sends segment (404) creating a gap at IUT (the gap

between Cum ACK and first SACK block)

6. IUT acks the out-of-order data with SACK

7. TBIT sends segment (406) creating 2nd gap at IUT

8. IUT acks the out-of-order data with SACK

9. TBIT sends segment (403)

10. IUT acks the out-of-order data with SACK

11. TBIT sends segment (402) to fill the gap between Cum ACK

and first SACK

12. IUT acks the in order data with SACK

13. TBIT sends three RSTs to abort the connection

A conformant implementation should report SACK block (406-407)

as shown in #12 in Fig. 2. A misbehaving implementation omits

reporting the SACK block.

ACM SIGCOMM Computer Communication Review 18 Volume 41, Number 2, April 2011

Figure 2: Receiving data between CumACK and first SACK

C. Receiving Data Between Two Previous

SACKs
We observed that some TCP flows report SACK information

incompletely once the missing data between two SACK blocks (say

Xl-Xr and Yl-Yr) are received. The next SACK should report a single

SACK block concatenating the first SACK block (Xl-Xr), the

missing data in between, and the second SACK block (Yl-Yr).

Instead some implementations generate a SACK covering only the

first SACK block and the missing data, i.e., (Xl-Yl), omitting the

second SACK block. This behavior implies that the second SACK

block is reneged.

Test C, illustrated in Fig. 3, tests this misbehavior. The data receiver

should report one SACK block covering the two SACK blocks and

the data in between.

Test C

1. TBIT establishes a connection to IUT with SACK-Permitted

option and ISN 400

2. IUT replies with SACK-Permitted option

3. TBIT sends segment (401) in order

4. IUT acks the in order data with ACK (402)

5. TBIT sends segment (403) creating a gap at IUT

6. IUT acks the out-of-order data with SACK

7. TBIT sends segment (405) creating 2nd gap at IUT

8. IUT acks the out-of-order data with SACK

9. TBIT sends segment (404) with missing data between the first

and the second SACK blocks

10. IUT acks the out-of-order data with SACK

11. TBIT sends three RSTs to abort the connection

A proper implementation is expected to report the out-of-order data

(403-406) as shown in #10 in Fig. 3. A misbehaving implementation

would report the SACK block partially (403-405).

Figure 3: Receiving data between two previous SACKs

D. Failure to Report SACKs in FIN Segments
When closing a connection, a receiving side sends a FIN segment

along with the acknowledgment (ACK and SACK) for the data

received. But for some data flows, we observed the FIN segment

does not carry SACK information. As discussed in Section 2B, the

receiver should include the SACK information along with the ACK.

Test D, in Fig. 4, operates as follows: TBIT opens a connection and

sends a GET request (HTTP/1.0) to the IUT. The IUT sends the

requested data, and immediately closes the connection with a FIN

since HTTP/1.0 is non-persistent.

Test D

1. TBIT establishes a connection to IUT with SACK-Permitted

option and ISN 400

2. IUT replies with SACK-Permitted option

3. TBIT sends segment (401-450: GET /index.pdf HTTP/1.0

request) in order

4. IUT acks the in order data with ACK (450)

5. IUT starts sending segments with contents of index.pdf

6. TBIT sends segment (451) creating a gap at IUT

7. TBIT acks segments of IUT

8. IUT acks the out-of-order data with SACK

9. IUT continues sending contents of index.pdf with SACK

10. Once index.pdf is sent completely, IUT sends a FIN to close

the connection

The conformed behavior of a data receiver is to include SACK

information in the FIN segment as shown in #10 in Fig. 4. A

misbehaving implementation sends an ACK, but no SACK

information.

Figure 4: Failure to report SACKs in FIN segments

E. Failure to Report SACKs During

Bidirectional Data Flow
This misbehavior occurs when the data flow is bidirectional. In

some TCP flows, SACK information is not conveyed when the TCP

segment carries data. If a TCP host is sending data continuously

(e.g., an HTTP server), only one SACK is sent when out-of-order

data are received, and SACK information is not piggybacked with

the following segments. This misbehavior can cause less efficient

SACK-based loss recovery since SACKs are sent only once for each

out-of-order data arrival.

As stated in Section 2B, a conformant data receiver should include

SACK information with all ACKs. If ACKs are piggybacked while

ACM SIGCOMM Computer Communication Review 19 Volume 41, Number 2, April 2011

sending data, SACKs should also be piggybacked in the TCP

segments.

We added a new TBIT test for misbehavior E. To have bidirectional

data flow and out-of-order data simultaneously, we used HTTP/1.1

GET requests [9]. HTTP/1.1 opens a persistent connection between

TBIT and an IUT. TBIT requests the file index.pdf (11650 bytes)

which is large enough to have a data transfer requiring several round

trips so that SACK information can be observed in the segments.

Test E

1. TBIT establishes a connection to IUT with SACK-Permitted

option and ISN 400

2. IUT replies with SACK-Permitted option

3. TBIT sends segment (401-450: GET /index.pdf HTTP/1.1

request) in order

4. IUT acks the in order data with ACK (450)

5. IUT starts sending segments with contents of index.pdf

6. TBIT sends segment (451) creating a gap at IUT

7. TBIT acks segments of IUT

8. IUT acks the out-of-order data with SACK

9. IUT continues sending contents of index.pdf with SACK

10. Once index.pdf is retrieved completely, TBIT sends three

RSTs to abort the persistent connection

A conformant implementation appends SACK information in TCP

segments carrying data as shown in Fig. 5, whereas a misbehaving

implementation does not.

Figure 5: Failure to report SACKs during bidirectional data

F. Mishandling of Data Due to SACK

Processing
While running Test E, we observed another SACK related

misbehavior. Some segments do not carry maximal payload when

SACKs are included. Rather they carry only the number of bytes

equal to the SACK information appended.

We explain the misbehavior in detail using Test F shown in Fig. 6.

Test F modifies Test E. Instead of sending one out-of-order data,

four are sent to check how data is sent by the TCP IUT as the

number of appended SACKs increases.

Test F

1-5. Same as Test E

6. TBIT sends segment (451) creating a gap at IUT, and ACKing

the 1st segment of IUT

7. When the ACK for 1st segment of IUT is received, IUT’s

congestion window (cwnd) is increased enabling sending two

new segments. IUT sends two segments with one SACK block:

3rd segment (1448 bytes) and 4th segment (12 bytes)

8. TBIT sends segment (453) creating a second gap at IUT, and

ACKing the 2nd segment of IUT

9. When the ACK for 2nd segment of IUT is received, IUT sends

two segments each with two SACKs: 5th segment (1440 bytes)

and 6th segment (20 bytes)

10. TBIT sends segment (455) creating a third gap at IUT, and

ACKing the 3rd segment of IUT

11. When the ACK for 3rd segment of IUT is received, IUT sends

two segments each with three SACKs: 7th segment (1432

bytes) and 8th segment (28 bytes)

12. TBIT sends segment (457) creating a fourth gap at IUT, and

ACKing the 4th segment of IUT

13. When the ACK for 4th segment of IUT is received, IUT sends

two segments each with four SACKs: 9th segment (1424 bytes)

and 10th segment (36 bytes)

Figure 6: Mishandling of data due to SACK processing

For every ACK received from TBIT, the IUT’s cwnd is increased to

send two new segments. After the first ACK is received, the IUT

sends segments with 1448 and 12(!) bytes of data, respectively.

Both segments from the IUT do include a SACK block. A proper

SACK implementation is expected to send 1448 bytes of data in

both segments each with 12 bytes of SACK in the TCP options. As

the number of SACKs increase to 2, 3 and 4, the IUT sends two

segments with (1440, 20), (1432, 28), (1424, 36) bytes, respectively.

Note that the second segment always (coincidentally?) carries a

number of data bytes equal to bytes needed for the SACK blocks,

not a full size segment. This misbehavior is observed continuously

while out-of-order data exists at the IUT. Throughput is decreased

almost in half for the time when out-of-order data exists in the

receive buffer.

G. SACK Reappearance in Consecutive

Connections
When verifying misbehaviors A-E, we ran the TBIT tests

successively using different port numbers. We observed that in

some TCP stacks, SACK information of a prior connection, say

from Test A, would sometimes appear in the SYN-ACK segment of

a new connection, say from Test B!

To further investigate the misbehavior, we developed Test G as

shown in Fig. 7. This test purposely uses the same initial sequence

numbers for consecutive connections to demonstrate a worst case:

ACM SIGCOMM Computer Communication Review 20 Volume 41, Number 2, April 2011

Test G

1. TBIT establishes a connection to IUT with SACK-Permitted

option and ISN 400 on ephemeral port Eph1

2. IUT replies with SACK-Permitted option on port 80

3. TBIT sends segment (401) in order

4. IUT acks the in order data with ACK (402)

5. TBIT sends segment (403) creating a gap at IUT

6. IUT acks the out-of-order data with SACK

7. TBIT sends three RSTs segments to abort the connection

8. After ‘X’ minutes, TBIT establishes a connection to IUT with

SACK-Permitted option and ISN 400 on ephemeral port Eph2

9. IUT replies with SACK-Permitted option on port 80 including

a SACK block of the previous connection

In the second connection, the IUT sends an acknowledgment with

SACK block 403-404 which is from the first connection. TBIT

assumes 403 is SACKed, but the IUT never received the data. TBIT

later sends data 402-403 to check if the IUT increases ACK to 405.

The IUT returns an inconsistent ACK 403, SACK 403-405, but

fortunately does not increase ACK to 405 so the connection remains

reliable. In a real connection, eventually the sender will timeout on

403, discard all SACKed information, and retransmit the data, thus

returning to a correct state [11]. However for a brief period of time,

the data sender and receiver are in an inconsistent state.

Figure 7: SACK reappearance in consecutive connections

3. EXPERIMENTAL DESIGN
The TBIT tests described in Section 2 were performed over a

dedicated local area network with no loss. Tests were performed

between two machines, A and B, as shown in Fig. 8. The round trip

time was on average 10ms, and no background traffic was present.

The IUTs being verified were the standard TCP stacks of various

operating systems. We installed 27 operating systems using Oracle’s

VirtualBox virtualization software [20] on machine B. We ran tests

for Mac OS X on another machine.

TBIT 1.0 [19] was extended on FreeBSD 7.1 (machine A) with the

seven TBIT tests detailed in the Section 2.

For each operating system, we installed an Apache HTTP Server [2]

on machine B since TBIT is originally designed to infer TCP

behavior of a web server. The TCP segments transmitted between

TBIT and each IUT were captured at machine B. For this purpose,

we also installed wireshark [21] on each Windows OS, and tcpdump

[18] on each UNIX or UNIX-like OS.

Figure 8: Experimental design

4. RESULTS
We verified the operating systems in Table I. Each TBIT test was

repeated three times. In every case, all seven test outputs were

consistent. Segment captures of tests and TBIT tests are available

[17].

For test A, the early versions of FreeBSD, 5.3 and 5.4, and all

versions of OpenBSD report at most three SACK blocks

(Misbehavior A1). OpenBSD explicitly defines a parameter

TCP_MAX_SACK = 3. Windows 2000, XP and Server 2003 report

at most two SACK blocks (Misbehavior A2). Later Windows

versions correct this misbehavior.

If the return path carrying SACKs were lossless, a TCP data

receiver reporting at most two or three SACK blocks would not

cause a problem. A data sender would always infer the proper state

of the receive buffer for efficient SACK-based loss recovery

described in RFC3517 [3]. When more than four SACK blocks exist

at a data receiver, and SACK segments are lost, the chance of a data

sender getting less accurate state of the receive buffer increases as

SACK implementations’ number of blocks reported is decreased.

This misbehavior can lead to less efficient SACK-based loss

recovery, and therefore decreased throughput (longer transfer times)

when multiple TCP segments are lost within the same window.

We report, for test B, that Windows 2000, XP and Server 2003, are

misbehaving. SACK information is not reported where it should be,

after the cumulative ACK is increased beyond the first SACK block.

Later Windows versions correct this misbehavior.

Misbehavior C is observed with Windows 2000, XP and Server

2003. SACK information is partially reported when the data

between two previously reported SACK blocks are received. Later

Windows versions correct this misbehavior.

We observed misbehavior D, failure to report SACK information in

FIN segment, in FreeBSD 5.3, FreeBSD 5.4, all versions of

OpenBSD and Microsoft’s Windows. The problem has been

corrected in the later FreeBSD versions.

Misbehavior E is observed with all versions of Windows OS. When

the TCP traffic is bidirectional, SACKs are not carried within the

opposite direction TCP segments. Out-of-order data are SACKed

ACM SIGCOMM Computer Communication Review 21 Volume 41, Number 2, April 2011

only once when they arrive. If a SACK is lost on the return path,

subsequent segments with no SACKs will trigger a fast

retransmission which can cause the data sender to unnecessarily

retransmit data that exists in the receiver’s buffer.

Table I TBIT Test Results

Test
Operating System A

1

A

2

B C D E F G

FreeBSD 5.3 X X

FreeBSD 5.4 X X

FreeBSD 6.0

FreeBSD 7.3

FreeBSD 8. 0

Linux 2.2.20 (Debian 3) X

Linux 2.4.18 (Red Hat 8) X

Linux 2.4.22 (Fedora 1) X

Linux 2.6.12 (Ubuntu 5.10) X

Linux 2.6.15 (Ubuntu 6.06) X

Linux 2.6.18 (Debian 4) X

Linux 2.6.31 (Ubuntu 9.10)

Mac OS X 10.5

Mac OS X 10.6

OpenBSD 4.2 X X

OpenBSD 4.5 X X

OpenBSD 4.6 X X

OpenBSD 4.7 X X

OpenBSD 4.8 X X

OpenSolaris 2008.05 X X

OpenSolaris 2009.06 X X

Solaris 10 X

Solaris 11 X

Windows 2000 X X X X X

Windows XP X X X X X

Windows Server 2003 X X X X X

Windows Vista X X

Windows Server 2008 X X

Windows 7 X X

The traffic pattern for testing Misbehavior E is a typical web

browsing scenario. TBIT represents a user’s web browser where

HTTP 1.1 GET requests are pipelined, and the IUT represents an

HTTP 1.1 web server. Since the scenario represents typical Internet

traffic, we believe that the SACK generation misbehavior of the

Windows OS is significant, and should be fixed.

Misbehavior F is observed in Solaris 11, OpenSolaris and all Linux

systems except the latest one tested Linux 2.6.31 (Ubuntu 9.10), so

the problem may be fixed for Linux. Interestingly, misbehavior F

did not occur in Solaris 10. When out-of-order data exists at the data

sender, thus sending both data payload and SACKs, every other

segment carries only bytes equal to SACK information appended (at

most 36 bytes). This misbehavior halves the throughput for the time

out-of-order data exists at the receive buffer, and is the typical web

browsing scenario described above. We consider the misbehavior

significant, and needs to be fixed.

Misbehavior G is observed on Solaris 10 and OpenSolaris. We ran

the Test G multiple times with different time intervals X = {1, 5,

15} minutes. Even after 15 minutes, we frequently observed the

reappearance of SACK blocks from a prior connection in later

connections. The SACK based loss recovery algorithm does not

work efficiently, when the TCP implementation has this

misbehavior. For example, when two connections have overlapping

sequence numbers, the latter connection sends a SACK for a data

block that was never received. This will cause a decrease in

throughput.

One time, we ran all the seven TBIT tests continuously on Solaris

10 and OpenSolaris machines, and noticed a scenario where a

SACK block of the first connection in Test A appeared in the SYN-

ACK segment of the third connection established in Test C. One

time, all TBIT tests were executed and then repeated 45 minutes

later. Even after 45 minutes, we observed an instance where the

SACK block of Test E from the first set appeared in the SYN-ACK

segment of Test E in the second set. We could not repeat this

misbehavior with any regularity. Having a sender think data is

acknowledged when in fact the data has not been received results in

an inconsistent (i.e., unreliable) state. Fortunately, this misbehavior

is corrected in Solaris 11.

5. RELATED WORK
Two methodologies are mainly used to infer the TCP behavior:

passive and active measurements. In passive measurements,

collected trace files are analyzed offline to infer a specific protocol

behavior. In 1997 Paxson [14] presents tcpanaly, a tool which

automatically analyses the correctness of TCP implementations by

inspecting traces collected for bulk data transfers.

In 2001 Padhye et al. [13] describe the active measurement tool

TBIT and its architecture. A number of TBIT tests are provided by

authors including testing a remote web server’s support for SACK,

and testing if SACKs are correctly processed by web servers when

retransmitting segments during SACK-based loss recovery. The

authors reported that 41% of the web servers were SACK-enabled.

Of the SACK-enabled web servers, 42% were tested to properly

process SACKs.

In 2004 Ladha et al. [10] extended TBIT tests to measure the

deployment of further TCP enhancements such as limited transmit,

appropriate byte counting (ABC), early retransmit and SACK. The

authors report that while 69% of tested web servers advertise being

SACK-enabled, only 90 out of 344 (26%) actually process SACK

information to properly perform sender side loss recovery.

In 2005 Medina et al. [12] follow up on [13] and investigate the

correctness of TCP implementations. Active measurements using

TBIT confirm that in 2004 that 68% of web servers tested were

SACK-enabled up from the 41% reported in 2001 [13]. The authors

found roughly 90% of the SACK-enabled web servers make use of

information in SACKs that they receive, a significant increase from

[10]. The authors also tested the generation of SACKs by web

servers. Only one misbehavior is reported - where .5% of tests

ACM SIGCOMM Computer Communication Review 22 Volume 41, Number 2, April 2011

resulted in SACKs whose sequence numbers were shifted. The

authors suggest plausible causes as buggy TCP implementations or

middleboxes (NATs, fingerprint scrubbers). In our CAIDA traces

thus far analyzed and our TBIT tests, we did not see any shifted

sequence numbers. Note that our experimental design has no

middleboxes.

Our research combines both methodologies. We use TBIT to create

synthetic TCP traffic to verify the proper SACK generation of TCP

stacks. In addition, we capture TCP segments using tcpdump or

wireshark for offline SACK generation analysis.

6. CONCLUSION
In this research, we designed a methodology and verified

conformant SACK generation on 29 TCP stacks for a wide range of

OSes: FreeBSD, Linux, Mac OS X, OpenBSD, Solaris and

Windows. We identified the characteristics of the seven

misbehaviors, and designed seven new TBIT tests to uncover these

misbehaviors.

For the first five misbehaviors which are observed in the CAIDA

trace files, we found at least one misbehaving TCP stack. We report

various versions of OpenBSD and Windows OS to have

misbehaving SACK generation implementations. In general, the

misbehaving SACK implementations can cause a less efficient

SACK-based loss recovery which yields to decreased throughput

and longer transfer times.

During the TBIT testing, we identified two additional misbehaviors

(F and G). Misbehavior F decreases the throughput by sending less

than expected data while using SACKs. Most Linux and

OpenSolaris systems show this misbehavior. Misbehavior G is more

serious and can cause a TCP connection to be inconsistent should

the sequence number space of one connection overlap that of a prior

connection. Solaris 10 and OpenSolaris systems misbehave in this

manner.

We note that for all misbehaviors, because SACKs are advisory thus

allowing a data receiver to renege on all SACKed out-of-order data,

eventually the data sender-receiver will timeout, discard all SACK

information, and return to a correct state. Thus the data flow

remains reliable; only performance degradation may occur.

As stated in the Introduction, we discovered SACK misbehaviors

during our investigation of data reneging [7]. In that investigation,

we argue that SACKs should be “permanent” (not advisory)

meaning a data receiver MUST NOT renege on out-of-order data. If

SACKs were to become permanent, since misbehavior G can result

in unreliable data transfer, it would have to be fixed. While we hope

misbehaviors A-F will be fixed, even if left as is, they will only

result in reduced performance, not unreliable protocol behavior.

While simple in concept, SACK handling is complex to implement.

7. ACKNOWLEDGMENTS
The authors thank Jonathan Leighton, Aasheesh Kolli and Ersin

Ozkan for their valuable discussions and comments while

developing this paper. The authors also sincerely thank the

anonymous reviewers for their constructive feedback.

8. REFERENCES
[1] M. Allman, C. Hayes, H. Kruse, S. Ostermann, "TCP

performance over satellite links", 5th International Conference

on Telecommunications Systems, 3/97

[2] Apache HTTP Server, httpd.apache.org/

[3] E. Blanton, M. Allman, K. Fall, L. Wang, “A Conservative

Selective Acknowledgment (SACK)-based Loss Recovery

Algorithm for TCP”, RFC3517, 4/03

[4] S. Bradner, “Key words for use in RFCs to indicate

requirement levels”, RFC2119, 3/9

[5] R. Bruyeron, B. Hemon, L. Zhang, “Experimentations with

TCP selective acknowledgment”, ACM Computer

Communication Review, 28(2), 4/98, pp. 54-77

[6] CAIDA Internet Data – Passive Data Sources,

www.caida.org/data/passive/

[7] N. Ekiz, “Transport layer reneging,” PhD Dissertation, CISC

Dept., Univ of Delaware (in progress)

[8] K. Fall, S. Floyd, “Simulation-based comparisons of Tahoe,

Reno, and SACK TCP”, ACM Computer Communication

Review, 26(3), 6/96, pp. 5-21

[9] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P.

Leach, T. Berners-Lee, “Hypertext Transfer Protocol --

HTTP/1.1”, RFC2616, 6/99

[10] S. Ladha, P. D. Amer, A. J. Caro, J. R. Iyengar, “On the

prevalence and evaluation of recent TCP enhancements”, IEEE

Globecom, 11/04

[11] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, “TCP

Selective Acknowledgment Options”, RFC2018, 10/96

[12] A. Medina, M. Allman, S. Floyd, “Measuring the evolution of

transport protocols in the Internet”, ACM SIGCOMM

Computer Communication Review, 4/05

[13] J. Padhye, S. Floyd, “On inferring TCP behavior”, ACM

SIGCOMM, 8/01, pp. 287-298

[14] V. Paxson, “Automated packet trace analysis of TCP

implementations”, ACM SIGCOMM, 9/97

[15] J. Postel, “Transmission Control Protocol”, RFC793, 9/81

[16] R. Stewart, “Stream Control Transmission Protocol”,

RFC4960, 9/07

[17] TBIT tests and TBIT packet captures, pel.cis.udel.edu/tbit-

tests/

[18] Tcpdump, www.tcpdump.org/1999

[19] The TCP Behavior Inference Tool, www.icir.org/tbit/

[20] VirtualBox, www.virtualbox.org/

[21] Wireshark, www.wireshark.org/

ACM SIGCOMM Computer Communication Review 23 Volume 41, Number 2, April 2011

