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Abstract

Miscanthus 9 giganteus is a C4 perennial grass that shows great potential as a high-yielding biomass crop. Scant

research has been published that reports M. 9 giganteus growth and biomass yields in different environments in

the United States. This study investigated the establishment success, plant growth, and dry biomass yield of

M. 9 giganteus during its first three seasons at four locations (Urbana, IL; Lexington, KY; Mead, NE; Adelphia,
NJ) in the United States. Three nitrogen rates (0, 60, and 120 kg ha�1) were applied at each location each year.

Good survival of M. 9 giganteus during its first winter was observed at KY, NE, and NJ (79–100%), and poor

survival at IL (25%), due to late planting and cold winter temperatures. Site soil conditions, and growing-season

precipitation and temperature had the greatest impact on dry biomass yield between season 2 (2009) and season

3 (2010). Ideal 2010 weather conditions at NE resulted in significant yield increases (P < 0.0001) of 15.6–
27.4 Mg ha�1 from 2009 to 2010. Small yield increases in KY of 17.1 Mg ha�1 in 2009 to 19.0 Mg ha�1 in 2010

could be attributed to excessive spring rain and hot dry conditions late in the growing season. Average M. 9
giganteus biomass yields in NJ decreased from 16.9 to 9.7 Mg ha�1 between 2009 and 2010 and were related to
hot dry weather, and poor soil conditions. Season 3 yields were positively correlated with end-of-season plant

height (q̂ ¼ 0:91) and tiller density (q̂ ¼ 0:76). Nitrogen fertilization had no significant effect on plant height,

tiller density, or dry biomass yield at any of the sites during 2009 or 2010.

Keywords: bioenergy, biomass feedstock, biomass yield, environment effect, Miscanthus, N fertilization, plant growth

Received 7 September 2011; revised version received 7 September 2011 and accepted 20 September 2011

Introduction

Concerns about worldwide energy supply and national,

environmental, and economic security have resulted in

a search for alternative energy sources. In response, sev-

eral herbaceous crops are being studied as potential bio-

mass feedstocks that can be utilized as energy sources.

One of these crops, Miscanthus 9 giganteus, a sterile and

rhizomatous perennial C4 photosynthetic plant (Lewan-

dowski et al., 2000), has potential to produce substantial

dry biomass yields (Heaton et al., 2004), and exhibits

efficient conversion of solar radiation to biomass, effi-

cient use of nitrogen and water, and no reported com-

mercial pest and disease problems (Beale & Long, 1995;

Beale et al., 1999). This long-lived perennial grass is a

cross between Miscanthus sinensis and Miscanthus saccha-

riflorus (Hodkinson & Renvoize, 2001) as confirmed by

Hodkinson et al. (2002) and Swaminathan et al. (2010).

Miscanthus 9 giganteus was first collected in Japan in

1935 (Hodkinson et al., 2002) and was initially planted

as a landscape ornamental in Europe and the USA, and

later as a bioenergy feedstock in Europe.

From the time of planting, 3–5 growing seasons are

required before M. 9 giganteus is considered fully estab-

lished and capable of achieving ceiling biomass yields
Correspondence: Thomas Voigt, tel. + 1 217 333 7847,
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(Miguez et al., 2008) that have reached nearly

40 Mg ha�1 peak biomass yields in some European

locations (Miguez et al., 2008). In a quantitative review

of M. 9 giganteus production literature (Heaton et al.,

2004), mature stands from across Europe produced

mean peak biomass yields of 22 Mg ha�1 when aver-

aged across N rates and precipitation levels. Harvest-

able yields up to 25 Mg ha�1 have been reported for

areas between central Germany and southern Italy

(Lewandowski et al., 2000).

Miscanthus 9 giganteus is typically harvested during

the winter or early spring once significant drying of

stems and leaves and translocation of nutrients from

above ground plant tissue to rhizomes has occurred.

There is a tradeoff between harvesting early at the end

of the growing season or late during the winter or in

the early spring. End of season or ‘peak biomass’ har-

vests have higher yields, but higher moisture levels and

greater amounts of undesirable minerals, particularly

nitrogen. Waiting to harvest until winter or early spring

reduces yields, but the need for fertilization is reduced

and feedstock quality is improved (Beale & Long, 1997;

Lewandowski et al., 2000; Clifton-Brown & Lewandow-

ski, 2002; Heaton et al., 2009). Waiting to harvest until

winter or early spring is the recommended practice and

results in approximately a 33% reduction from peak bio-

mass yields (Lewandowski et al., 2003), lost primarily

from drying tissue and senesced leaves that have

dropped from the stems.

Study of M. 9 giganteus as a bioenergy feedstock in

the United States has increased over the past decade,

but relatively little information regarding plant growth,

biomass yield ,and the plant’s response to agronomic

treatments, such as applications of nitrogen fertilizer,

has been published. At present, M. 9 giganteus biomass

yields in the United States have been reported in only

four publications from IL and KS (Heaton et al., 2008;

Dohleman & Long, 2009; Propheter & Staggenborg,

2010; Propheter et al., 2010). Propheter et al. (2010)

reported mean harvestable biomass yield increases of

2.7–11.8 Mg ha�1 and 4.0–13.7 Mg ha�1 from season 1

to season 2 for Manhattan, Kansas and Troy, Kansas,

respectively. Heaton et al. (2008) and Dohleman & Long

(2009) reported mean M. 9 giganteus, biomass yields

ranging from 17.9–34.6 Mg ha�1 in Illinois from mature

stands.

Currently, several studies are taking place in the Mid-

west, Great Plains, and Atlantic coast regions of the

United States that will expand the number of M. 9

giganteus evaluation sites and provide valuable data that

can be used to identify the optimal growing region for

the crop. Such data will also provide valuable informa-

tion about establishment success, responses to new and

varying environments, growth patterns from season to

season, and response to N fertilizer. Because there are

limited US sites growing M. 9 giganteus, little informa-

tion is available to suggest a suitable growing region for

the grass.

It is believed that M. 9 giganteus should be grown in

temperate climates, as a frost period is needed to mark

the end of the growing season and the beginning of dor-

mancy (Pyter et al., 2009). Miscanthus 9 giganteus pos-

sesses winter hardiness traits obtained from M. sinensis

(Clifton-Brown & Lewandowski, 2000), however, there

are still concerns about the crop’s ability to withstand

harsh winter environments (low and fluctuating winter

temperatures) (Clifton-Brown & Lewandowski, 2000).

In northern Europe, testing has shown that M. 9 gigan-

teus rhizomes are severely affected by temperatures

<�3.4 °C (Clifton-Brown & Lewandowski, 2000). Addi-

tionally, late-spring frosts have proven to negatively

affect emerging and young M. 9 giganteus tillers (Far-

rell et al., 2006). The risk of growing this crop in some

colder environments may be confined primarily to the

establishment years because mature stands of M. 9

giganteus have survived winters in IL with air temperatures
lower than �26 °C (�15°F) (personal observations).
Beyond the need to identify the optimal M. 9 gigan-

teus growing regions in the United States, additional

research is needed to determine its response to applied

N. The literature shows varied response to N applica-

tions (Lewandowski et al., 2000; Heaton et al., 2004;

Miguez et al., 2008). For example in Italy over 4 years

M. 9 giganteus responded favorably to applied N up to

200 kg N ha�1 (Ercoli et al., 1999). At Rothamsted, Eng-

land, M. 9 giganteus grown for 14 years on a silty clay

loam did not respond to annual applications of 60 and

120 kg N ha�1 (Christian et al., 2008). Across 14 years

there was only a 5% difference in biomass yield

between N treatments. In their study Christian et al.

(2008) suggested that annual applications of 7 kg P ha�1

and 100 kg K ha�1 were important for soil maintenance.

Aside from site differences, a major difference between

these two studies is that the Italian study was harvested

at peak biomass, while the English study was harvested

in winter, the recommended harvest timing. In general

it appears that yield response to applied N will occur

on a site-by-site basis. It has also been suspected that

some N may be made available from biological N-fixa-

tion (Davis et al., 2010). Other factors that may impact

N response include soil type and quality (i.e., texture,

bulk density, rooting depth), percent soil organic matter

which influences the amount of annual N mineraliza-

tion, harvest timing, status of other soil nutrients, and

the length of time since planting.

As part of the Sun Grant/U.S. Department of Energy

Regional Biomass Feedstock Partnership, M. 9 giganteus

was planted in replicated trials in four locations through

© 2011 Blackwell Publishing Ltd, GCB Bioenergy, 4, 253–265
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the central region of the eastern half of the United

States. The locations ranging from west to east were

Mead, NE; Urbana, IL; Lexington, KY; and Adelphia,

NJ. This experiment began in 2008 and will be ongoing

for 5 or more years, allowing sufficient time for the crop

to reach maturity at each site. This experiment involves

various investigators from multiple institutions, and

multiple aspects of production and sustainability are

being evaluated. The overall objective of this long-term

experiment is to evaluate the potential to geographically

expand M. 9 giganteus production as a bioenergy feed-

stock beyond Illinois and Kansas. This study focuses on

aboveground M. 9 giganteus material during the first

3 years at IL, KY, NE, and NJ. The specific objectives of

this study were to: (1) establish M. 9 giganteus at these

four locations and assess its overwintering capability,

and (2) collect morphological, growth, and biomass

yield data to assess the impact of temperature and pre-

cipitation, season of growth, and N rate on the produc-

tivity of M. 9 giganteus at each of these locations.

Materials and methods

Crop establishment

Miscanthus 9 giganteus rhizomes obtained from the Chicago

Botanic Garden (Glencoe, IL, USA) were used to develop a

demonstration planting at the University of Illinois Landscape

Horticulture Research Center (Urbana, IL, USA) in 1988. This

planting continues to the present and, since 2001, has supplied

rhizomes used to plant more than 4 ha of bioenenergy fields at

various sites in Illinois, USA.

In fall 2007, M. 9 giganteus rhizomes were harvested from a

field planting at the University of Illinois, Urbana, IL, USA.

Propagation took place in University of Illinois greenhouses

where rhizomes of approximately 25 g were planted into 9 cm

square pots during winter and spring 2008, in artificial soil

mixes and grown in the greenhouse. In early-to-mid summer

2008, 1200 potted plants were shipped to each location for

hardening and transplanting.

This study was conducted at four university field sites: Uni-

versity of Illinois Urbana-Champaign (Urbana, IL, 40°06′20″ N,

88°19′18 W), University of Kentucky (Lexington, KY, 38°07′45″

N, 84°30′08 W), University of Nebraska-Lincoln (Mead, NE,

41°10′07″ N, 96°28′10″ W), and Rutgers, The State University of

New Jersey (Adelphia, NJ, 40°13′31″ N, 74°14′54 W). Three 1 m

deep soil cores from each plot at each location were collected

in 2008 on 17 July in IL, 5 August in KY, 14 August in NE, and

3 September in NJ. Each core sample was split into five seg-

ments: 0–10, 10–20, 20–30, 30–50, and 50–100 cm depths

(Table 1).

At each location, twelve 10 m 9 10 m plots comprised of

100 M. 9 giganteus plants per plot were transplanted at a den-

sity of 1 plant m�2, with 5 m alleys between the plots. Since

planting, the gaps between plants are closing due to the rhizo-

matous growth habit of M. 9 giganteus. Transplanting dates

were 24 July, 20 June, 18 June, and 19 June, respectively, in IL,

KY, NE, and NJ. Late planting at the IL site occurred due to

the time required to propagate additional M. 9 giganteus

plants. The plots at each location were arranged in a random-

ized complete block design with four replicates. Three N treat-

ments (0, 60, and 120 kg ha�1) were applied at each location in

each replicate each year beginning with the establishment year

(2008). During the planting year, irrigation and mechanical

weed control were provided where necessary at each location

to promote establishment of M. 9 giganteus. In spring 2009, the

percent winter survival at each location was determined, and

dead plants were replaced with potted plants at that time so

that each plot contained 100 live plants. Percent winter survival

was measured again in each plot at each location in spring

2010.

Plant measurements

Throughout the second (2009) and third (2010) growing

seasons, plant growth and morphological measurements were

collected at KY, NE, and NJ. These data were not collected in

IL until 2010 due to 2009 replanting. Emergence date was

determined in the spring when the first 10 plants in each plot

had emerged. Date of full-headed flowering (R3) (Moore et al.,

1991) was determined when approximately 50% of the plants

in each plot were fully flowered. Average plant height was

measured in KY, NE, and NJ and was determined by measur-

ing the height of the tallest point of the leaf on the tallest stem

from five randomly selected plants in each plot each month in

2009 and 2010. In 2009 and 2010, average tiller density

(tillers m�2) was determined by counting the number of tillers

per plant on at least five random plants in each plot after the

end of the growing season. These sampling dates are shown in

Table 2. In 2010 when tiller density measurements were col-

lected, the average number of phytomers per tiller and average

tiller diameter were also determined. This was done by ran-

domly selecting a total of 10 representative tillers from each of

five plants. Tiller diameter was determined by measuring each

tiller at the center of the first full internode above the ground

level of the tiller. Phytomer number was determined by record-

ing the number of nodes on each tiller. Average tiller diameter

and phytomer number were determined by first calculating the

average within plants and then across all plants within a plot.

In 2009 and 2010, dry biomass yield estimates were obtained

at each location after the end of the growing season. Harvest

dates for 2009 are shown in Table 2. Harvesting at all locations

in 2009 and 2010, with exception of NE, employed the follow-

ing protocol. A representative plant in each plot was randomly

selected, avoiding plants on the border rows of the plot. A

1 m�2 quadrat was centered on the middle of the plant and all

standing tillers within the meter-squared area were cut at

~10 cm above the ground. No ground litter was included in the

sample. After harvesting the first plant, the 1 m�2 quadrat was

flipped directly to the north and the adjacent meter-square area

(i.e., single plant) was harvested. If the adjacent sampling area

was on the edge of the plot, the quadrat was flipped to the

south and that adjacent meter-square area was harvested. This

process was repeated a second time by randomly selecting a

© 2011 Blackwell Publishing Ltd, GCB Bioenergy, 4, 253–265
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second representative M. 9 giganteus plant in each plot. This

resulted in a total of four harvested plants, each representing a

1 m�2 area from each M. 9 giganteus plot. Fresh weight was

determined by weighing a subsample, and dry biomass

(Mg ha�1) was determined by calculating the percent moisture

of a subsample dried in the oven at 60 °C for at least 48 h. The

Table 2 Sampling dates from the 2009 and 2010 growing seasons for plant height, tiller density, and biomass yield harvest

Location Plant height measurements Tiller density measurements Biomass yield harvest

2009 Growing season

IL January 2010*

KY 24 April, 18 May, 19 June, 27 July, 4

September

4 September 16 March 2010*

NE 10 May, 10 June, 15 July, 17 August, 15

September

15 September 1 April 2010*

NJ 15 May, 17 June, 22 July, 20 August,

18 September, 23 October

23 October 16 December 2009

2010 Growing season

IL 29 November 2010 29 November 2010

KY 9 April, 10 May, 11 June, 17 July, 9

August, 14 September, 12 October

11 November 11 November 2010

NE 28 April, 26 May, 28 June, 28 July, 24

August, 27 September, 26 October, 22

November

2 December 2 December 2010

NJ 17 May, 17 June, 15 July, 18 August, 24

September, 13 October, 2 November

9 December 9 December 2010

*Harvesting for the 2009 growing season in Illinois (IL), Kentucky (KY), and New Jersey (NJ) actually occurred early in 2010 before

the start of the 2010 growing season.

Table 1 Selected soil variables from each site sampled during summer 2008 at five soil depths (0–10, 10–20, 23–30, 30–50, and 50–

100 cm)

Location

Depth

(cm) % Sand % Silt % Clay pH

CEC

(cmolc kg
�1) % SOM

Total (%) Extractable (mg kg�1)
BD

(g cm�3)C N P K Ca Mg S

Urbana, IL 0–10 55 30 16 5.7 10.6 1.9 1.14 0.11 39.1 110 1390 154 15.8 1.52

10–20 54 30 15 5.9 10.7 1.9 1.11 0.11 47.1 144 1613 154 17.1 1.69

20–30 52 32 16 6.0 10.9 1.9 1.08 0.11 39.5 130 1686 177 17.4 1.66

30–50 36 43 21 6.0 12.0 1.6 0.75 0.08 11.3 75 1722 325 13.4 1.59

50–100 11 53 35 6.5 20.9 1.2 0.41 0.05 1.4 126 2659 840 11.4 1.64

Lexington, KY 0–10 9 64 27 5.1 18.6 4.7 2.49 0.31 322.2 229 1860 214 45.5 1.38

10–20 9 63 28 5.8 16.2 3.2 1.64 0.21 302.8 117 2122 174 25.2 1.56

20–30 8 60 32 5.9 16.0 2.4 1.08 0.15 321.7 91 2145 144 16.3 1.57

30–50 10 52 38 6.0 17.8 1.8 0.66 0.10 383.4 92 2405 133 12.5 1.71

50–100 14 38 48 5.9 25.6 1.8 0.46 0.09 391.8 106 3453 146 17.3 1.83

Mead, NE 0–10 4 59 36 6.1 22.4 5.1 2.99 0.33 108.3 667 3053 610 19.6 1.23

10–20 4 58 39 6.7 22.6 3.6 1.98 0.24 74.7 672 3082 634 16.2 1.39

20–30 4 55 42 6.7 23.3 3.2 1.70 0.20 60.3 614 3098 715 14.9 1.40

30–50 3 54 43 6.9 23.8 2.5 1.18 0.14 28.4 575 3006 834 13.7 1.45

50–100 4 56 40 7.0 23.2 1.4 0.53 0.07 24.9 414 2861 879 11.6 1.53

Adelphia, NJ 0–10 52 35 13 5.3 9.5 2.1 1.23 0.11 219.2 119 800 154 19.3 1.34

10–20 53 35 12 5.5 9.6 2.2 1.24 0.12 220.5 95 874 158 18.1 1.52

20–30 53 35 13 5.5 9.1 2.0 1.14 0.11 202.3 92 816 155 17.4 1.57

30–50 55 30 15 5.5 5.8 1.1 0.48 0.04 43.4 69 627 177 15.4 1.68

50–100 70 15 16 5.4 5.0 0.8 0.24 0.03 14.7 70 643 141 27.9 –*

CEC, cation exchange capacity; SOM, soil organic matter; BD, bulk density.

*A restrictive soil feature ranging between 50 and 80 cm precluded the calculation of bulk density at this NJ site.

© 2011 Blackwell Publishing Ltd, GCB Bioenergy, 4, 253–265
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NE plots were harvested at a height of ~10 cm using a mechan-

ical forage plot harvester (Carter MFG Co., Inc. Brookston, IN,

USA) by harvesting one row of plants (10 plants) for a total

area of 10 m�2 in each plot. A subsample from each plot was

weighed and dried to calculate percent moisture and determine

dry biomass yield.

Statistical modeling and analysis

Data from IL were not statistically analyzed with the other

locations because this location (as of 2010) possessed a mixture

of 2- and 3-year-old plants, and the stand was nonuniform.

When applicable, mean values from IL were reported in the

results to provide some information regarding this location,

and these mean values were calculated using the MEANS pro-

cedure of SAS [SAS Institute (2007) SAS/STAT 9.2 Users’s Guide.

SAS Institute, Cary, NC, USA].

Dry biomass yields were analyzed in the MIXED procedure

of SAS while tiller density, which follows a Poisson distribu-

tion (aka count data), was analyzed in the GLIMMIX procedure

of SAS. Locations (KY, NE, and NJ) and years (2009 and 2010)

were combined to create six environments: KY-2009, KY-2010,

NE-2009, NE-2009, NE-2010, NJ-2009, and NJ-2010. Environ-

ments, blocks, and subsamples were considered random

effects, while nitrogen rate was declared a fixed effect. The

mixed model was described as follows:

yijkl ¼ lþ ei þ bjðiÞ þ ak þ eaik þ errorjðiÞk þ sijkl;

where dry biomass yield or tiller density (yijkl) depends on the

lth random subsample of the kth nitrogen rate in the jth block

nested in the ith environment, having an intercept (l), and

being influenced by the random environment (ei), random

block (bj(i)), random interaction between environment and

nitrogen rate (eaik), and fixed nitrogen rate (ak) effects. The

model assumes that ei, bj(i), and eaik are independent normal

random variables with expectations zero and respective vari-

ances r2e ; r2bðeÞ, and r2ea, and that the errors (errorj(i)k) and subs-

amples (sijkl) have means of zero and common variances.

Environments were considered random to account for different

weather and other environmental conditions at each site which

could not be controlled. Significance of random effects were

calculated using the COVTEST option in the MIXED and

GLIMMIX procedures of SAS. Best linear unbiased predictions

of random effects (i.e., means of random effects) and their

interactions were calculated using estimate statements with

appropriate degrees of freedom and standard errors. Residuals

were examined for normality and the assumption of common

variances by inspection of residual plots.

The nonlinear function used to model the increase in

M. 9 giganteus plant height throughout the growing season

was the logistic growth function,

fðxÞ ¼ asym

1þ exp� ðx�xmidÞ=scalð Þ : ð1Þ

Here, f(x) is M. 9 giganteus plant height (meter units) mea-

sured throughout the growing season and x is the day of year

(DOY). Three parameters describe the shape and spread of the

function: (1) asymptote (asym) or maximum height achieved

by the crop, (2) scale (scal) or the elapsed time between the

crop achieving half and three quarters of it maximum height,

and (3) inflection point (xmid) or DOY at which the crop

achieves half of its maximum height. A nonlinear mixed model

was used to implement the logistic growth function and inves-

tigate the effects of environment, N rate, and there interaction.

This was accomplished by considering asym, scal, and xmid

for each environment and each N rate as fixed components,

and individual plots (experimental units) as random. The mod-

eling process followed principles in Pinheiro & Bates (2000)

and was implemented with ‘nlme’ package (Pinheiro et al.,

2009) of R statistical software (R Core, v. 2.12.1, 2010). Residu-

als were checked for patterns by plotting standardized residu-

als against their fitted values. Parameter estimates and their

95% confidence intervals were obtained using the ‘summary’

and ‘interval’ functions of R (R Core, v. 2.12.1, 2010). Prediction

plots and all other graphics were obtained using the ‘graphics’

and ‘lattice’ packages of R (R Core, v. 2.12.1, 2010).

Pearson correlation coefficients and their respective P-values

were calculated using the CORR procedure of SAS to evaluate

the linear association of dry biomass yield, end of season plant

height, tiller density, phytomers per tiller, and tiller diameter

among environments during the 2010 growing season. End of

season plant height measurements were determined by select-

ing the last set of plant height (between September and

November) measurements collected in each environment. For

each variable, the mean value for each plot was determined

using the MEANS procedure of SAS, resulting in 12 observa-

tions, n = 12 (4 blocks 9 3 N rates) for assessing the effect of

environment on these variables. In addition, these variables

were correlated with accumulated thermal time and growing-

season precipitation (April through September). Matrix scatter

plots were obtained using the SGSCATTER procedure of SAS

to visually assess correlations among environments within a

growing season.

Results

Site growing conditions

Selected soil-data variables from each site were averaged

and summarized (Table 1). At IL, the soil is classified as a

very deep, well-drained Wyanet silt loam (loamy, mixed,

active, mesic Typic Argiudolls). The upper 30 cm of soil

at this site is dominated by a sandy loam that transitions

into a silty clay loam at the 50–100 cm depth (Table 1).

The water table at this site ranges between 61 and 107 cm

in depth. Organic matter levels are relatively low ranging

from 1.9% at the 0–10 cm depth down to 1.2% at the 50–

100 cm depth (Table 1). This is an atypical site for east-

central IL; typical soils for this area are usually Drummer

(very deep, poorly drained, silty clay loam soils) or Flana-

gan (very deep, somewhat poorly drained, silt loam soils)

series. At KY, the soil is classified as very deep, well-

drained Maury silt loam (fine, mixed, active, mesic Typic

Paleudalfs) with a water table deeper than 200 cm.
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Percent organic matter levels at this site range from 4.7%

at the 0–10 cm depth down to 1.8% at the 50–100 cm

depth. At NE, the soil is classified as a very deep well-

drained Tomek silt loam (fine, smectitic, mesic Pachic Ar-

giudolls), however, this specific site is dominated by a silty

clay loam soil texture (Table 1). The water table at this site

is greater than 200 cm in depth and percent organic mat-

ter levels range from 5.1% at the 0–10 cm depth down to

1.4% at the 50–100 cm depth. At NJ, the soil is a Holmdel

sandy loam (fine-loamy, mixed, active, mesic Aquic Hap-

ludults) with a relatively high water table ranging between

15 and 91 cm in depth. Percent organic matter levels at

this site range from 2.1% at the 0–10 cm depth down to

0.8% at the 50–100 cm depth. At this site there is a restric-

tive soil layer or a bedrock layer between 50 cm and

80 cm in depth, depending on the plot.

Weather data from stations near to Urbana, IL; Lex-

ington, KY; Mead, NE; and Adelphia, NJ were obtained

from the Midwestern Regional Climate Center, a coop-

erative program of the Illinois State Water Survey and

the National Climatic Data Center, or directly from the

National Climatic Data Center. Data from each location

were collected from stations nearby Urbana, IL; Lexing-

ton, KY; Mead, NE; and Adelphia, NJ, respectively, with

station name and cooperative identification number,

Urbana, IL (118740), Lexington Bluegrass AP, KY

(154746), Mead 6S, NE (255362), and Hightstown 2W,

NJ (283951). Monthly weather data for 2008, 2009, and

2010 are summarized in Tables 3 and 4 and Figures 1

and 2. Accumulated thermal time (aka growing-degree

days) was calculated with a base temperature of 0°C as

has been done in other studies (Miguez et al., 2008,

2009; Hastings et al., 2009).

Winter survival

The percent of M. 9 giganteus plants that survived the

first winter was very dependent upon the site. Because

only 25% of the M. 9 giganteus plants survived the first

winter in IL, replanting was required to bring the plots

Table 3 Total monthly precipitation (mm) at each location during 2008, 2009, and 2010, and their 30-year normal averages

Month

IL KY

2008 2009 2010 30-Year normal 2008 2009 2010 30-Year normal

January 59 17 31 48 112 110 76 85

February 151 43 41 51 146 65 41 83

March 72 67 74 82 160 61 29 112

April 76 176 53 93 150 121 59 93

May 154 145 87 122 112 153 253 121

June 163 112 212 107 91 132 117 116

July 200 160 95 119 87 192 154 122

August 20 143 42 111 55 115 15 96

September 207 20 81 82 36 150 15 79

October 75 223 28 71 39 147 31 69

November 33 100 98 88 64 24 113 87

December 124 96 65 70 153 102 63 102

Annual 1336 1302 906 1043 1205 1372 966 1166

NE NJ

January 6 7 23 12 69 71 67 95

February 10 12 17 13 110 15 110 70

March 17 8 41 47 83 47 229 100

April 118 41 102 70 62 99 67 100

May 151 30 68 106 116 112 82 112

June 251 165 249 101 107 187 78 100

July 95 67 183 84 89 159 75 126

August 26 185 64 85 39 172 20 123

September 110 39 148 73 178 100 77 109

October 129 110 6 55 90 119 82 87

November 45 0 0 40 84 64 50 93

December 30 67 0 18 151 166 74 95

Annual 987 732 902 704 1177 1311 1012 1211

IL, Illinois; KY, Kentucky; NE, Nebraska; NJ, New Jersey.
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to a fully planted status during the 2009 season. The

other three sites had adequate to excellent winter

survival. Survival in KY, NE, and NJ was 99%, 79%,

and 100%, respectively. Poor winter survival at IL was

related to late transplanting on 24 July 2008. In addition

to being planted late, winter temperatures at IL

dropped to �27 °C in the middle of January 2009. Per-

cent winter survival at the beginning of the 2010 season

was near 100% at each site.

Growing season conditions

Kentucky had more growing-season precipitation (April

through September) than either NE or NJ in 2009

(Table 3). In 2010, early season precipitation in KY was

much higher than normal, but August and September

were very dry, with precipitation levels 81 and 64 mm

less than normal, respectively (Table 3). In addition,

temperatures were above normal each month from

April through October (Table 4). In 2010, accumulated

thermal time in NE (3402) was at least 1000 units lower

than KY (4531) and NJ (4601) (Table 5), while growing-

season precipitation (April through September) was at

least 200 mm greater in NE (814 mm) than in KY

(613 mm) and NJ (399 mm) (Table 3).

Plant height

The N rate 9 environment interaction was found non-

significant for the asym (P = 0.1206), xmid (P = 0.5919),

and scal (P = 0.9343) parameters. The N rate main effect

was also nonsignificant for the asym (P = 0.4418), xmid

(P = 0.8802), and scal (P = 0.5290) parameters, whereas

environment was significant for each parameter

(P < 0.0001). Plant height increases throughout the grow-

ing season showed very similar patterns among different

environments and N rates (Fig. 3). The estimated asym

attained in the different environments ranged between 3

and 3.79 m, and there were significant increases in the

asym in the KY and NE environments from 2009 to 2010

(Table 6). The parameters xmid and scal were quite dif-

ferent from environment to environment ranging from

143.5 to 171.5 for xmid and 15.38 to 24.23 for scal. These

differences were environment dependent and appear

related to the length of the growing season and weather

conditions in each environment.

Biomass yield

The environment 9 N rate interaction did not contribute

significant variation. Biomass yield was not affected by
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Fig. 1 Departure from average for total monthly precipitation (mm) at each location during 2008, 2009, and 2010. Departures were

calculated as the difference between total monthly precipitation and monthly 30-year normal averages.
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Fig. 2 Departure from average minimum and maximum air temperature (°C) at each location during 2008, 2009, and 2010. Depar-

tures were calculated as differences between monthly average minimum and maximum temperatures and 30-year normal averages.
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N rate (P = 0.3938), but did differ by environment

(P = 0.0611). There was a significant decrease in biomass

yield at NJ (P < 0.0001) from 2009 to 2010 (Table 7), rep-

resenting a 42.6% yield decrease. From 2009 to 2010, bio-

mass yields at KY increased slightly (P = 0.1755) and

75.6% in NE (P � 0.0001) (Table 7). In 2009, there were

no yield differences among the KY, NE, and NJ environ-

ments (P � 0.2289). In 2010, however, there were signif-

icant differences in biomass yields among the KY, NE,

and NJ environments with yields in NE greater than

yields in KY and NJ (P � 0.0001), and KY yields greater

than NJ yields (P � 0.0001). Mean biomass yields at IL

in 2009 were 1.1, 3.8, and 4 Mg ha�1 for 0, 60, and

120 kg N ha�1, respectively, while 2010 mean biomass

yields increased to 14.8, 16.1, and 16 Mg ha�1 for 0, 60,

and 120 kg N ha�1, respectively.

Tiller density

There was no significant tiller-density response to applied

N in any of the environments and the only significant

effect was the environment main effect (P = 0.0624).

There were significant increases in tiller densities in KY

(P � 0.0001) and NE (P � 0.0001) from 2009 to 2010

(Table 7). To put this in perspective, tiller densities in

2010 were approximately 52% and 56% greater than in

the 2009 seasons for KY and NE, respectively (Table 7).

Tiller densities were relatively constant (P = 0.7820)

between the NJ-2009 and NJ-2010 environments. Mean til-

ler densities at IL in 2010 were 37.3, 32.3, and 37.6 tillers

m�2, respectively, for 0, 60, and 120 kg N ha�1.

Correlations among variables

In 2010, there was a strong positive correlation between

end-of-season plant height and dry biomass yield

(q̂ ¼ 0:94) (P < 0.0001). There were also strong positive

correlations between dry biomass and tiller density

(q̂ ¼ 0:87) (P < 0.0001), and between plant height and

tiller density (q̂ ¼ 0:88) (P < 0.0001). There were moder-

ate positive correlations between plant height and tiller

diameter (q̂ ¼ 0:59) (P = 0.0002), and between tiller den-

sity and tiller diameter (q̂ ¼ 0:63) (P < 0.0001). These

relationships are summarized with matrix scatter plots

in Figure 4 and suggest that higher biomass yields were

primarily related to higher tiller densities and taller

plant heights. NE stands out in the consistency of the

relationships among these variables, having the highest

biomass yields, highest tiller densities, and tallest plant

heights in 2010. New Jersey tended to have the lowest

biomass yields and tiller densities and shorter plant

heights, with KY lying between NE and NJ. Tiller

diameter and phytomers per tiller did not produce any

noteworthy relationships to biomass yield. In 2010,

accumulated thermal time had strong-to-moderate neg-

ative correlations on biomass yield (q̂ ¼ �0:83)

(P < 0.0001), plant height (q̂ ¼ �0:89) (P < 0.0001), tiller

density (q̂ ¼ �0:78) (P < 0.0001), and phytomer number

Table 5 Season length, accumulated thermal time, average emergence date, and flowering date(s) for each season and location

Location Season length* Accumulated thermal time† Emergence date‡ Flowering date(s)§

2009 Growing season

KY 193 days (8 April–18 October) 3783 31 March 18 September

NE 172 days (15 April–4 October) 3196 26 April–1 May 23 September

NJ 185 days (17 April–19 October) 3459 27 April ~25–30 September

2010 growing season

IL 196 days (10 April–23 October) 3911 10 April 1 October

KY 217 days (27 March–30 October) 4531 2 April Did not flower

NE 167 days (19 April–3 October) 3402 2 week April 27 September

NJ 218 days (28 March–1 November) 4601 11 April 30 October¶

*Season lengths were calculated as the number of days between the last frost in the spring to the first frost in the fall. One exception

is in KY in 2010, where a late frost on 19 April was not used as the beginning of the growing season since there had already been

2–2 weeks of above-freezing weather since the previous frost on 27 March. In this case, 27 March was marked as the last frost in the

spring.

†Accumulated thermal time was calculated with a base temperature of 0 °C, by determining the average of the minimum (when

greater than 0 °C) and maximum daily (no limit) temperatures, and summing these values across time. In calculating accumulated

thermal time for individual days, if the average temperature for that day did not exceed 0 °C, no thermal time was accumulated

‡Emergence date was determined in the spring when approximately the first 10 plants in each plot had emerged.

§Date of full-headed flowering was determined when approximately 50% of the plants in each plot were fully flowered.

¶Only plots that flowered at Adelphia, NJ in 2010 were those plots applied with 0 kg N ha�1 and some that received 60 kg N ha�1.

When it occurred flowering took place on 30 Oct. First fall frost was 1 November.
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(q̂ ¼ �0:74) (P < 0.0001), whereas growing-season pre-

cipitation (April through September) had strong-to-

moderate positive correlations with biomass yield

(q̂ ¼ 0:95) (P < 0.0001), plant height (q̂ ¼ 0:96)

(P < 0.0001), tiller density (q̂ ¼ 0:91) (P < 0.0001), and

stem diameter (q̂ ¼ 0:65) (P < 0.0001).

Discussion

The percent of M. 9 giganteus plants that survived the

first winter was dependent upon the site and was

related to late planting and cold winter temperatures. In

IL, extreme winter temperatures during the 2008–2009

winter reduced the M. 9 giganteus population by 75%.

In Europe, rhizomes from newly planted M. 9 giganteus

were affected by temperatures less than �3.4 °C (26°F)
which killed 50% of the rhizomes exposed to these tem-

peratures (Clifton-Brown & Lewandowski, 2000). Clif-

ton-Brown & Lewandowski (2000) also suggest that

larger plants tend to overwinter better than M. 9 gigan-

teus plants that are shorter, have high rhizome moisture

content, and that do not begin dormancy until the first

fall frost occurs. Generally, winterkill is an issue during

the establishment year as mature stands of M. 9

giganteus have survived IL winter temperatures lower

than �26 °C (�15°F) (personal observations).
The growing conditions were adequate for M. 9

giganteus growth in KY, NE, and NJ environments in

2009, and the dry biomass yields at each location in

2009 were slightly higher than second season biomass

yields reported in a Kansas, USA, study (Propheter &

Staggenborg, 2010). In NJ, shallow, sandy soils likely

contributed to the low yields (Table 1). Tiller

densities at each site in 2009 were similar, and it was

Fig. 3 Miscanthus 9 giganteus plant height (m) plotted against day of year (DOY) and fit with logistic growth functions for each N

rate (0, 60, 120 kg N ha�1) in each of six environments (KY-2009, KY-2010, NE-2009, NE-2009, NE-2010, NJ-2009, and NJ-2010).
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expected that tiller densities and biomass yields

would increase from 2009 to 2010 at each site

(Miguez et al., 2008), but this was not the case

(Table 7).

Dry biomass yields at KY increased only slightly from

2009 to 2010 and this could be attributed to abnormal

weather conditions in 2010. The crop emerged on 2

April (Table 5), and a frost on 19 April caused damage.

Exposure of newly emerging shoots to freezing temper-

atures can reduce M. 9 giganteus biomass yields (Farrell

et al., 2006). Early season precipitation in KY was much

higher than normal while conditions in August and

September were very dry, and temperatures were above

normal during the entire growing season (Table 4). Gen-

erally, high summer temperatures should not have a

negative impact on this C4 crop, but when combined

with limited precipitation, it appears to have caused the

M. 9 giganteus plants to go dormant earlier than normal

and not flower in 2010 (Table 5), thus limiting their bio-

mass production.

Lower yields at NJ in 2010 could be attributed to

several environmental conditions and management

activities. First, weather conditions were both warmer

and drier than normal in 2010 (Tables 3 and 4). Grow-

ing-season precipitation and soil moisture availability

have been shown to be extremely important for

M. 9 giganteus to achieve its biomass yield potential

(Heaton et al., 2004; Richter et al., 2008), whereas Clif-

ton-Brown et al. (2002) reported that low precipitation

or prolonged periods of drought are not suitable for

growing M. 9 giganteus. In addition, the shallow and

sandy soils at that site may have also contributed to

the low yields as the rocky layer may have impeded

M. 9 giganteus root development and restricted the

plant’s ability to obtain water at deep soil depths. In a

mature stand of M. 9 giganteus in Germany, roots

grew down to 250 cm, with almost half growing dee-

per than 90 cm (Neukirchen et al., 1999). Finally, the

harvest of 2009 biomass was delayed until early April

2010, at the time shoots were emerging which may

have damaged some new shoots and affected the 2010

biomass yields.

In NJ in 2010, not all of the plots reached full matu-

rity with plants in only half of the plots flowering

(Table 5). The plants that flowered were in the 0 or

60 kg N ha�1 plots, and there was no flowering in the

120 kg N ha�1 plots. Nitrogen-fertilized plots of

M. 9 giganteus remained vegetative longer than

unfertilized plots (Himken et al., 1997); a difference,

however, in the yields of these plots was not observed

Table 6 95% Confidence intervals (upper and lower) of the

parameters estimates of the logistic growth function for each

environment

Parameter Environment Lower Estimate Upper

asym KY-2009 2.99 3.08 3.17

KY-2010 3.19 3.39 3.59

NE-2009 2.62 2.85 3.07

NE-2010 3.59 3.79 3.99

NJ-2009 3.17 3.37 3.57

NJ-2010 2.80 3.00 3.20

xmid KY-2009 149.1 151.5 153.8

KY-2010 138.3 143.5 148.7

NE-2009 165.4 171.5 177.6

NE-2010 156.7 161.7 166.8

NJ-2009 155.1 160.2 165.4

NJ-2010 141.8 146.8 151.9

scal KY-2009 19.71 21.75 23.79

KY-2010 16.42 20.86 25.30

NE-2009 19.08 24.23 29.37

NE-2010 17.53 21.84 26.15

NJ-2009 15.31 19.82 24.33

NJ-2010 10.96 15.38 19.81

asym, maximum height (m); xmid, day of year at which crop

achieves half of its maximum height; scal, time (in terms of

days) between half and three quarters maximum height; KY,

Kentucky; NE, Nebraska; NJ, New Jersey.

Table 7 Dry biomass yield (Mg ha�1) and tiller density (num-

ber tillers m�2) estimated for each environment at each of three

N rates (kg N ha�1) and their means averaged across N rates

Environment

N rate (kg N ha�1)

Mean* P-value†0 60 120

Dry biomass (Mg ha�1)

KY-2009 16.5‡ 17.6 17.1 17.1 0.1755

KY-2010 18.2 19.4 19.5 19.0

NE-2009 15.7 15.9 15.2 15.6 <0.0001

NE-2010 26.8 28 27.7 27.4

NJ-2009 15.2 17.9 17.6 16.9 <0.0001

NJ-2010 9.5 10 9.3 9.7

Number tillers m�2

KY-2009 38.8 37.4 38.5 38.2 <0.0001

KY-2010 58.8 56.8 58.4 58

NE-2009 45.2 43.6 44.8 44.6 <0.0001

NE-2010 70.4 67.9 69.8 69.3

NJ-2009 44.7 43.2 44.3 44.1 0.7820

NJ-2010 44.0 42.4 43.6 43.3

*Mean values are averaged across N rate.

†P-values for contrast statements comparing mean environ-

ment values within a location (KY-2009 vs. KY-2010, NE-2009

vs. NE-2010, and NJ-2009 vs. NJ-2010).

‡No contrasts among N rates were made because the environ-

ment 9 N rate and N rate effects were nonsignificant for both

dry biomass and tiller density.

KY, Kentucky; NE, Nebraska; NJ, New Jersey.
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once leaf senescence was complete and the plots har-

vested in winter.

In 2010, NE growing conditions were favorable for

crop growth, and this is reflected in the high biomass

yields which were highly correlated with end of sea-

son plant height (Table 7, Fig.4). Similar results relat-

ing biomass to plant height have been reported in

production in central Italy (Angelini et al., 2009).

Between April and October 2010 in NE, there was

approximately 43% (246 mm) more precipitation than

normal and growing-season precipitation was highly

correlated with biomass yield. Additionally, there were

25 days during the growing season at NE when air

temperatures were 32.2 °C or higher. Optimal growing

temperatures for M. 9 giganteus are between 30 and

35°C (Naidu et al., 2003). The combination of warm

temperatures and adequate precipitation spread

throughout the growing season created ideal growing

conditions.

Even though there was no effect of applied N on any

of the measured variables in any of the environments, it

does not suggest that M. 9 giganteus will not require N

fertilizer in the future. Cadoux et al. (2011) recom-

mended that fertilizer not be applied during the first

2 years after M. 9 giganteus is planted, unless it is

planted in poor soils. This recommendation is sup-

Fig. 4 Matrix scatter plots showing relationships between dry biomass yield (Mg ha�1) end of season plant height (m), tiller density

(number tillers m�2), average number of phytomers tiller�1, and average tiller diameter (cm) grouped by different 2010 environments:

KY-2010, NE-2010, and NJ-2010.
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ported by a recent meta-analysis reporting that there

was little response to N fertilizer during M. 9 giganteus

establishment years (years 1–3), but once the crop

reached maturity, a response to N fertilizer was

detected (Miguez et al., 2008). At this reporting, our

study is still in its ‘yield building’ or establishment

years (Clifton-Brown et al., 2007), however, N might be

necessary as stands mature and, with added yields,

more N is harvested from the system.

This study increases our understanding of how dif-

ferent environments impact M. 9 giganteus growth,

development, and biomass yield. Not surprisingly,

increases in biomass yield rely on growing conditions

in which water is adequately available, especially

when temperatures are high and/or soils where soils

hold limited moisture. Also of importance, nitrogen

fertilization had no significant effects on M. 9 gigan-

teus biomass yield in season two or three at any site.

Over time, this experiment will continue to shed

important light on the capacity of M. 9 giganteus to

provide stable and reliable biomass yields at these

locations.
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